Document Type
Conference Proceeding
Publication Title
Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics
Version
Final Published Version
Publication Date
2018
Abstract
We propose a hypothesis only baseline for diagnosing Natural Language Inference (NLI). Especially when an NLI dataset assumes inference is occurring based purely on the relationship between a context and a hypothesis, it follows that assessing entailment relations while ignoring the provided context is a degenerate solution. Yet, through experiments on 10 distinct NLI datasets, we find that this approach, which we refer to as a hypothesis-only model, is able to significantly outperform a majority-class baseline across a number of NLI datasets. Our analysis suggests that statistical irregularities may allow a model to perform NLI in some datasets beyond what should be achievable without access to the context.
DOI
http://dx.doi.org/10.18653/v1/S18-2023
Citation
Adam Poliak, Jason Naradowsky, Aparajita Haldar, Rachel Rudinger, and Benjamin Van Durme. 2018. Hypothesis Only Baselines in Natural Language Inference. In Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics: 180–191, New Orleans, Louisiana. Association for Computational Linguistics.