Inferring Balancing Selection From Genome-Scale Data
Document Type
Article
Version
Final Published Version
Publication Title
Genome Biology and Evolution
Volume
15
Publication Date
2023
Abstract
The identification of genomic regions and genes that have evolved under natural selection is a fundamental objective in the field of evolutionary genetics. While various approaches have been established for the detection of targets of positive selection, methods for identifying targets of balancing selection, a form of natural selection that preserves genetic and phenotypic diversity within populations, have yet to be fully developed. Despite this, balancing selection is increasingly acknowledged as a significant driver of diversity within populations, and the identification of its signatures in genomes is essential for understanding its role in evolution. In recent years, a plethora of sophisticated methods has been developed for the detection of patterns of linked variation produced by balancing selection, such as high levels of polymorphism, altered allele-frequency distributions, and polymorphism sharing across divergent populations. In this review, we provide a comprehensive overview of classical and contemporary methods, offer guidance on the choice of appropriate methods, and discuss the importance of avoiding artifacts and of considering alternative evolutionary processes. The increasing availability of genome-scale datasets holds the potential to assist in the identification of new targets and the quantification of the prevalence of balancing selection, thus enhancing our understanding of its role in natural populations.
Citation
Bitarello, B. D., Brandt, D. Y. C., Meyer, D. and A. M. Andrés. 2023. "Inferring Balancing Selection From Genome-Scale Data." Genome Biology and Evolution 15.3: evad032.
DOI
https://doi.org/10.1093/gbe/evad032
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.