Document Type
Article
Version
Author's Final Manuscript
Publication Title
Transactions of the American Mathematical Society
Publication Date
2018
Abstract
In a previous article we constructed an entire power series over -adic weight space (the ghost series) and conjectured, in the -regular case, that this series encodes the slopes of overconvergent modular forms of any -adic weight. In this paper, we construct abstract ghost series which can be associated to various natural subspaces of overconvergent modular forms. This abstraction allows us to generalize our conjecture to, for example, the case of slopes of overconvergent modular forms with a fixed residual representation that is locally reducible at . Ample numerical evidence is given for this new conjecture. Further, we prove that the slopes computed by any abstract ghost series satisfy a distributional result at classical weights (consistent with conjectures of Gouvêa) while the slopes form unions of arithmetic progressions at all weights not in .
Citation
Bergdall, John and Robert Pollack. "Slopes of modular forms and the ghost conjecture, II." Transactions of the American Mathematical Society, forthcoming (published online 2018).
DOI
http://doi.org/10.1090/tran/7549