Document Type
Article
Version
Author's Final Manuscript
Publication Title
Monthly Notices of the Royal Astronomical Society
Publication Date
2017
Abstract
In the context of a star cluster moving on a circular galactic orbit, a “potential escaper” is a cluster star that has orbital energy greater than the escape energy, and yet is confined within the Jacobi radius of the stellar system. On the other hand analytic models of stellar clusters typically have a truncation energy equal to the cluster escape energy, and therefore explicitly exclude these energetically unbound stars. Starting from the landmark analysis performed by Hénon of periodic orbits of the circular Hill equations, we present a numerical exploration of the population of “non-escapers”, defined here as those stars which remain within two Jacobi radii for several galactic periods, with energy above the escape energy. We show that they can be characterised by the Jacobi integral and two further approximate integrals, which are based on perturbation theory and ideas drawn from Lidov-Kozai theory. Finally we use these results to construct an approximate analytic model that includes a phase space description of a population resembling that of potential escapers, in addition to the usual bound population.
Publisher's Statement
© 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. This is the author's final manuscript (accepted March 2017). The final version is published here: https://doi.org/10.1093/mnras/stx571
Citation
Kathryne J. Daniel, Douglas C. Heggie, Anna Lisa Varri; An Approximate Analytic Model of a Star Cluster with Potential Escapers. Monthly Notices of the Royal Astronomical Society 2017 stx571.
DOI
https://doi.org/10.1093/mnras/stx571