Document Type
Article
Version
Final Published Version
Publication Title
Ecosphere
Volume
11
Publication Date
2020
Abstract
Feedbacks between plants and their soil microbial communities often drive negative density dependence in rare, tropical tree species, but their importance to common, temperate trees remains unclear. Additionally, whether negative density dependence is driven by natural enemies (e.g., soil pathogens) or by high densities of seedlings has rarely been assessed. Density dependence may also depend on seedling size, as smaller and/or younger seedlings may be more susceptible to mortality agents. We monitored seedlings of Quercus rubra, a common, canopy‐dominant temperate tree, to investigate how the density of neighboring adults and seedlings influenced their survival over two years. We assessed how the soil microbial community influenced seedling survival by growing seedlings in a glasshouse inoculated with soil collected from beneath conspecific and heterospecific mature trees. In the field, seedling survival was lower in areas with high densities of mature conspecifics but was unrelated to either conspecific or heterospecific seedling density. Smaller seedlings were also more sensitive than larger seedlings to neighboring adult conspecifics. In the glasshouse, seedlings grown with soil from beneath a conspecific adult had a higher mortality rate than seedlings grown with soil from beneath heterospecific adults or sterilized soil, suggesting that soil microbial communities drive the patterns of mortality in the field. These results illustrate the importance of negative density‐dependent feedbacks resulting from the soil microbial community in a common and ecologically important temperate tree species.
Citation
Jevon, F. V., Record, S., Grady, J., Lang, A. K., Orwig, D. A., Ayres, M. P., and Matthes, J. H. 2020. "Seedling survival declines with increasing conspecific density in a common temperate tree." Ecosphere 11.11: e03292.
DOI
http://doi.org/10.1002/ecs2.3292