"Polarization Effects in Quantum Coherences Probed By Two-Color, Resona" by Elizabeth McCormack and E. Sarajlic
 

Document Type

Article

Version

Publisher's PDF

Publication Title

Physical Review A

Volume

63

Publication Date

2-2001

Abstract

We present a combined theoretical and experimental study of the effects of laser polarization on optical coherences produced in two-color, resonant four-wave mixing (TC-RFWM). A time-dependent model incorporating diagrammatic perturbation theory and spherical tensor formalism is used to interpret observations of quantum beats due to molecular hyperfine structure in time-resolved TC-RFWM in nitric oxide. Good agreement is found between the model and the observed time-resolved signals for two distinct excitation schemes and a variety of polarization configurations including both polarization and population gratings. Measured hyperfine energy intervals are reported for the X(2)Pi (1/2) , v = 0 ground state and the A (2)Sigma (+), v = 0 excited state of NO. The experimental results demonstrate that TC-RFWM can be used to perform state-selective, quantum beat spectroscopy in three-level systems by suitably designing three experimental features: the excitation scheme for the matter-field interaction, the time ordering of the laser pulses, and the polarization of the incident laser beams.

DOI

10.1103/PhysRevA.63.023406

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 17
  • Usage
    • Downloads: 212
    • Abstract Views: 27
  • Captures
    • Readers: 10
see details

Included in

Physics Commons

Share

COinS