Document Type

Article

Version

Author's Final Manuscript

Publication Title

Journal of Magnetic Resonance

Volume

32

Publication Date

1978

Abstract

Proton spin-lattice relaxation times have been measured at 16, 31, and 59 MHz in 4-methyl-2,6-ditertiarybutyl phenol between 80 K and its melting point, 340 K. The variation of T1 with temperature shows too distinct minima. The lower-temperature minimum has been analyzed in terms of relaxation by reorientation of four of the six t-butyl methyl groups with an average apparent activation energy of about 2.4 kcal mole−1 (104 meV molecule−1). The higher-temperature minimum has been analyzed in terms of relaxation by reorientation of the t-butyl groups about their C3 axes with four of the six t-butyl methyl groups reorienting very rapidly, and the remaining two reorienting with correlation time similar to that of the t-butyl group. The activation energy for the higher-temperature minimum is 5.76 kcal mole−1 (250 meV molecule−1). Steric potential calculations are used to add weight to these assignments, and a number of peculiarities displayed by the lower-temperature minimum are discussed.

DOI

https://doi.org/10.1016/0022-2364(78)90054-9

Included in

Physics Commons

Share

COinS