Document Type
Article
Version
Author's Final Manuscript
Publication Title
Journal of Plasma Physics
Volume
88
Publication Date
2022
Abstract
In this paper we present an experimental study of edge turbulence in the Large Plasma Device at UCLA. We utilize a scan of discharge power and prefill pressure (neutral density) to show experimentally that turbulent density fluctuations decrease with decreasing density gradient, as predicted for resistive drift-wave turbulence (RDWT). As expected for RDWT, we observe that the cross-phase between the density and potential fluctuations is close to 0. Moreover, the addition of an electron temperature gradient leads to a reduction in the amplitude of the density fluctuations, as expected for RDWT. However, counter to theoretical expectations, we find that the potential fluctuations do not follow the same trends as the density fluctuations for changes either in density gradients or the addition of a temperature gradient. The disconnect between the density and potential fluctuations is connected to changes in the parallel flows as a result of differences in the prefill pressure, i.e. neutral density. Further analysis of the density and potential fluctuation spectra show that the electron temperature gradient reduces the low frequency fluctuations up to 10kHz" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-family: inherit; font-variant-caps: inherit; font-stretch: inherit; line-height: normal; vertical-align: baseline; display: inline; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">10kHz10kHzand the introduction of a temperature gradient leads to an unexpected ∼π" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-family: inherit; font-variant-caps: inherit; font-stretch: inherit; line-height: normal; vertical-align: baseline; display: inline; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">∼𝜋∼πshift of the density–potential cross-phase at ∼10kHz" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-family: inherit; font-variant-caps: inherit; font-stretch: inherit; line-height: normal; vertical-align: baseline; display: inline; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">∼10kHz∼10kHz, while maintaining the typical resistive drift-wave cross-phase at lower frequencies. These experiments partly confirm existing knowledge on resistive drift-wave turbulence, but also introduce new observations that indicate a need for dedicated nonlinear three-dimensional turbulence simulations that include neutrals.
Citation
Perks, C., Mordijck, S., Carter, T., Van Compernolle, B., Vincena, S., Rossi, G., & D. Schaffner. 2022. "Impact of the electron density and temperature gradient on drift-wave turbulence in the Large Plasma Device." Journal of Plasma Physics 88.4: 905880405.
DOI
https://doi.org/10.1017/S0022377822000630