Document Type
Article
Version
Author's Final Manuscript
Publication Title
Regular and Chaotic Dynamics
Volume
23
Publication Date
2018
Abstract
We give a new proof of the existence of compact surfaces embedded in ℝ3 with Anosov geodesic flows. This proof starts with a noncompact model surface whose geodesic flow is shown to be Anosov using a uniformly strictly invariant cone condition. Using a sequence of explicit maps based on the standard torus embedding, we produce compact embedded surfaces that can be seen as small perturbations of the Anosov model system and hence are themselves Anosov.
Citation
Donnay, Victor J. 2018. "A New Proof of the Existence of Embedded Surfaces with Anosov Geodesic Flow." Regular and Chaotic Dynamics 23.6: 685-694.
DOI
http://doi.org/10.1134/S1560354718060047