Document Type

Article

Version

Publisher's PDF

Publication Title

Applied Physics Letters

Volume

91

Publication Date

2007

Abstract

Microscale single-layer ferromagnetic rings typically exhibit a magnetic vortex state at remanence, characterized by a flux-closed magnetic state with zero stray fields. Magnetic reversal in such systems yields a vanishing remanent magnetization. In contrast, the authors show that in individual layers in thin rings, which alternate magnetic and nonmagnetic materials (NiFe/Cu/Co), layer-resolved hysteresis loops, measured using x-ray resonant magnetic scattering, exhibit the characteristics of a vortex formation, although photoelectron emission microscopy and micromagnetic simulations clearly prove that multidomain states are formed. This result is of considerable importance for the development of pseudo-spin-valve-type structures for applications.

DOI

10.1063/1.2786856

Included in

Physics Commons

Share

COinS