Document Type

Article

Version

Author's Final Manuscript

Publication Title

Journal of Inorganic Biochemistry

Volume

101

Publication Date

2007

Abstract

The preparation and characterization of new model complexes for the molybdenum cofactor are reported. The new models are distinctive for the inclusion of pterin-substituted dithiolene chelates and have the formulation Tp*MoX(pterin-R-dithiolene) (Tp* = tris(3,5,-dimethylpyrazolyl)borate), X= O, S, R= aryl or –C(OH)(CH3)2). Syntheses of Mo(4+) and (5+) complexes of two pterin-dithiolene derivatives as both oxo and sulfido compounds, and improved syntheses for pterinyl alkynes and [Et4N][Tp*MoIV(S)S4] reagents are described. Characterization methods include electrospray ionization mass spectrometry, electrochemistry, infrared spectroscopy, electron paramagnetic resonance and magnetic circular dichroism. Cyclic voltammetry reveals that the Mo(5+/4+) reduction potential is intermediate between that for dithiolene with electron-withdrawing substituents and simple dithiolate chelates. Electron paramagnetic resonance and magnetic circular dichroism of Mo(5+) complexes where X = O, R = aryl indicates that the molybdenum environment in the new models is electronically similar to that in Tp*MoO(benzenedithiolate).

DOI

10.1016/j.jinorgbio.2007.07.012

Included in

Chemistry Commons

Share

COinS