2011

Understanding Melt Generation Beneath the Slow-Spreading Kolbeinsey Ridge Using (238)U, (230)Th, and (231)Pa Excesses

Lynne J. Elkins
Bryn Mawr College, lelkins@brynmawr.edu

K.W.W. Sims

J. Prytulak

T. Elliot

N. Mattielli

See next page for additional authors

Let us know how access to this document benefits you.

Follow this and additional works at: http://repository.brynmawr.edu/geo_pubs

Part of the Earth Sciences Commons

Custom Citation

This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College. http://repository.brynmawr.edu/geo_pubs/2

For more information, please contact repository@brynmawr.edu.
Understanding melt generation beneath the slow-spreading Kolbeinsey Ridge using 238U, 230Th, and 231Pa excesses

L.J. Elkinsa,b,*, K.W.W. Simsa,c, J. Prytulakd,e, T. Elliottc,g, N. Mattiellif,g, J. Blichert-Tofth, J. Blusztajna, N. Dunbari, C. Deveyj, D.F. Mertzk, J.-G. Schillingl, M. Murrellm

a Woods Hole Oceanographic Institution, Woods Hole, MA, USA
b Dept. of Geology, Bryn Mawr College, Bryn Mawr, PA, USA
c Dept. of Geology and Geophysics, University of Wyoming, Laramie, WY, USA
d Oxford University, Oxford, UK
e Bristol Isotope Group, School of Earth Sciences, University of Bristol, Bristol, UK
f Université de Bruxelles, Brussels, Belgium
g Faculteit der Aardwetenschappen, de Boelelaan 1085, 1081HV Amsterdam, Netherlands
h Laboratoire de Géologie de Lyon, Ecole Normale Supérieure de Lyon and Université Claude Bernard Lyon 1, CNRS UMR 5276, 46 Allée d’Italie, 69007 Lyon, France
i New Mexico Institute of Mining and Technology, Socorro, NM, USA
j IFM-GEOMAR, Wischhofstr. 1-3, D-24148 Kiel, Germany
k Institute of Geosciences, University of Mainz, 55099 Mainz, Germany
l Unité, Rhode Island, Narragansett, RI, USA
m Los Alamos National Laboratory, Los Alamos, NM, USA

Received 18 August 2010; accepted in revised form 9 August 2011; available online 24 August 2011

Abstract

To examine the petrogenesis and sources of basalts from the Kolbeinsey Ridge, one of the shallowest locations along the global ridge system, we present new measurements of Nd, Sr, Hf, and Pb isotopes and U-series disequilibria on 32 axial basalts. Young Kolbeinsey basalts (full-spreading rate = 1.8 cm/yr; 67°05’–70°26’N) display $(^{230}$Th/238U) < 1 and $(^{230}$Th/238U) > 1 with $(^{230}$Th/238U) from 0.95 to 1.30 and have low U (11.3–65.6 ppb) and Th (33.0 ppb–2.40 ppm) concentrations. Except for characteristic isotopic enrichment near the Jan Mayen region, the otherwise depleted Kolbeinsey basalts (e.g. 87Sr/86Sr = 0.70272–0.70301, 143Nd = 8.4–10.5, 176Hf = 15.4–19.6 (La/Yb)$_N$ = 0.28–0.84) encompass a narrow range of $(^{230}$Th/232Th) (1.20–1.32) over a large range in $(^{238}$U/232Th) (0.94–1.32), producing a horizontal array on a $(^{230}$Th/232Th) vs. $(^{238}$U/232Th) diagram and a large variation in $(^{230}$Th/238U). However, the $(^{230}$Th/238U) of the Kolbeinsey Ridge basalts (0.96–1.30) are inversely correlated with $(^{234}$U/238U) (1.001–1.031). Samples with low $(^{230}$Th/238U) and elevated $(^{234}$U/238U) reflect alteration by seawater or seawater-derived materials. The unaltered Kolbeinsey lavas with equilibrium $(^{234}$U/238U) have high $(^{230}$Th/238U) values (>1.2), which are consistent with melting in the presence of garnet. This is in keeping with the thick crust and anomalously shallow axial depth for the Kolbeinsey Ridge, which is thought to be the product of large degrees of melting in a long melt column. A time-dependent, dynamic melting scenario involving a long, slowly upwelling melting column that initiates well within the garnet peridotite stability zone can, in general, reproduce the $(^{230}$Th/238U) and $(^{231}$Pa/235U) ratios in uncontaminated Kolbeinsey lavas, but low $(^{231}$Pa/235U) ratios in Eggvin Bank samples suggest eclogite involvement in the source for that ridge segment.

© 2011 Elsevier Ltd. All rights reserved.

* Corresponding author at: Dept. of Geology, Bryn Mawr College, Bryn Mawr, PA 19010, USA.
E-mail address: lelkins@brynmawr.edu (L.J. Elkins).

0016-7037/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.gca.2011.08.020
1. INTRODUCTION

Mid-ocean ridge basalt (MORB) chemistry varies systematically as a function of ridge depth, which was posited to be related to underlying crustal thickness (Klein and Langmuir, 1987). Deep mid-ocean ridges overlie relatively thin ocean crust and are inferred to be produced by shallow, small degree melting in relatively short mantle melt columns; whereas shallow mid-ocean ridges overlie thick crust and are inferred to be produced by large degrees of melting in long melting columns with deep initiation of melting.

Among global mid-ocean systems, the slow-spreading Kolbeinsey Ridge (∼1.8 cm/yr; Mosar et al., 2002) north of Iceland represents Klein and Langmuir’s (1987) shallow end member, due to its shallow ridge axis (mean depth ∼1100 m). Relative to other MORB, the Kolbeinsey Ridge erupts basalts that are highly depleted in trace elements and high Fe8, suggesting deep initiation of melting (Klein and Langmuir, 1987).

Using a limited global data set, and following on the model of Klein and Langmuir (1987), Bourdon et al. (1996a) predicted that production of thick crust at shallow mid-ocean ridges, such as the Kolbeinsey Ridge, involves a long, deep melt column initiating in the garnet peridotite stability field, thus producing large melt fractions with high 238U/238U ratios. However, since there have been no published U-series measurements for the Kolbeinsey Ridge, these predictions rely on extrapolation and have yet to be verified.

The Klein and Langmuir (1987) model provides a general, first-order perspective on MORB petrogenesis. However, since this early model was introduced, MORB chemistry has proven to be much more diverse than originally thought, and other factors besides melt column length have been shown to play an important role in MORB compositions. For example, mantle lithology, variations in mineral/melt partition coefficients, mantle potential temperature (e.g. the effect of the Iceland hot spot) and melting at multiple porosities are thought to be some of the controlling parameters establishing the chemical composition of MORB (e.g. Langmuir et al., 1992; Niu and Batiza, 1993, 1997; Lundstrom et al., 1995; Sims et al., 1995, 2002; Lundstrom, 2000; Niu et al., 2001; Donnelly et al., 2004; Stracke et al., 2006; Russo et al., 2009; Waters et al., 2011). As will be discussed in detail below, an important aspect of Kolbeinsey Ridge basalts is that they are all highly depleted with relatively uniform major and trace element compositions and Nd, Sr, Hf, and Pb isotopic abundances, except near Jan Mayen and Iceland. This uniformity suggests that for our sample suite, the petrogenetic processes are remarkably similar and that the source is homogeneous over the length scale of melting. This is in marked contrast to locations such as the East Pacific Rise (EPR) where considerable variability is observed over small spatial and temporal scales and indicates melting of mixed lithologies (Donnelly et al., 2004; Waters et al., 2011).

It is important to note that Kolbeinsey Ridge basalts variably record the effects of crustal contamination (Michael and Cornell, 1998). Michael and Cornell (1998) measured Cl/K ratios in Kolbeinsey MORB that range up to 0.54, which they interpreted as representing variable assimilation of hydrothermally altered crustal material in shallow crystallizing magma. They hypothesized that at slow-spreading ridges with thick crust, such as the Kolbeinsey Ridge, magmas can pool in the crust and experience more hydrothermal and shallow crustal alteration than they do in comparable locations with thin crust. Such alteration with seawater components can have a significant impact on the U-series systematics of MORB (Bourdon et al., 2000; Sims et al., 2003; Breivik et al., 2009; Fjeldskaar et al., 2009).

In this contribution we present measurements of 238U–230Th–226Ra and 235U–231Pa isotopes, Sr, Nd, Hf, and Pb isotopic compositions, and major and trace element abundances from the Kolbeinsey Ridge. We first consider the effects of seawater alteration by measuring (234U/238U) and Cl/K ratios, both sensitive tracers of basalt alteration in the crust. We find a systematic correlation between (234U/238U) and (238Th/238U), which enables correction of the (238Th/235U) ratios to unaltered values (i.e. (234U/238U) = 1.000). The corrected values for Kolbeinsey Ridge lavas closely resemble the Th isotopic ratios and extent of 238U–230Th disequilibria measured in unaltered samples. After deciphering and then filtering for secondary effects, we use the combined U-series, long-lived isotopic, and trace element measurements to test the hypothesis that global axial ridge depth is strongly controlled by mantle temperature effects on solidus depth and melt supply, as opposed to alternatives such as mantle source heterogeneity. Namely, because the Kolbeinsey Ridge basalts have shallow eruption depths, they should result from large extents of melting in a long melt column initiating well within the garnet stability field. We develop a self-consistent forward melting model that can account for the combined U-series isotopes and major and trace element compositions, thereby providing a more comprehensive understanding of the parameters controlling basalt petrogenesis at this slow spreading ridge (e.g. solidus depths, upwelling rates, melt porosities, melt extraction mechanisms, and variations in source composition).

2. BACKGROUND

2.1. Geological setting

The Kolbeinsey Ridge is a shallow, slow-spreading ridge (∼1.8 cm/yr; Mosar et al., 2002) extending northwards from Iceland at 66.5°N to the Jan Mayen Fracture Zone at 71°N (Fig. 1 and Table 1). Given the high sedimentation rate of the North Atlantic, particularly in near-coastal areas and during periods of deglaciation, any dredged fresh glasses from the Kolbeinsey Ridge axis should reflect active rifting and eruption in the last few thousand years (Devey et al., 1994; Haase et al., 2003).

The ridge is offset from the northeast Iceland volcanic province by the Tjörnes Fracture Zone, from which the southern Kolbeinsey segment extends northward to the Spar Fracture Zone at 69°N, and the northern segment...
extends from the Spar Fracture Zone to the Jan Mayen Fracture Zone. An additional, small overlapping spreading center at 70.7°/C176 N (Haase et al., 2003) delineates the small Eggvin Bank ridge segment (Brandsdottir et al., 2004; Hooft et al., 2006). The ridge averages 1100 m depth overall and deepens northward from Iceland (≈200 m) until it reaches its maximum depth (≈1500 m) at 69°/C176 N, just south of the Spar Fracture Zone. The central ridge shallows northward towards the Eggvin Bank, which is in places only 40 m below sea level (Fig. 1, inset). Seismic studies (Kodaira et al., 1997; Mjelde et al., 2008) have shown that the Kolbeinsey Ridge crustal section is 7–10 km thick. This physical characteristic contrasts with the global average oceanic crustal thickness of 6–7 km (Mjelde et al., 2009).

2.2. Geologic age constraints

During the last glacial period (terminating around 10,000 yr BP in the North Atlantic; e.g. Bauch et al., 2001, and references therein; Knudsen et al., 2004), Iceland and shallower parts of the Kolbeinsey Ridge were subaerial and glaciated. Extensive outwash during subsequent deglaciation covered the ocean floor with a thick veneer of glacial debris, which thickens towards Iceland. In areas with volcanic morphological features visible in bathymetric profiles, some sampling efforts have only retrieved sediment and ice-rafted glacial debris, suggesting the volcanic features in those areas predate glaciation (Baumann et al., 1993; Lackschewitz et al., 1994; Hooft et al., 2006). Measured sediment thicknesses in pull-apart basins along the Tjörnes FZ range from at least 100 m for the small Grimsey Graben (Montesi and Behn, 2007) to up to 4 km in the 700 m deep Eyjafjarðarárvals basin, the southernmost expression of the Kolbeinsey Ridge (Hooft et al., 2006). Post-glacial volcanism (<10 ka) along the length of the ridge axis has erupted through or onto this outwash. High-resolution multi-beam bathymetry of the Tjörnes FZ and Southern Kolbeinsey Ridge (Brandsdottir et al., 2004; Hooft et al., 2006) shows glacial sediment covering the ocean floor and a well-developed neovolcanic zone in the center of the ridge. This geological relationship suggests that any glass recovered from the neovolcanic zone is expected to be <10 ka, which is an essential constraint when interpreting 238U–230Th and 235U–231Pa disequilibria.

2.3. Chemical and isotopic compositions

Many of the samples analyzed here for U-series disequilibria have been previously characterized for their long-lived radiogenic Sr, Nd, Hf, and Pb isotopic compositions, in addition to major and trace element abundances, including isotope dilution measurements of Rb, Sr, Sm, Nd, U, Th, Pb, Lu, and Hf (Sigurdsson, 1981; Schilling et al., 1983; Neumann and Schilling, 1984; Michael et al., 1989; Waggoner, 1989; Mertz et al., 1991; Devey et al., 1994; Michael, 1995; Mertz and Haase, 1997; Schilling et al., 1999; Hanan et al., 2000; Haase et al., 2003; Andres et al., 2004; Blichert-Toft et al., 2005). The Kolbeinsey Ridge basalts investigated in this study are olivine tholeiites (MgO = 6–10 wt.%; Devey et al., 1994). Fractionation-corrected Na2O (Na8) and FeO (Fe8) contents in the lavas are among the lowest and highest, respectively, found on the global ridge system, suggesting they are the result of a deep (high Fe8) onset of large degrees of melting (low Na8; Klein and Langmuir, 1987). Compared to most other MORB, Kolbeinsey basalts are depleted in trace elements (e.g. average (La/Yb)N = 0.41, whereas N–MORB from the East Pacific Rise have average (La/Yb)N of 0.72 (Sims et al., 2002) and global N–MORB ratios average 0.67 (Hofmann, 1988)). Mertz et al. (1991) and Mertz and Haase (1997) demonstrated small but systematic variations in 87Sr/86Sr and εNd along the Kolbeinsey Ridge (e.g. 87Sr/86Sr = 0.7027–0.7030), with increasingly radiogenic 87Sr/86Sr towards Iceland. Mertz et al. (1991) also observed that the most radiogenic samples have the most depleted trace element signatures. They argued, based on uniform
<table>
<thead>
<tr>
<th>Sample Location</th>
<th>Cruise</th>
<th>Start Year</th>
<th>Start Latitude (°N)</th>
<th>Start Longitude (°E)</th>
<th>Start Depth (m)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRI0139-001-001G</td>
<td>Tjörnes FZ</td>
<td>1971</td>
<td>66.5100</td>
<td>-17.3400</td>
<td>72</td>
<td>Fresh basalt glass</td>
</tr>
<tr>
<td>POS185 1105B</td>
<td>Tjörnes FZ</td>
<td>1991</td>
<td>66.5100</td>
<td>-18.0910</td>
<td>397</td>
<td>Vesicular, numerous small plag. phenocrysts, glass</td>
</tr>
<tr>
<td>POS185 1093</td>
<td>S. Kolbeinsey</td>
<td>1991</td>
<td>66.7527</td>
<td>-18.7480</td>
<td>460</td>
<td>Glass</td>
</tr>
<tr>
<td>POS326 485-3</td>
<td>S. Kolbeinsey</td>
<td>2002</td>
<td>66.7527</td>
<td>-18.7700</td>
<td>405</td>
<td>Fresh basalt glass</td>
</tr>
<tr>
<td>POS185 1096A</td>
<td>S. Kolbeinsey</td>
<td>1991</td>
<td>66.9100</td>
<td>-18.4077</td>
<td>131</td>
<td>Fresh basalt glass</td>
</tr>
<tr>
<td>POS229 304DS</td>
<td>S. Kolbeinsey</td>
<td>1997</td>
<td>67.4398</td>
<td>-18.5727</td>
<td>307</td>
<td>Fresh basalt glass</td>
</tr>
<tr>
<td>POS185 1094B</td>
<td>S. Kolbeinsey</td>
<td>1991</td>
<td>67.0100</td>
<td>-18.7100</td>
<td>290</td>
<td>Fresh basalt glass</td>
</tr>
<tr>
<td>POS0002/2 Geo 212</td>
<td>S. Kolbeinsey</td>
<td>1990</td>
<td>69.8088</td>
<td>-15.7008</td>
<td>1116</td>
<td>None available</td>
</tr>
<tr>
<td>POS221 605DS-2</td>
<td>S. Kolbeinsey</td>
<td>1996</td>
<td>69.9855</td>
<td>-17.0768</td>
<td>1500</td>
<td>Fresh basalt glass</td>
</tr>
<tr>
<td>POS210/1 682DS-1</td>
<td>N. Kolbeinsey</td>
<td>1995</td>
<td>69.1392</td>
<td>-16.1813</td>
<td>1100</td>
<td>None available</td>
</tr>
<tr>
<td>POLARK7-1-21844</td>
<td>N. Kolbeinsey</td>
<td>1990</td>
<td>69.4650</td>
<td>-15.9903</td>
<td>1226</td>
<td>None available</td>
</tr>
<tr>
<td>POLARK7-1-21847</td>
<td>N. Kolbeinsey</td>
<td>1990</td>
<td>69.6597</td>
<td>-15.5388</td>
<td>983</td>
<td>None available</td>
</tr>
<tr>
<td>POLARK7-1-21848</td>
<td>N. Kolbeinsey</td>
<td>1990</td>
<td>69.8088</td>
<td>-15.7008</td>
<td>1116</td>
<td>None available</td>
</tr>
<tr>
<td>POLARK7-1-21850</td>
<td>N. Kolbeinsey</td>
<td>1990</td>
<td>70.1180</td>
<td>-15.2967</td>
<td>1346</td>
<td>None available</td>
</tr>
<tr>
<td>POLARK7-1-21854</td>
<td>N. Kolbeinsey</td>
<td>1990</td>
<td>70.4432</td>
<td>-14.8063</td>
<td>1169</td>
<td>None available</td>
</tr>
<tr>
<td>POLARK7-1-21856-3</td>
<td>N. Kolbeinsey</td>
<td>1990</td>
<td>70.6238</td>
<td>-15.5263</td>
<td>1001</td>
<td>None available</td>
</tr>
<tr>
<td>POS210/1 700DS-2</td>
<td>Eggvin Bank</td>
<td>1995</td>
<td>70.8482</td>
<td>-13.6415</td>
<td>1280</td>
<td>Homogeneous basalt, thick glass rim, many big vesicles (~1 cm), aphyric</td>
</tr>
</tbody>
</table>

(continued on next page)
206Pb/204Pb isotope ratios, which contrast with Icelandic basalts, that the Iceland plume component is not involved in Kolbeinsey Ridge magmatism. In contrast, Schilling et al. (1999) documented gradients in He, Pb, Sr, and Nd isotopes and trace element characteristics (e.g. Th/U) across the Tjörnes FZ and southern Kolbeinsey Ridge that they interpreted as mapping the northward dispersion of the Iceland plume. Blichert-Toft et al. (2005) conducted principal component analysis of relatively small but significant 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb variations along the Kolbeinsey Ridge and suggested that the lavas formed as a result of mixing between a “FOZO”-like component (Hart et al., 1992) and a “depleted MORB mantle” (DMM) component (Blichert-Toft et al., 2005).

Kolbeinsey Ridge MORB from the Eggvin Bank ridge segment, north of ~70.7°N, have more enriched radiogenic isotopic compositions than their southern counterparts (Schilling et al., 1999; Tronnes et al., 1999; Haase et al., 2003; Mertz et al., 2004; Blichert-Toft et al., 2005), with the most locally isotopically enriched values on the Jan Mayen rise (where “more enriched” refers to long-term incompatible element enrichment as manifested through more radiogenic 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios, and less radiogenic eNd and eHf values). Schilling et al. (1999) and Neumann and Schilling (1984) suggested that the isotope signatures are the result of a laterally dispersing mantle plume beneath the Jan Mayen region, while others have suggested cool edge effects or trapped subcontinental material in the mantle beneath Jan Mayen (Tronnes et al., 1999; Mertz et al., 2004; Debaille et al., 2009).

3. ANALYTICAL METHODS

3.1. 238U–230Th–226Ra and 235U–231Pa analyses

All samples analyzed in this study were hand-picked, visibly fresh glasses that were previously lightly leached (a 15-min leach with ultrasonication in ultrapure 0.1 N hydrochloric acid with 2% hydrogen peroxide, followed by a 15-min leach with ultrasonication in ultrapure 0.1 N oxalic acid with 2% hydrogen peroxide) and rinsed in high-purity distilled water to remove surface impurities. The samples were subsequently hand-picked a second time and even sometimes a third time to ensure high quality of the glass. Both careful hand-picking and light leaching has been shown to be essential for removing surficial coatings on submarine samples (e.g. Verma, 1992; Bourdon et al., 2000), if samples have been crustally contaminated or surficially altered, the U-series nuclides can and will be perturbed as shown by this work and other published studies (e.g. Aumento, 1971; Turekian and Bertine, 1971; Störrzer and Selo, 1976, 1978; Macdougall, 1977; Bacon, 1978; Macdougall et al., 1979; Bourdon et al., 2000; Sims et al., 2002, 2003, 2006; Glass et al., 2005; Pelt et al., 2008; Pietruszka et al., 2009, 2011).

Uranium-series isotopes were measured by multi-collector inductively-coupled plasma mass spectrometry (MC–ICP-MS) at the Woods Hole Oceanographic Institution (WHOI) (methods outlined in Sims et al. (2008a,b) and Ball...
Measured U, Th, and Pa isotopic data from the Kolbeinsey Ridge.

Sample	Th (ppm)	U (ppm)	Pa (fg/g)	\(^{238}\text{Th})/^{238}\text{U}\) \pm (%)	\(^{232}\text{Th})/^{238}\text{U}\) \pm (%)	\(^{238}\text{U})/^{232}\text{Th}\) \pm (%)	\(^{234}\text{Pa})/^{238}\text{U}\) \pm (%)	\(^{233}\text{Pa})/^{235}\text{U}\) \pm (%)	\(^{230}\text{Th})/^{238}\text{U}\) \pm (%)	\(^{231}\text{Pa})/^{235}\text{U}\) max \pm (%)					
TRI0139-001-001Ga	0.0345	0.0113	–	–	–	–	–	–	–	–	–				
POS185 1105B	0.0328	0.0138	–	0.997 2.1 1.274 1.9 1.270 2.0 1.020 0.1	–	–	–	1.186	–	–					
POS185 1093	0.110	0.0339	27.7 1.285	2.0 0.935 2.2 1.202 2.0 1.000 0.2	2.50 0.8 1.273 2.85 0.8	1.237 2.50 0.7 1.273 2.85 0.7	1.323	1.280	–	–					
TRI0139-007-001Ga	0.0506	0.0113	–	–	–	–	–	–	–	–	–				
POS185 1096A	0.161	0.0525	–	1.253 1.9 0.992 1.9 1.242 2.0	1.004 0.1	1.294	1.242 2.0	1.020 0.1	1.186	–	–				
POS185 1094B	0.103	0.0340	–	1.197 2.0 0.999 2.0 1.196 0.4	1.003 0.1	1.230	1.255 2.0	1.013 0.2	2.18 0.7	1.200	–	–			
TRI0139-006-002Ga	0.0416	0.0138	–	–	–	–	–	–	–	–	–				
POS185 1092	0.152	0.0512	36.3	1.224 1.3 1.026 1.5 1.255 1.3 1.013 0.2	2.18 0.7	1.323	1.202 2.0	1.012 0.2	2.2 0.7	1.200	–	–			
TRI0139-013-003Gb	–	0.0420	32.6	1.259 3.7 0.986 3.7 1.242 3.5	1.010 0.2	2.39 0.5	2.18 0.7	1.200	–	–					
POS0002/2 Geo 212	0.124	0.0407	–	1.221 2.2 0.995 2.2 1.216 0.3	1.009 0.1	–	1.214 2.8	1.005 0.2	2.48 0.8	1.214 2.8	1.005 0.2	2.39 0.5	1.307	–	–
TRI0139-015-001Gb	0.0305	0.0113	–	–	–	–	–	–	–	–	–				
TRI0139-016-001Gb	0.0336	0.0127	–	0.978 2.0 1.172 2.8 1.033 2.0	1.293 2.0	–	1.334	1.268	–	–					
POS185 1096A	0.102	0.0347	–	1.228 2.5 1.033 2.5 1.263 0.2	1.005 0.1	–	1.317	1.268	–	–					
POS0002/2 Geo 212	0.111	0.0403	–	1.228 1.9 1.001 1.9 1.228 0.2	1.010 0.1	–	1.271	1.268	–	–					
TRI0139-015-001Gb	0.0937	0.0303	24.7	1.287 2.3 0.980 2.7 1.261 2.4	1.005 0.2	2.48 0.8	1.214 2.8	1.005 0.2	2.39 0.5	1.307	–	–			
TRI0139-016-001Gb	0.0915	0.0311	–	1.098 2.5 1.032 0.2	1.007 0.1	–	1.214 2.8	1.005 0.2	2.39 0.5	1.307	–	–			
POS185 1094B	0.0926	0.0306	24.7	1.265 1.1 1.047 1.2	1.324 1.1	1.006 0.2	2.26 0.6	1.005 0.3	2.26 0.6	1.305 2.56 0.7	1.275	1.268	–	–	
POS185 1092	0.114	0.0387	–	1.216 1.9 1.032 1.9 1.255 0.2	1.006 0.1	–	1.271	1.268	–	–					
POS185 1094B	0.0464	0.0175	–	0.978 2.0	1.146 1.9	1.121 2.0	1.018 0.2	1.149	–	–					
POS185 1092	0.0336	0.0127	–	1.151 2.0	–	–	–	1.017 0.3	3.10 1.3	1.267	(continued on next page)				
Table 2 (continued)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Th (ppm)</th>
<th>U (ppm)</th>
<th>Pa (fg/g)</th>
<th>(230Th)/(238U)</th>
<th>± (%)</th>
<th>(235U)/(232Th)</th>
<th>± (%)</th>
<th>(234Th)/(238U)</th>
<th>± (%)</th>
<th>(231Pa)/(235U)</th>
<th>± (%)</th>
<th>(230Th)/(238U)</th>
<th>± (%)</th>
<th>(231Pa)/(235U)$_{max}$</th>
<th>± (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS210/1 700 DS-2</td>
<td>0.847</td>
<td>0.225</td>
<td>–</td>
<td>1.192</td>
<td>0.5</td>
<td>0.806</td>
<td>0.6</td>
<td>0.961</td>
<td>0.5</td>
<td>1.003</td>
<td>0.2</td>
<td>1.003</td>
<td>0.2</td>
<td>1.186</td>
<td></td>
</tr>
<tr>
<td>(replicate)</td>
<td>–</td>
<td>0.224</td>
<td>90.1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1.002</td>
<td>0.2</td>
<td>1.22</td>
<td>0.6</td>
<td>1.27</td>
<td>0.7</td>
</tr>
<tr>
<td>Average</td>
<td>0.850</td>
<td>0.225</td>
<td>90.1</td>
<td>1.186</td>
<td>0.8</td>
<td>0.803</td>
<td>0.8</td>
<td>0.953</td>
<td>0.7</td>
<td>0.997</td>
<td>0.2</td>
<td>1.003</td>
<td>0.2</td>
<td>1.275</td>
<td></td>
</tr>
<tr>
<td>POS210/1 698 DS-1</td>
<td>0.915</td>
<td>0.242</td>
<td>–</td>
<td>1.214</td>
<td>0.5</td>
<td>0.803</td>
<td>0.6</td>
<td>0.975</td>
<td>0.5</td>
<td>1.007</td>
<td>0.2</td>
<td>1.003</td>
<td>0.2</td>
<td>1.219</td>
<td></td>
</tr>
<tr>
<td>TRI0139-027-005G</td>
<td>2.398</td>
<td>0.656</td>
<td>–</td>
<td>1.179</td>
<td>1.9</td>
<td>0.830</td>
<td>1.9</td>
<td>0.979</td>
<td>0.2</td>
<td>1.004</td>
<td>0.1</td>
<td>1.004</td>
<td>0.1</td>
<td>1.27</td>
<td></td>
</tr>
</tbody>
</table>

Standards measured as unknowns

- **ATh-O 09/06** | 7.532 | 2.351 | – | 1.075 | 2.1 | 0.947 | 2.1 | 1.018 | 0.1 | 1.006 | 0.05 | – | |
- **ATh-O 10/07** | 7.385 | 2.302 | – | 1.076 | 2.5 | 0.946 | 2.5 | 1.017 | 0.1 | 1.002 | 0.1 | – | |
- **BHVO-1 09/06** | 1.207 | 0.4344 | – | 0.991 | 1.9 | 1.092 | 1.9 | 1.081 | 0.1 | 1.003 | 0.1 | – | |
- **W-2 09/06** | 2.157 | 0.5101 | – | 0.983 | 1.9 | 0.717 | 1.9 | 0.705 | 0.1 | 1.005 | 0.1 | – | |
- **BRC-1 03/08** | 5.665 | 1.683 | – | 0.981 | 2.0 | 0.901 | 2.0 | 0.884 | 0.1 | 1.004 | 0.1 | – | |
- **TML 03/08** | 7.789 | 10.505 | – | 1.000 | 2.1 | 1.070 | 2.1 | 1.070 | 0.1 | 1.003 | 0.04 | – | |
- **BRC-2 Average** | 5.35 | 1.670 | – | 0.874 | 1.0 | 0.872 | 1.1 | 1.003 | 0.1 | 1.004 | 1.0 | 1.3 | |
- **TML Average** | 29.705 | 10.481 | – | 1.000 | 2.1 | 1.070 | 2.1 | 1.070 | 0.1 | 1.003 | 0.08 | – | |

- **U, Th, and/or Pa concentrations and isotopes measured by MC–ICP-MS (ThermoFinnigan Neptune) at the University of Bristol, Bristol, UK. Th concentration and isotopic data are not presented for one sample batch for which Th was not successfully extracted; analyses of affected samples were replicated on a second sample dissolution. Th isotopic data are not presented for sample TR0139-001-001G due to analytical difficulty arising from its low Th concentrations and small sample size.**
- **b U, Th, and/or Ra concentrations and isotopes measured by ICP-MS (isotope concentrations and ratios measured using ThermoFinnigan Element2 and Neptune, respectively) at the Woods Hole Oceanographic Inst. (WHOI), Woods Hole, MA.**
- **c Sample analyzed for U and Th concentrations and isotopes by TIMS at Amsterdam.**
- **d Sample analyzed for U and Th concentrations and isotopes by TIMS at Los Alamos National Laboratory (LANL), Los Alamos, NM.**
- **e Each line of data represents analysis for a single dissolution and extraction, consisting of ICP-MS or MC–ICP-MS sample blocks of 20+ analyses. Standard measurements reported in data table represent individual ICP-MS runs of standards that were dissolved, extracted, and analyzed alongside Kolbeinsey Ridge samples as unknowns; these runs are independent of routine analyses of standards for accuracy calibration purposes, the results of which are presented in Sims et al. (2008a) and summarized in the text. Results for standard analyses at Bristol were previously reported in Prytulak et al. (2008), and here we present averages for those results with 2σ standard deviations.**
- **f Data are reported using the following decay constant values: l U-238 = 1.551 x 10^{-10} (Jaffey et al., 1971), l Th-232 = 4.948 x 10^{-11} (Le Roux and Glendenin, 1963), l Th-230 = 9.158 x 10^{-6} (Cheng et al., 2000), l U-234 = 2.826 x 10^{-6} (Cheng et al., 2000).**
- **g Uncertainty reported is percent two-sigma standard error for individual analyses shown. For averages of replicate analyses, uncertainty is propagated two-sigma standard error. With tailing effects and mass bias corrections the overall reproducibility on standards is 1–2% for all techniques (Sims et al., 2008a). Based on the interlaboratory blind assessment of standard values from Richter et al. (2006), interlab agreement on standard values by MC–ICP-MS techniques is expected to be on the order of ±1–2% for uranium isotope ratios. Internal uncertainty for (234U/238U) by MC–ICP-MS techniques for low-level volcanic rocks is typically 0.5–0.6% (e.g. Rubin et al., 2005), when uncertainties in mass bias corrections, tailing corrections, and corrections between detectors are considered. Internal standard reproducibility results for all laboratories are as reported in Sims et al. (2008a).**
- **h Pa concentration and isotopic standard analyses and uncertainties are as reported in Prytulak et al. (2008).**
- **i Sample POS210/1 702 DS-1 has measured (226Ra/230Th) = 1.10 ± 3% (2σ standard error).**
- **j (234U/238U) was measured to determine sample contamination by seawater. Data do not exist for the early TIMS data sets from Amsterdam and LANL, or for one unsuccessful sample analysis at WHOI (a replicate measurement of sample POLARK7-1-21847). Analyses with (234U/238U) in equilibrium are considered unaltered, as explained in the text, and are indicated in bold.**
- **k (231Pa/235U)$_{max}$ indicates maximum (231Pa/235U) ratios corrected to hypothesized zero-age values if the samples are 10,000 years old, as described in the text.**
- **l (230Th/238U)$_{c}$ indicates linearly corrected (230Th/238U) values to (234U/238U) = 1.000, indicating minimal seawater alteration, as described in the text.**
et al. (2008), and at the University of Bristol (methods as described in Regelous et al. (2004), Hoffmann et al. (2007), Prytulak et al. (2008), and Sims et al. (2008b)). Good agreement of U-series data from these two laboratories has been documented through U (Richter et al., 2006) and Th (Sims et al., 2008a) laboratory inter-calibration exercises. Several replicate samples in this current study (Table 2) serve as further comparisons using more challenging materials with lower Th and U abundances. Although the analytical details are comprehensively reported elsewhere, some salient points are summarized below.

This paper also includes a few older but previously unpublished thermal ionization mass spectrometry (TIMS) [U], [Th], and [(238Th)/232Th] data produced by: (1) K. Sims and M. Murrell at Los Alamos National Laboratory (LANL) using methods described in Sims et al. (1995, 1999) and Goldstein et al. (1989); and (2) T. Elliott and N. Mattelli at Faculteit der Aardenschappen, Vrije Universiteit (VU), Amsterdam using methods similar to those described in Frujiter et al. (2000), although samples were analyzed using single filaments loaded with graphite rather than double filaments. The good agreement demonstrates that the quality of TIMS data is generally comparable to that of ICP-MS data in this study (e.g. 2–3% 2σ uncertainties reported for isotope ratios measured by TIMS methods; see Table 2).

3.1.1. U–Th concentrations

Uranium and Th concentrations were analyzed by isotope dilution ICP-MS using a Thermo Element2 mass spectrometer at WHOI and by MC–ICP-MS using a ThermoFinnigan Neptune instrument at Bristol. Analyses at WHOI follow procedures outlined in Sims et al. (2008b): all measurements were conducted in pulse counting mode on the Element2 instrument, with additional analysis of intermediate mass steps to assess the effects of tailing on the 233 amu mass peak, and a separate scan to calculate a background correction. Mass bias is corrected using a linear interpolation of standard-sample-standard measurements of the [234U]/[238U] mass ratio in standard NBL-112A, with all samples measured in triplicate. Calibrations of the [238U] and [232Th] standards (NBS960 and Ames, respectively) are known to a 2σ precision of 1%. Our results for standards analyzed as unknowns within sample batches (Table 2) are consistent with the inter-laboratory comparison of standard analyses evaluated in Sims et al. (2008a,b). Analyses conducted at the University of Bristol follow the procedure of Hoffmann et al. (2007), with similar uncertainties; we note that, unlike the analytical procedures used at WHOI, Bristol concentration measurements were conducted simultaneously with isotopic composition analyses (see further details below). A gravimetrically calibrated [230Th] double spike was used to determine concentrations.

Overall, U and Th concentration and corresponding [(238U)/232Th] isotope data measured in replicate in the different laboratories are in excellent agreement within reported 2σ uncertainties. The one exception is sample TRII0139-015-001G, for which the analytical results at WHOI and Bristol are not in agreement within 2σ uncertainties. Since the three measured [(234U)/238U] isotope ratios for this sample cover a range from within equilibrium (1.003) to out of equilibrium (1.007), we suspect sample heterogeneity and/or variable alteration/contamination. In particular, we note the WHOI analysis was conducted using ~5 g of hand-picked glass chips in an unsuccessful attempt to obtain a sufficient quantity of the sample for Ra isotopic analysis, while the previous Bristol analyses were conducted using only ~0.6 g of hand-picked sample material. We posit that this sample is variably contaminated. As explained below (see Section 4), electron microprobe analytical results for sample TRII0139-015-001G revealed a wide range of Cl/K2O within a single glass chip, suggesting small-scale variations in glass composition.

3.1.2. [(234U)/238U] activity ratios

All [(234U)/238U] analyses were done by MC–ICP-MS. Kolbeinsey Ridge samples have extremely low concentrations of U (down to 0.01 μg/g), requiring large amounts of material to be picked and processed to obtain precisions below 0.5%.

Our analytical methods at the WHOI facility produced uncertainties in keeping with the findings of Richter et al. (2006), and as previously reported by Ball et al. (2008) and Sims et al. (2008b). During analysis of U isotopes using the facility’s ThermoFinnigan Neptune, we calibrated SEM yield and simultaneously corrected for mass bias with standard-sample-standard bracketing to monitor SEM efficiency and measurement of the standard U010. Ball et al. (2008) observed that the SEM yield correction is error limiting for these analyses. Mass bias drift is corrected and SEM yield is calibrated using U010 corrections (Ball et al., 2008), and mass bias corrections are made using a linear interpolation of U010 [238U]/[236U] = 14,535 ± 149 (Sims et al., 2008b). The sensitivity of U using this method is 0.1% ion yield (Sims et al., 2008b). The accuracy of U isotope analyses by this method is 0.5% for rock standards (Ball et al., 2008), with an internal reproducibility of 0.2–0.5% (2σ) (Sims et al., 2008b). All measured U isotope compositions reported in Table 2 were corrected after sample-standard bracketing with the U010 standard as calibrator, using a standard [234U]/[238U] ratio of 5.4484 × 10⁻⁵ (Richter et al., 2006), and then corrected again using the U960 standard, which was analyzed several times during most analytical sessions and was assumed to have an accepted [234U]/[238U] ratio of 5.286 × 10⁻⁵ (Richter et al., 2006).

Analytical procedures used by the Bristol Isotope Group are documented in some detail by Hoffmann et al. (2007), who also discuss the Bristol data in the light of the European Commission U isotope inter-calibration exercise (Richter et al., 2006). The behavior of the SEM was characterized as described in Hoffmann et al. (2005), but the multiplier currently in use is more linear (see Hoffmann et al., 2007) than that described in the earlier publication. Static measurements of [235U]/[238U] and [234U]/[238U] are made on standard material NBL-112a to give instrumental mass bias and SEM-faraday yields, using reference ratios of 0.007252618 and 5.54887 × 10⁻⁵, respectively. Values of mass bias and yield for samples are calculated by linear interpolation of the measurements made on bracketing
NBL112a analyses. Samples are introduced using an Aridus desolvation device and a nominal 50 μl/min nebulizer, which yield ~100 pA beams for a 30 ppb U solution. This approach yields \((^{234}\text{U} / ^{238}\text{U}) = 1.003 \pm 0.004\) for nine measurements on six separate dissolutions (Table 2). From this and other work it appears that this rock standard is not in secular equilibrium to better than ~1% (Hoffmann et al., 2007; Prytulak et al., 2008).

Overall agreement of replicates between the WHOI and Bristol facilities is within 2σ analytical uncertainties, with the exception of samples TR10139-006-002G and TR10139-015-001G. As explained above for TR10139-015-001G, this variation may reflect a particularly heterogeneous sample composition.

Our reported 2σ standard deviation uncertainties of 0.5% are based on multiple digestions of rock standards and are consistent both with other studies (Rubin et al., 2003; Sims et al., 2008a; Koornneef et al., 2010) and with expectations of propagated errors based on the blind study of synthetic standards reported in Richter et al. (2006).

3.1.3. \((^{230}\text{Th} / ^{232}\text{Th})\) activity ratios

Kolbeinsey Ridge samples have extremely low concentrations of Th, which, as for U, means that large amounts of sample (<0.5 g) have to be picked and processed in order to generate sufficiently precise analyses.

The MC–ICP-MS analytical protocols at WHOI followed those outlined by Hoffmann et al. (2007), Ball et al. (2008), and Sims et al. (2008a). The MC–ICP-MS methods at WHOI include an offline, exponential tailing correction of the 232 amu mass peak on the 230Th peak, which has been found to be considerably more accurate than linear corrections for Th isotopes, which overestimate the tailing of mass 232Th on 230Th (Ball et al., 2008). For bracketing standard analyses, this correction is ratioed to a theoretical ratio, correcting for both mass bias and SEM efficiency (Ball et al., 2008). The tailing correction amounts to a smaller source of uncertainty than the mass bias correction, however, which is more difficult for Th than for U isotopic analyses: older methods of correcting for mass bias using U isotopes have been found to be problematic (Hoffmann et al., 2007; Ball et al., 2008; Sims et al., 2008a), producing systematically low \((^{230}\text{Th} / ^{232}\text{Th})\) ratio measurements (Sims et al., 2008a). Bracketing with a Th standard is, thus, essential. For this study we used the well-characterized standard UCSC Th ‘A’, which has a \((^{230}\text{Th} / ^{232}\text{Th})\) ratio of 5.856 ± 0.070 × 10⁻⁶ (Rubin, 2001), and applied a linear interpolation to correct the \((^{230}\text{Th} / ^{232}\text{Th})\) ratio (Sims et al., 2008a). The drift correction using this standard was found to be 0.5–1.0% (Sims et al., 2008b). Reported 2σ uncertainties for standard analyses at WHOI are 0.4–0.9% (Ball et al., 2008), and interlaboratory agreement for \((^{230}\text{Th} / ^{232}\text{Th})\) ratios in rock standards is as good as 1% (Sims et al., 2008a).

Methods for MC–ICP-MS analysis of Th isotopes at Bristol follow those reported (Hoffmann et al., 2007). For the Bristol analyses, samples are bracketed by an in-house standard, TEDDi, which has carefully calibrated \((^{230}\text{Th} / ^{232}\text{Th})\) and \((^{232}\text{Th} / ^{233}\text{Th})\) ratios (Hoffmann et al., 2007). These two ratios are used for yield and mass bias calculations, which are linearly interpolated between standard runs for data reduction of samples. TEDDi was designed for carbonate sample measurement and a long washout is required to reduce the typically more intense \(^{235}\text{Th}\) beams (~100 pA) used in silicate analyses to levels that do not influence the measurement of the ~2 pA \(^{232}\text{Th}\) intensity of the standard. A tailing correction on masses 230 and 229 is calculated for each sample by interpolating an exponential curve, which is obtained by a best fit routine applied to intensities measured at 228.5, 229.5, 230.5, 231 and 231.5 amu. \((^{230}\text{U} / ^{238}\text{U})\) disequilibrium measurements for the standards TML and BCR2 measured over the course of this study are reported in Table 2. They agree within error of the WHOI analyses and data reported in Hoffmann et al. (2007), Prytulak et al. (2008), and Sims et al. (2008a).

Again, the \((^{230}\text{Th} / ^{232}\text{Th})\) isotopic ratios are in excellent agreement between laboratories, with the exception of one sample, TR10139-015-001G. As discussed above, because this sample is altered we surmise that the discrepant analyses reflect heterogeneity in sample alteration signatures.

3.1.4. \(^{226}\text{Ra}\) concentrations

Radium concentration in sample POS210/1 702DS-1 was measured at WHOI by MC–ICP-MS using methods described in Sims et al. (2008b) (Table 2 footnote). We used a \(^{226}\text{Ra}\) spike that has been calibrated against the NIST4967 \(^{226}\text{Ra}\) standard (characterized within 1.18% 2σ uncertainty). Background corrections were made with a peak-hopping routine on the SEM detector, and mass bias corrections were conducted using U isotopes measured in the standard NBL-112A. Rock standards TML and ATHO have been reliably measured in equilibrium within 1% uncertainty (2σ). Other laboratories report uncertainties based on internal precisions and short-term reproducibility of single dissolutions (e.g. Pietruszka et al., 2011), but we note that the uncertainty in these analyses is limited by our knowledge of the NIST4967 \(^{226}\text{Ra}\) standard (1.2%) used for spike calibration, so we take a robust approach by incorporating this uncertainty into our error calculations. Our uncertainties in these measurements are comparable to those reported from other laboratories (e.g. Koornneef et al., 2010).

3.1.5 \(^{233}\text{Pa}\) concentrations

Protactinium isotopic concentrations were measured by a MC–ICP-MS Neptune at Bristol using the methods presented in Regelous et al. (2004) and Prytulak et al. (2008). The standard NBL-112a is added to the separated Pa, such that simultaneous measurement of \(^{238}\text{U}\) and \(^{235}\text{U}\) on Faraday cups with \(^{233}\text{Pa}\) on the SEM allows for correction for beam instability and mass bias. Monitoring the \(^{232}\text{Th}\) peak enables us to assess hydride interferences on \(^{233}\text{Pa}\) isotopes, but this effect has been found to be insignificant in properly separated samples (Regelous et al., 2004). Reported internal
Table 3
Measured radiogenic isotope data for samples lacking previous literature analyses, including new cruise samples (POS 326).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Location</th>
<th>143Nd/144Nd ±d</th>
<th>ϵNd</th>
<th>176Hf/177Hf ±e</th>
<th>ϵHf</th>
<th>87Sr/86Sr ±206Pb/204Pb ±207Pb/204Pb ±208Pb/204Pb ±</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS185 1105B</td>
<td>Tjörnes FZ</td>
<td>0.513108</td>
<td>0.000007</td>
<td>9.2 0.283282</td>
<td>0.000006</td>
<td>18.0</td>
</tr>
<tr>
<td>POS185 1093</td>
<td>S. Kolbeinsey</td>
<td>0.513096</td>
<td>0.000005</td>
<td>8.9 0.283281</td>
<td>0.000004</td>
<td>18.0</td>
</tr>
<tr>
<td>POS291 485-3</td>
<td>S. Kolbeinsey</td>
<td>0.513121</td>
<td>0.000009</td>
<td>9.4 0.283208</td>
<td>0.000036</td>
<td>15.4</td>
</tr>
<tr>
<td>POS326 540DS-4</td>
<td>S. Kolbeinsey</td>
<td>0.513142</td>
<td>0.000008</td>
<td>9.8 0.283270</td>
<td>0.000016</td>
<td>17.6</td>
</tr>
<tr>
<td>POS291 495-2</td>
<td>S. Kolbeinsey</td>
<td>0.513136</td>
<td>0.000013</td>
<td>9.7 0.283280</td>
<td>0.000014</td>
<td>18.0 0.702893 0.000010 18.0423 0.0003 15.4338 0.0003 37.8054</td>
</tr>
<tr>
<td>POS185 1096A</td>
<td>S. Kolbeinsey</td>
<td>0.513143</td>
<td>0.000050</td>
<td>9.9 0.283280</td>
<td>0.000003</td>
<td>18.0 0.702880 0.000010</td>
</tr>
<tr>
<td>POS185 1096A(rep)</td>
<td>S. Kolbeinsey</td>
<td>0.513143</td>
<td>0.000008</td>
<td>9.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POS185 1094B</td>
<td>S. Kolbeinsey</td>
<td>0.513096</td>
<td>0.000006</td>
<td>8.9 0.283280</td>
<td>0.000005</td>
<td>18.0 0.702938 0.000010 18.062 0.002 15.441 0.002 37.805</td>
</tr>
<tr>
<td>POS0002/2 Geo 212</td>
<td>S. Kolbeinsey</td>
<td>0.513133</td>
<td>0.000005</td>
<td>9.7 0.283287</td>
<td>0.000005</td>
<td>18.2 0.702737 0.000010</td>
</tr>
<tr>
<td>POS221 596DS-1</td>
<td>S. Kolbeinsey</td>
<td>0.513162</td>
<td>0.000006</td>
<td>10.2 0.283303</td>
<td>0.000007</td>
<td>18.8 0.702737 0.000010</td>
</tr>
<tr>
<td>POS221 605DS-2</td>
<td>S. Kolbeinsey</td>
<td>0.513160</td>
<td>0.000007</td>
<td>10.2 0.283305</td>
<td>0.000010</td>
<td>18.9 0.702701 0.000010 17.9394 0.0003 15.4150 0.0003 37.5584</td>
</tr>
<tr>
<td>POS221 605DS-2(rep)</td>
<td>S. Kolbeinsey</td>
<td>0.513153</td>
<td>0.000012</td>
<td>10.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POS210/1 682DS-1</td>
<td>N. Kolbeinsey</td>
<td>0.513159</td>
<td>0.000009</td>
<td>10.2 0.283314</td>
<td>0.000005</td>
<td>19.2 0.702714 0.000010</td>
</tr>
<tr>
<td>POLARK7-1-21844</td>
<td>N. Kolbeinsey</td>
<td>0.513136</td>
<td>0.000009</td>
<td>9.7 0.283302</td>
<td>0.000006</td>
<td>18.7</td>
</tr>
<tr>
<td>POLARK7-1-21847</td>
<td>N. Kolbeinsey</td>
<td>0.513102</td>
<td>0.000005</td>
<td>9.1 0.283261</td>
<td>0.000020</td>
<td>15.3</td>
</tr>
<tr>
<td>POLARK7-1-21848</td>
<td>N. Kolbeinsey</td>
<td>0.513142</td>
<td>0.000005</td>
<td>9.8 0.283297</td>
<td>0.000005</td>
<td>18.6</td>
</tr>
<tr>
<td>POLARK7-1-21850</td>
<td>N. Kolbeinsey</td>
<td>0.513176</td>
<td>0.000010</td>
<td>10.5 0.283316</td>
<td>0.000020</td>
<td>15.3</td>
</tr>
<tr>
<td>POLARK7-1-21850-3</td>
<td>N. Kolbeinsey</td>
<td>0.513139</td>
<td>0.000005</td>
<td>9.8 0.283279</td>
<td>0.000007</td>
<td>17.9</td>
</tr>
<tr>
<td>POS210/1 702 DS-1</td>
<td>Eggvin Bank</td>
<td>0.513053</td>
<td>0.000007</td>
<td>8.1 0.283225</td>
<td>0.000012</td>
<td>16.0</td>
</tr>
<tr>
<td>POS210/1 700 DS-2</td>
<td>Eggvin Bank</td>
<td>0.513014</td>
<td>0.000004</td>
<td>7.3 0.283195</td>
<td>0.000009</td>
<td>15.0</td>
</tr>
<tr>
<td>POS210/1 698 DS-1</td>
<td>Eggvin Bank</td>
<td>0.283205</td>
<td>0.000008</td>
<td>15.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a 176Hf/177Hf and 143Nd/144Nd measured by MC–ICP-MS at Ecole Normale Supérieure de Lyon, and are normalized relative to 176Hf/177Hf = 0.7252 and 146Nd/144Nd = 0.7219, respectively.

b 176Hf/177Hf of JMC-475 Hf standard = 0.282160 ± 0.000010 ($n = 15$); 143Nd/144Nd of Rennes in-house standard = 0.511961 ± 0.000013 ($n = 50$) (Chauvel and Blichert-Toft, 2001).

c 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb measured by MC–ICP-MS (ThermoFinnigan Neptune) at WHOI. Sr data are corrected using standard NBS987 87Sr/86Sr = 0.710240 ± 0.000026, and Pb data using standard NBS981 206Pb/204Pb = 16.9356, 207Pb/204Pb = 15.4891, and 208Pb/204Pb = 36.7006; internal precisions for these ratios ranges from 15 to 30 ppm, and external reproducibility ranges from 17 ppm for 207Pb/204Pb to 117 ppm for 208Pb/204Pb (Hart and Blusztajn, 2006). Samples to be analyzed for Pb were compared with an internal Tl standard, and by repeat analysis of NBS981 (Hart and Blusztajn, 2006; Sims and Hart, 2006). Sample POS185 1094B has higher uncertainties than other samples due to its overall lower trace element abundances.

d Uncertainties are 2σ standard errors for all isotopic analyses.
3.2. Nd–Sr–Hf–Pb isotopes

Neodymium and Hf isotope compositions were measured by MC–ICP-MS at either the Ecole Normale Supérieure (ENS) in Lyon (methods as in Blichert-Toft (2001) and Blichert-Toft et al. (2005, 1997)), where sample preparation included a stronger leaching step (20 min in 10% hydrochloric acid) or at WHOI (using the weaker leaching procedure described above in Section 3.1). Strontium and Pb isotopes were analyzed by MC–ICP-MS at WHOI (Hart and Blusztajn, 2006; Sims and Hart, 2006).

As reported in Hart and Blusztajn (2006), methods employed at WHOI for Nd isotope measurements result in measured precisions for individual runs ranging from 5 to 10 ppm (2σ). Sample ratios are adjusted to the LaJolla Nd standard assuming a standard 143Nd/144Nd ratio of 0.511847. Measured external precisions range from 4 to 10 ppm (2σ). Nd isotope measurements at the ENS facility were done using MC–ICP-MS methods after Blichert-Toft (2001). All resulting isotopic ratios were normalized relative to 0.7219, and adjusted to an in-house standard (“Rennes”) with 143Nd/144Nd of 0.511961 ± 0.000013 (Chauvel and Blichert-Toft, 2001). Typical internal precisions range from 4 to 10 ppm (2σ). Two samples (POS185 1096A and POS221 605DS-2) replicated at both facilities have measured 143Nd/144Nd ratios in excellent agreement within uncertainty (Table 3).

Strontium isotopes were analyzed using a ThermoFinnigan Neptune MC–ICP-MS at WHOI, based on methods presented in Hart and Blusztajn (2006) and Jackson and Hart (2006). Precision and accuracy resembles Nd isotope uncertainties, with 87Sr/86Sr sample ratios adjusted using the standard SRM987 ratio of 0.7102140.

Hafnium isotopes were measured by MC–ICP-MS at ENS using methods after Blichert-Toft et al. (1997) and Blichert-Toft (2001). Sample ratios are normalized using a 176Hf/177Hf ratio of 0.7235, and all are adjusted with the JMC-475 Hf standard assuming a standard 176Hf/177Hf ratio of 0.28216 ± 0.00001. Reported rock standard uncertainties from Blichert-Toft (2001) for this method range from 0.0014% to 0.005% (2σ).

Lead isotopes were measured by MC–ICP-MS at WHOI and have internal precisions for 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios ranging from 15 to 30 ppm (Hart and Blusztajn, 2006). External reproducibility ranges from 17 ppm (for 206Pb/204Pb) to 117 ppm (for 208Pb/204Pb). All ratios are corrected to standard SRM981 using values from Todt et al. (1996), with reproducibilities of less than 10 ppm for 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios and less than 1.5 ppm for 206Pb/208Pb ratios.

3.3. Electron microprobe analysis

Major element and Cl and F concentrations were measured on hand-picked, unleached glass chips with a Cameca
SX-100 electron microprobe located at New Mexico Institute of Mining and Technology using standard electron microprobe techniques (Supplementary Table 1). Samples were first examined using backscattered-electron (BSE) imagery to confirm the presence of basaltic glass, and selected areas of glass were then quantitatively analyzed. Concentrations presented in Supplementary Table 1 are averages of multiple in situ measurements.

4. RESULTS

Table 1 lists Kolbeinsey Ridge sample locations, descriptions, and research cruises for the material used in this study. Uranium-series analyses are reported in Table 2, and Sr, Nd, Hf, and Pb isotope results are presented in Table 3 (see Supplementary Tables for the results of major element analyses of 26 samples and trace element analyses of five samples). Kolbeinsey Ridge samples are tholeiites characterized by extreme depletion in incompatible elements, with samples TRI0139-001-001G and POS185 1105B having, respectively, the lowest U and Th concentrations thus far measured in any MORB (Table 2). Results of electron probe major element analyses (Supplementary Table 1) are within uncertainty of published results for those samples already analyzed in the literature (Sigurdsson, 1981; Schilling et al., 1983; Mertz and Haase, 1997).

The activity ratio $^{234}\text{U}/^{238}\text{U}$ is a sensitive indicator of secondary alteration processes since seawater is significantly enriched in ^{234}U relative to ^{238}U ($^{234}\text{U}/^{238}\text{U}$$_{\text{sw}} = 1.14$) (Thurber, 1962; Turekian and Bertine, 1971; Ku et al., 1977; Macdougall et al., 1979; Henderson et al., 1993; Cheng et al., 2000; Robinson et al., 2004). Twelve samples have $^{234}\text{U}/^{238}\text{U}$ activity ratios greater than 1.000 ± 0.005 and are thus considered contaminated by interaction with seawater, given our analytical uncertainties (Fig. 2 and Table 2; see Section 5.1 for further discussion of these data).

Consistent with previous studies (Schilling et al., 1999; Tronnes et al., 1999; Haase et al., 2003; Mertz et al., 2004; Blichert-Toft et al., 2005), radiogenic isotopic compo-

Fig. 3. Along-axis variations in trace element ratios and long-lived radiogenic isotopic ratios for the Reykjanes Ridge, Iceland, and the Kolbeinsey Ridge. Literature data shown as small black data points (O’Nions and Pankhurst, 1973; Schilling, 1975; Sun and Jahn, 1975; Cohen et al., 1980; Dupre and Allegre, 1980; Condomines et al., 1981; Schilling et al., 1983, 1999; Neumann and Schilling, 1984; Poreda et al., 1986; Furman et al., 1991; Mertz et al., 1991; Hemond et al., 1993; Devey et al., 1994; Hards et al., 1995; Hardarson and Fitton, 1997; Mertz and Haase, 1997; Salters and White, 1998; Stecher et al., 1999; Hanan et al., 2000; Hilton et al., 2000; Peate et al., 2001; Murton et al., 2002; Haase et al., 2003; Stracke et al., 2003a,b, 2006; Thirlwall et al., 2004; Blichert-Toft et al., 2005). Data for samples measured in this study are shown as gray circles.
sitions for Kolbeinsey samples south of 70.7°N are depleted (e.g., $\varepsilon_{Nd} = +8.4$ to $+10.5$, $e_{Hf} = +15.4$ to $+19.2$, $^{87}Sr/^{86}Sr = 0.70272–0.70301$), while the three unaltered samples north of 70.7°N have relatively enriched isotopic signatures ($\varepsilon_{Nd} = +7.3$ to $+8.1$, $e_{Hf} = +15.0$ to $+16.0$, $^{87}Sr/^{86}Sr = 0.70306–0.70309$). These samples, which are closer to the Jan Mayen Fracture Zone, also have lower ($^{238}U/^{232}Th$) ratios than samples along the rest of the Kolbeinsey Ridge (Figs. 3 and 4).

In Fig. 4 we show results for ($^{238}U/^{232}Th$) vs. ($^{230}Th/^{232}Th$) in our data set, distinguished by ($^{234}U/^{238}U$) filtering criteria (described in more detail above and in Section 5.1). Excluding the lower-($^{238}U/^{232}Th$) samples collected from the Eggvin Bank, the remaining data form a nearly horizontal array (slope = 0.6 ± 0.04), with relatively constant ($^{230}Th/^{238}U$) (1.20–1.32) over a larger range in ($^{238}U/^{232}Th$) (0.94–1.32). However, this array is essentially defined by the samples at high ($^{238}U/^{232}Th$) for which $^{238}U–^{234}U$ is out of equilibrium or for which we have no ($^{234}U/^{238}U$) measurements.

The four unaltered and uncontaminated Kolbeinsey samples with $^{235}U–^{231}Pa$ measurements have ^{231}Pa excesses similar to those typically seen in MORB ($^{231}Pa/^{235}U$) ranging from 1.22 to 2.50, averaging 2.12, (Fig. 5) (Goldstein et al., 1993; Pickett and Murrell, 1997; Lundstrom et al., 1998b; Sims et al., 2002, 2008b; Lundstrom, 2003; Bourdon et al., 2005). Sample POS210/1 700DS-2, which was collected at latitude 70.85°N on the Eggvin Bank and has relatively enriched radiogenic isotope signatures (e.g. $^{87}Sr/^{86}Sr = 0.70306$) (Haase et al., 2003) and trace element ratios (U/Th = 0.26; La/Sm N = 1.95), has the lowest ($^{231}Pa/^{235}U$) = 1.22. The other three samples were collected further south on the Kolbeinsey Ridge and are more depleted ($\varepsilon_{Nd} = +8.9$ to $+10.0$ (Schilling et al., 1999),

Fig. 4. ($^{230}Th/^{232}Th$) versus ($^{238}U/^{232}Th$) “equiline” diagram for Kolbeinsey basalts. Data are broken out by determination of crustal contamination from measurements of ($^{234}U/^{238}U$). For comparison we show global Atlantic, Pacific, Indian, and Australian–Antarctic (AAD) MORB data (Goldstein et al., 1989, 1992, 1993; Sims et al., 1995, 2002; Bourdon et al., 1996b; Lundstrom et al., 1999; Sturm et al., 2000; Peate et al., 2001; Tepley et al., 2004; Kokfelt et al., 2005; Russo et al., 2009; Standish and Sims, 2010), global ocean island basalt (OIB) data (except for Iceland) (Sims et al., 1995, 1999, 2008b; Turner et al., 1997; Widom et al., 1997; Bourdon et al., 1998; Claude-Ivanaj et al., 1998; Sigmarsson et al., 1998; Claude-Ivanaj et al., 2001; Pietruszka et al., 2001, 2009; Sims and Hart, 2006; Pytulak and Elliott, 2009), and Icelandic data (Kokfelt et al., 2003; Stracke et al., 2003a,b).

Fig. 5. ($^{230}Th/^{238}U$) vs. ($^{231}Pa/^{235}U$) data from the Kolbeinsey Ridge, Iceland (Pickett and Murrell, 1997; Stracke et al., 2006), global OIB (Sims et al., 1995, 1999, 2008b; Pickett and Murrell, 1997; Turner et al., 1997; Bourdon et al., 1998; Pietruszka et al., 2001; Sims and Hart, 2006; Pytulak and Elliott, 2009), and global MORB (Goldstein et al., 1993; Sims et al., 1995, 2002; Lundstrom et al., 1999; Sturm et al., 2000; Kokfelt et al., 2005). Here the lighter shaded circle and triangle data points show age-corrected maximum ($^{231}Pa/^{235}U$) values for Kolbeinsey Ridge south of the 70.7°N offset and from the Eggvin Bank, respectively (Table 2). We show Kolbeinsey Ridge samples known to be contaminated ($^{234}U/^{238}U$) out of equilibrium) for completeness.
U/Th = 0.31 to 0.35), with (\(^{231}\text{Pa}/^{235}\text{U}\)) = 2.26 to 2.50. There is no co-variation of (\(^{231}\text{Pa}/^{235}\text{U}\)) with other chemical parameters or geographic location (e.g. proximity to Iceland). Given the independent age constraint of \(<10,000\) years for Kolbeinsey Ridge lavas (see Section 2.2), it is possible that the (\(^{231}\text{Pa}/^{235}\text{U}\)) ratios in the samples have decreased slightly due to aging since eruption. We have calculated the maximum possible (\(^{231}\text{Pa}/^{235}\text{U}\)) upon eruption for our samples by assuming they are 10,000 years old, and present those maximum values in Table 2 and depict them in Fig. 5 using lightly shaded symbols.

In Fig. 6 we show the results of Cl and K analyses by electron microprobe with the (\(^{234}\text{U}/^{238}\text{U}\)) results for our samples. We find no systematic correlation between these variables in the Kolbeinsey Ridge data set. We do, however, note that sample TRI0139-015-001G demonstrated a high degree of intra-sample variability, producing Cl/K\(_2\)O ratios ranging from 0.05 to 0.55 within a single glass chip.

5. GENESIS OF U-SERIES DISEQUILIBRIA IN KOLBEINSEY RIDGE BASALTS

5.1. Age constraints from U-series

Interpretation of \(^{238}\text{U}–^{230}\text{Th}\) and \(^{235}\text{U}–^{231}\text{Pa}\) disequilibria in terms of melting processes requires the age of the samples to be much younger than the half-lives of \(^{230}\text{Th}\) (75 ka) and \(^{231}\text{Pa}\) (32.5 ka). Recovery of fresh basaltic glass (rather than glacial outwash) constrains the ages of our samples to \(<10\) ka, which results in a maximum uncertainty on the \((^{230}\text{Th}/^{238}\text{U})\) ratios due to post-eruptive decay of \(~1\%\). Additionally, dredge sample POS210/1 702DS-1 has measured \((^{226}\text{Ra}/^{230}\text{Th}) = 1.10 \pm 3\%\) (Table 2 footnote), since \(^{226}\text{Ra}\) has a half-life of 1600 years, the small but significant \(^{226}\text{Ra}/^{230}\text{Th}\) disequilibrium of this sample indicates that its age is younger than 8 ka. The influence of a maximum of 10,000 years of aging on Pa disequilibria results in...
in differences of 4–14% in reported (\(^{231}\text{Pa}/^{235}\text{U}\)) ratios, and maximum age-corrected (\(^{231}\text{Pa}/^{235}\text{U}\)) values for samples erupted no more than 10,000 years ago are included in Table 2.

5.2. Effects of shallow alteration on \(^{238}\text{U}–^{230}\text{Th}\) disequilibrium

Twelve samples have (\(^{234}\text{U}/^{238}\text{U}\)) > 1.005, despite careful hand-picking and leaching (see details above). These high (\(^{234}\text{U}/^{238}\text{U}\)) values are significantly outside of analytical uncertainty, and are thus interpreted to be a result of seawater interaction or assimilation of altered material (Fig. 2 and Table 2). Our criterion for considering our remaining samples unaltered and uncontaminated is when their uranium isotope ratios are within 0.5% of equilibrium (which reflects the propagated uncertainties of current analytical methods; see details above). Of the published MORB ICP-MS U-series literature data (Goldstein et al., 1989, 1992; Lundstrom et al., 1995, 1998a, 1999; Sims et al., 1995, 2002, 2003; Bourdon et al., 1996b; Sturm et al., 2000; Tepley et al., 2004; Kokfelt et al., 2005; Rubin

Fig. 7. Global (\(^{234}\text{U}/^{238}\text{U}\)) vs. (\(^{230}\text{Th}/^{238}\text{U}\)) MORB data from the literature with 2σ analytical uncertainties. (a) Mid-Atlantic Ridge (MAR) (b) East Pacific Rise (EPR), and (c) Juan de Fuca Ridge (JDF) and Indian Ocean data are shown as separate panels. We note that the large error bars reflect unusually large analytical uncertainties in data from Tepley et al. (2004). To address the problem of older studies using different values for isotope decay constants, we have corrected older literature to the newer decay constant value of Cheng et al. (2000). After doing so, we find very little or no systematic patterns to the global data set; however, since many of these data were measured by different mass spectrometric analytical techniques and may have incorporated inter-laboratory and other sample biases, it is unclear to what extent disequilibrium in the literature (\(^{234}\text{U}/^{238}\text{U}\)) ratios reflects natural alteration of fresh basalt samples rather than analytical problems. Unfortunately, we thus cannot be certain whether the samples from the literature with (\(^{234}\text{U}/^{238}\text{U}\)) out of equilibrium have experienced crustal alteration, or instead appear out of equilibrium due to older, less robust analytical methods. (See above-mentioned reference for further information.)
et al., 2005; Russo et al., 2009; Standish and Sims, 2010; Waters et al., 2011) only a limited selection of MORB measurements fit within a similar constraint (Fig. 7) (i.e. 9–10^8 N EPR (Sims et al., 2002, 2003; Rubin et al., 2005; Waters et al., 2011), Southwest Indian Ridge (Standish and Sims, 2010), Gorda Ridge (Goldstein et al., 1989, 1992; Cooper et al., 2003), 22–23^8 N EPR (Bourdon et al., 1996b), Mid-Atlantic Ridge (Stürn et al., 2000), and Kane-Atlantis (Peate et al., 2001). Analyses conducted using older analytical methods with larger (234U/238U) uncertainties may also indicate relatively fresh samples unaffected by crustal processes, but this is more difficult to constrain due to the range of techniques and uncertainties in the older literature. Likewise, many older studies did not measure (234U/238U), such that this list also necessarily excludes more poorly characterized samples that may not have been contaminated or altered.

The Kolbeinsey Ridge (234U/238U) and (230Th/238U) vary systematically (Fig. 2); samples with low (234U/238U) have high (230Th/238U), whereas samples with high (230Th/238U) have equilibrium (234U/238U). Although a single, specific mechanism for the crustal perturbation of the 234U–238U–230Th system has not been identified (see further discussion below), such signals are widely observed in submarine glass (e.g. Turekian and Bertine, 1971; Bacon, 1978; Macdougall et al., 1979; Sims et al., 2002, 2003, 2006; Pelt et al., 2008; Pietruszka et al., 2009, 2011), and therefore we interpret this relationship in terms of secondary processes, namely interaction with seawater-derived materials in the shallow crust. We note that for one sample (PO-LARK7-1-21854) with a 238U excess (measured at LANL in the early 1990s) (234U/238U) was not measured, but given the observed relationship between (234U/238U) and (230Th/238U) it is likely that this sample has also experienced chemical exchange with crustal contaminants and we predict (234U/238U) > 1. Unfortunately this sample is no longer available to evaluate this, and to eliminate any inferential ambiguities in our subsequent interpretations this sample is not considered further. We further note that because the highly variable initial uranium concentrations in Kolbeinsey MORB (Table 2) could mask uranium addition processes, here we focus on the observed variations in elemental and isotopic ratios rather than elemental abundances.

Elevated uranium concentrations and (234U/238U) ratios have long been observed in basalts either contaminated in the crust or directly altered by seawater (Aumento, 1971; Turekian and Bertine, 1971; Störzer and Selo, 1976, 1978; Macdougall, 1977; Bacon, 1978; Macdougall et al., 1979; Bourdon et al., 2000; Sims et al., 2003, 2006), Turekian and Bertine (1971) suggested that addition of seawater-derived uranium to basalts occurred in the shallow crust or at the crust-water interface. Sims et al. (2003) likewise observed other chemical indications of contamination in a sample with (234U/238U) = 1.009, including perturbed Th/U, elevated Cl/K, high Ba/Th, a negative Ce anomaly, and elevated 87Sr/86Sr.

A number of mechanisms may lead to chemical contamination of basaltic magmas in the crust. Magmas might interact with hydrothermal brines as they travel to the surface, as suggested by Michael and Cornell (1998), who found that at slow-spreading ridges with thick crust (namely the Kolbeinsey Ridge), magmas can pool relatively shallow in the crust and experience more crustal contamination than occurs on slow-spreading ridges with thinner crust (i.e. regions with lower magma flux). They measured high and variable Cl/K that was weakly correlated with MgO in Kolbeinsey MORB, which they interpreted to represent assimilation of hydrothermal brines, secondary minerals, and/or hydrothermally altered basalt during crystal fractionation in a magma chamber.

High Cl concentrations in crustally contaminated basalts have also been measured elsewhere (e.g. Coombs et al., 2004; le Roex et al., 2006). In this regard, it is relevant to note that while subsurface brines are likely to be rich in Cl and Sr, they are also likely to be depleted in uranium due to the predicted reduction of uranium from a +6 to an insoluble +4 oxidation state (e.g. Michael et al., 1983; Chen et al., 1986). A number of studies (e.g. Michael and Albaredes, 1985; Chen et al., 1986; Ravizza et al., 2001; Ludwig et al., 2011) likewise found that U is effectively stripped out of ocean waters by hydrothermal activity. Rather than remaining in the brine, seawater-derived uranium and its radiogenic progeny should therefore be precipitated as secondary hydrothermal minerals in the crust. Any subsurface incorporation of these secondary mineral phases into the magma will significantly influence the concentrations of U and Th (Krotlikowska-Cigalo et al., 2007).

The ubiquitous, complex, and progressive post-eruptive alteration of basalt by seawater has likewise been well documented in studies including Macdougal et al. (1979), Staudigel et al. (1995), Stroncik and Schmincke (2002), and Krotlikowska-Cigalo et al. (2007), and others. These and other studies suggest multiple possible mechanisms by which fresh, uncontaminated mid-ocean ridge magmas can be subsequently altered by post-eruptive processes. Macdougall et al. (1979) observed scavenging of U from basalt upon interaction with seawater. They found that the concentrations and isotopic compositions of the measured uranium demonstrated a non-linear, continued interaction and exchange between seawater and the erupted basalts. Likewise, U addition can result from surface alteration of basaltic glass by seawater (Krotlikowska-Cigalo et al., 2007), but U concentration and (234U/238U) ratios do not appear related in a simple fashion (Glass et al., 2005; Sims et al., 2006). Bourdon et al. (2000) suggested that relatively altered (e.g. unpicked and/or unleached) MORB can develop elevated (234U/238U) ratios, 10Be/9Be ratios, 231Pa excesses (e.g. Fig. 5), and, to a lesser extent, 230Th excesses by interaction with seafloor sediments.

It has been further suggested, based on measurements of Cl in young glasses, that seawater vapor bubbles are sometimes incorporated into seafloor lava flows during emplacement (Soule et al., 2006). While one might expect this process to have a simple signal of wholesale seawater addition, given the complexities observed in volatile-glass fractionation and alteration during terrestrial eruptive and short-term post-eruptive processes (Moune et al., 2007), seawater–lava interaction during submarine eruptions is not likely to be so straightforward.
In Fig. 2, we show a calculated trajectory for simple seawater addition to an average of Kolbeinsey Ridge samples with \((234U/238U)\) in equilibrium. A non-linear best-fit mixing curve of the data (dashed line; Sohn, 2005) and our calculated theoretical mixing trajectory (solid line) agree within the 95% confidence envelope for the non-linear fit. This similarity strongly supports the interpretation that Kolbeinsey Ridge lavas have been systematically affected by addition of seawater-derived materials.

In the Kolbeinsey Ridge samples, Cl/K2O does not vary systematically with \((234U/238U)\) (Fig. 6a), Th/U, or \((230Th/238U)\) (not shown). Some Kolbeinsey samples demonstrate uniform Cl concentrations and Cl/K2O ratios, while others show variations outside analytical uncertainty within a single glass chip, suggesting small-scale heterogeneity in the absorption of crustal material into the basalt (e.g. TRIO139-015-001G). The decoupling of Cl/K2O from \((234U/238U)\) observed in Fig. 6a is not surprising as there are a number of processes that can variably perturb Cl and/or U, such as Cl degassing (e.g. Carroll and Webster, 1994), assimilation of material with elevated K (e.g. celadonite), and/or assimilation of secondary high U concentration phases.

As summarized above, previous work has indicated that extensive surface alteration of basalt by seawater results in addition of U to altered glass (Krolikowska-Ciaglo et al., 2007) and a decrease in basaltic Th/U ratios (Verma, 1992; Soule et al., 2007). While the \((234U/238U)\) ratios of our samples do not correlate with the U concentrations, which can be influenced by other processes, Kolbeinsey Ridge \((234U/238U)\) does correlate with Th/U ratios (Fig. 6b). This initially appears consistent with results for alteration, which may involve a complex exchange of U between seawater-derived components and MORB glass such that \((234U/238U)\) does not always correlate with U concentration (Glass et al., 2005; Sims et al., 2006).

\(^{87}Sr/^{86}Sr\) and Sr concentrations also do not vary systematically with Kolbeinsey Ridge \((234U/238U)\) (Fig. 6). However, because the concentrations of U in seawater are relatively high, interaction with secondary hydrothermal mineral deposits or seawater should dramatically perturb the U-series system and may have less of an effect on Sr isotope compositions. A simple mixing calculation between seawater and average, unaltered Kolbeinsey basalt (with 86 ppm Sr, \(^{87}Sr/^{86}Sr = 0.70291\) and \((234U/238U) = 1.000\), however, does not follow the trajectory of the Kolbeinsey data, which suggests addition of an enriched crustal component that is much higher in uranium content than seawater (e.g. hydrothermal deposits with U rich minerals), i.e. a crustal contamination signature rather than post-eruptive alteration. For example, a basalt plus seawater mixture generates a \((^{87}Sr/^{86}Sr, \ 234U/238U)\) mixing ratio equal to 3.2, which produces the wrong sense of hyperbolic curvature in Fig. 6c, whereas a hypothetical enriched crustal component with 100× more U and a similar \((234U/238U)\) ratio to seawater generates a mixing ratio of 0.03 and more closely follows the data trajectory. In fact, this uranium enriched hypothetical component can explain the most altered Kolbeinsey sample by addition of only 8–10% crustal material to the unaltered basalt, rather than the more problematic 1:1 water:rock ratio suggested by a pure seawater component as the U-isotope contaminant. Based on the discussion above, we expect such a contaminant to most likely comprise hydrothermally altered crustal rocks.

However, as described above, our electron probe data (Fig. 6a) demonstrate that no single, simple mechanism, such as subsurface assimilation of hydrothermally altered rocks, can explain both the Cl/K2O ratios and the \((230Th/238U)\) isotopic relationships we observe. Due to the complex speciation and solubility of U under various redox conditions (Mitchell, 1993), it is difficult to precisely predict the behavior of U in the crust. It follows from the discussion above, however, that Cl could be mainly added by seawater brines (Michael and Cornell, 1998) (Fig. 7a), while U is added by the absorption of altered rocks (Fig. 6c). As has been recently noted for Lohi submarine basalts, variations of \((234U/238U)\) with basalt chemistries also require multiple decoupled processes, including variable absorption of both brines and secondary hydrothermal mineralization in the crust (Pietruszka et al., 2011).

5.3. Assessing primary \(230Th/238U\) of Kolbeinsey Ridge basalts

The best estimate of the \((230Th/238U)\) ratio of Kolbeinsey Ridge basalts is from the samples with \((234U/238U)\) in equilibrium. The Kolbeinsey Ridge samples with \(234U/238U = 1.000 ± 0.005\) have \((230Th/238U) = 1.19\) to 1.30.

A second, but less certain estimate of the primary \((230Th/238U)\) of Kolbeinsey Ridge melts for altered samples is to approximate a linear trajectory of alteration based on the overall best-fit trend for the data set. In Table 2 we calculate uncontaminated \((230Th/238U)c\) values using the best fit slope, correcting to a \((234U/238U)\) value of 1.0; with this approach, calculated \((230Th/238U)c = 1.15–1.33\). While the most robust data are those with \((234U/238U)\) in equilibrium, it is noteworthy that corrected altered samples exhibit a similar range in \((230Th/238U)\) as is measured in the seemingly unaltered samples. Thus, all indications are that Kolbeinsey MORB have \((230Th/238U)\) values ranging from 1.15 to 1.30 prior to eruption, and that the samples with \((230Th/238U) < 1\) result from shallow crustal modification. These Kolbeinsey data clearly illustrate the need for robust measurement of \((234U/238U)\) in MORB, and for caution in interpreting the \(238U-230Th\) disequilibria measured in samples that contain \((234U/238U)\) out of secular equilibrium (e.g. Teply et al., 2004).

5.4. Uranium-series constraints on melting beneath the Kolbeinsey Ridge

The high \((230Th/238U)\) (1.19 to 1.30) and \((231Pa/235U)\) values (1.22 to 2.50) of Kolbeinsey Ridge basalts with
(234U/238U) in equilibrium place important constraints on the melting processes occurring beneath this ridge. Melting calculations using a forward modeling approach for 238U–230Th and 235U–231Pa are presented below and in Figs. 8–10.

The Kolbeinsey Ridge lavas show evidence for an isotopically homogeneous source, within analytical uncertainties, along most of the ridge length (from 67°N to 70.7°N), with the exception of a few samples very close to Iceland on the leaky Tjörnes Fracture Zone (south of 67°N) and near the Jan Mayen Fracture Zone (north of 70.7°N), where lavas are more isotopically enriched (Fig. 3) (Mertz et al., 1991; Mertz and Haase, 1997; Schilling et al., 1999; Haase et al., 2003; Blichert-Toft et al., 2005). Unaltered Kolbeinsey samples between 67.0°N and 70.7°N have universally large 230Th excesses, and the nearly uniform Nd, Sr, Hf, and Pb isotopic compositions suggest a relatively homogenous source over the length scale of melting.

Due to the shallow ridge axis, thick crust, high degree of melting, and proximity to the Iceland melting anomaly, Kolbeinsey Ridge melts are likely derived from a deep, long melting column that samples both garnet-bearing (i.e. garnet peridotite) and garnet-free (spinel peridotite) lithologies along its length (Bourdon et al., 1996a; Klein and Langmuir, 1987). Bourdon et al. (1996a) have shown that on a global scale, axial ridge depth is dominantly controlled by mantle temperature (which means the source is typically relatively uniform (which is essentially what the Kolbeinsey Ridge lavas be-

Thus we consider more complicated melting scenarios that incorporate the effects of daughter nuclide ingrowth for the Kolbeinsey samples: ingrowth models allow for larger overall melt fractions while maintaining significant parent-daughter fractionation. Below, we use dynamic and reactive porous flow 1D forward melting models to evaluate Kolbeinsey Ridge 238U–230Th and 235U–231Pa disequilibria in the context of the major and trace element compositions of the samples analyzed here.

5.4.2. Constraints on Kolbeinsey basalt genesis from 238U–230Th disequilibrium

The large 230Th excesses of the Kolbeinsey lavas favor a long melt column that initiates in the garnet stability field and generates the deep melting (FeO) and high melt fraction signatures observed in the major elements of the lavas. Using both dynamic and reactive porous flow time-dependent melting calculations, we calculate melt trajectories for a peridotite source (Fig. 8).

Since lavas from most of the length of the Kolbeinsey Ridge have relatively homogeneous (230Th/238U), as well as radiogenic isotopes and trace element ratios, it is straightforward to use a 1-D forward melting model to determine the conditions under which such lavas could be produced. As explained above, the Kolbeinsey Ridge over-

Since these simpler models adequately explain the Kolbeinsey Ridge melt compositions, we limit our calculations to modal melts with constant melt productivities and partition coefficients (e.g. Mckenzie, 1985; Bourdon et al., 1996a; Lundstrom, 2000; Spiegelman, 2000; Jull et al.,
This is a reasonable approximation given the inherent limitations produced by uncertainties in mineral/melt partition coefficients (see below). With dynamic melting, $^{238}\text{U}-^{230}\text{Th}$ disequilibrium is produced at the bottom of the melt column, whereas during reactive porous flow melting rock interaction is continuous. We thus use a simple garnet lherzolite melt column for dynamic melting, but we impose a two-layer mantle model (garnet lherzolite overlain by spinel lherzolite) on the reactive porous flow melt model. The results of our calculations show that the reactive flow model is sensitive to the imposed heterogeneity in partition coefficients along the melt column, such that the phase change from spinel to garnet peridotite has a significant impact on U and Th partitioning behavior during melting (e.g. Spiegelman and Elliott, 1993).

In all of our melting calculations, the mantle source is assumed to be in secular equilibrium, which is reasonable given the age of the mantle source beneath the Kolbeinsey Ridge relative to the half-lives of the relevant nuclides. We chose a peridotite source with initial $(^{238}\text{U}/^{232}\text{Th}) = (^{230}\text{Th}/^{232}\text{Th}) = 1.25$ to best generate melt compositions near the average Kolbeinsey Ridge $(^{230}\text{Th}/^{232}\text{Th})$ value. This is considerably lower than the Depleted MORB Mantle (DMM) U/Th range of 0.50–0.53 regressed by Sims and Hart (2006), but is reasonable for a source postulated to represent a mixture between DMM and FOZO, as suggested by the long-lived Nd, Sr, Pb, and Hf isotopic data (Blichert-Toft et al., 2005; Sims and Hart, 2006). We calculate aggregate melts for a 100 km peridotite melting column that initiates in the garnet peridotite stability field. In such a long melting column, the presence of garnet generates large ^{238}Th-excesses in the deepest melts. In the absence of garnet (or some clinopyroxene compositions that can also produce moderate ^{238}Th excess (e.g. ~20%; Wood et al., 1999; Land-
We assume peridotite solidus depths of 100 km and an eclogite solidus 25 km deeper than the peridotite solidus. The peridotite melting interval is 450 °C, while the eclogite melting interval is 100 °C (where “melting interval” refers to the temperature difference between the liquidus and the solidus). We assume a solid mantle density of 3300 kg/m3 and a melt density of 2800 kg/m3.

For our forward models, we vary the melting rates between 4×10^{-5} and 5×10^{-3} kg/m3/yr and the porosities between 0.02% and 1%. We approximate solid upwelling rates using the basic relationship, $M = W\rho_sF_{\text{max}}/d$, where M is the mean melting rate, W is the solid upwelling rate, ρ_s is the density of the solid mantle, F_{max} is the maximum extent of melting, and d is the length of the melt column. Although the mean melt rate and melting constant of Zou and Zindler (2000) diverge at slow melting rates, the melts are expected, at typical melting conditions for a slow-spreading ridge (0.5% maximum porosity and a solid upwelling rate of 1 cm/year), accumulated high-degree porous flow melts from the top of the melt column do not preserve large 230Th excesses generated deeper in the column, due to reequilibration with garnet-free rocks.

Any successful melting model for the Kolbeinsey Ridge needs to reproduce the following constraints: (1) depleted in trace elements relative to most MORB, which infers high F; (2) high 238U/230Th, which infers a deep garnet signature; and (3) uniform in radiogenic isotopes, which infers that the source is chemically and lithologically homogeneous over the length scale of melting. While the dynamic melts can maintain large 230Th excesses to degrees of melting above 10%, the reactive porous flow melts can only do so deep in the melt column (not shown). Reactive flow melts extracted from those depths correspond to melt fractions of 4–5% or less, which are thought too low to explain the major and trace elements (e.g., Na$_a$) or the thick crust observed.

A concern regarding the reactive porous flow model is the long melt column, within which the reacting melt travels through the garnet-spinel transition. The model results described above suggest that a dynamic melting model can account for the Kolbeinsey Ridge data because the majority of the 230Th/238U disequilibria is generated during the ini-

Table 4

<table>
<thead>
<tr>
<th>Mineral/melt partition coefficient D_i</th>
<th>Mineral moded</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>Th</td>
</tr>
<tr>
<td>Garnet</td>
<td>0.038</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>0.0030</td>
</tr>
<tr>
<td>Olivine</td>
<td>0.00005</td>
</tr>
<tr>
<td>Orthopyroxene</td>
<td>0.0078</td>
</tr>
<tr>
<td>Bulk</td>
<td>0.0065</td>
</tr>
<tr>
<td>Garnet</td>
<td>0.0080</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>0.0001</td>
</tr>
<tr>
<td>Olivine</td>
<td>0.0024</td>
</tr>
<tr>
<td>Bulk</td>
<td>0.029</td>
</tr>
<tr>
<td>Garnet</td>
<td>0.024</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>0.0041</td>
</tr>
<tr>
<td>Bulk</td>
<td>0.012</td>
</tr>
</tbody>
</table>

We assume peridotite solidus depths of 100 km and an eclogite solidus 25 km deeper than the peridotite solidus. The peridotite melting interval is 450 °C, while the eclogite melting interval is 100 °C (where “melting interval” refers to the temperature difference between the liquidus and the solidus). We assume a solid mantle density of 3300 kg/m3 and a melt density of 2800 kg/m3.

a Peridotite melting calculations assume a U_0 (initial U concentration) of 0.0018 ppm, Th_0 of 0.00071, and Pa_0 of 5.81 $\times 10^{-7}$ ppb.

b Partition coefficients from Kelemen et al. (1997), Salters and Longhi (1999), Salters et al. (2002).

c Partition coefficients from Pertermann et al. (2004).

d Mineral modes for lithologies described in the text.

wehr et al., 2001)), fractionation is mainly controlled by clinopyroxene with $D_{Th} > D_{U}$, creating small 238U excesses in the melt (La Tourette and Burnett, 1992; La Tourette et al., 1993; Beattie, 1993a;b; Hauri et al., 1994; Lundstrom et al., 1994; Salters and Longhi, 1999; Wood et al., 1999; Landwehr et al., 2001; Salters et al., 2002; Elkins et al., 2008).

For our forward models, we vary the melting rates between 4×10^{-5} and 5×10^{-3} kg/m3/yr and the porosities between 0.02% and 1%. We approximate solid upwelling rates using the basic relationship, $M = W\rho_sF_{\text{max}}/d$, where M is the mean melting rate, W is the solid upwelling rate, ρ_s is the density of the solid mantle, F_{max} is the maximum extent of melting, and d is the length of the melt column. Although the mean melt rate and melting constant of Zou and Zindler (2000) diverge at slow melting rates, the melting rates tested nonetheless approximately correspond to a broad range of solid upwelling rates between 0.6 and 75 cm/yr, assuming a maximum of 20% melting over a 100 km column (for reference, the half-spreading rate for the Kolbeinsey Ridge is 9 mm/yr; Mosar et al., 2002). We assume a two-layer mantle model for reactive porous flow melting and use uniform partition coefficients for garnet peridotite above 2.5 GPa and for spinel peridotite at shallower depths. For the reactive porous flow model, calculations are performed using UserCalc (Spiegelman, 2000), which works from incremental inputs for depth of melting, degree of melting, and partition coefficients to calculate continuous variations in melt composition in a 1-D upwelling mantle column. We calculate dynamic melts using the formulae described in Zou and Zindler (2000). We place constraints on each model run by limiting solid upwelling rates and corresponding mean melt rates, maximum residual melt porosities, the depth of the peridotite solidi, and the bulk partition coefficients for each lithology, as explained further below.

238U/230Th disequilibrium results for a series of progressive melting scenarios (dynamic and porous flow) are shown in Fig. 8 (partition coefficients as in Table 4). As expected, at typical melting conditions for a slow-spreading ridge (0.5% maximum porosity and a solid upwelling rate of 1 cm/year), accumulated high-degree porous flow melts from the top of the melt column do not preserve large 230Th excesses generated deeper in the column, due to reequilibration with garnet-free rocks.

Any successful melting model for the Kolbeinsey Ridge needs to reproduce the following constraints: (1) depleted in trace elements relative to most MORB, which infers high F; (2) high 238Th/230U, which infers a deep garnet signature; and (3) uniform in radiogenic isotopes, which infers that the source is chemically and lithologically homogeneous over the length scale of melting. While the dynamic melts can maintain large 230Th excesses to degrees of melting above 10%, the reactive porous flow melts can only do so deep in the melt column (not shown). Reactive flow melts extracted from those depths correspond to melt fractions of 4–5% or less, which are thought too low to explain the major and trace elements (e.g., Na$_a$) or the thick crust observed.

A concern regarding the reactive porous flow model is the long melt column, within which the reacting melt travels through the garnet-spinel transition. The model results described above suggest that a dynamic melting model can account for the Kolbeinsey Ridge data because the majority of the (230Th/238U) disequilibria is generated during the ini-
tiation of melting, after which the peridotite source is too depleted in U and Th to significantly modify the melt composition. However, for a 1D reactive porous flow model the spinel peridotite signal obscures the $^{238}\text{Ra}/^{230}\text{Th}$ excesses initially produced in the deeper, garnet peridotite portion of the column. An alternate explanation for the discrepancies between the reactive flow forward melting results and the Kolbeinsey basalts is that the Kolbeinsey melt regime is a “two-porosity” system, similar to those previously suggested to be important in generating the inverse correlations between ^{226}Ra and ^{230}Th excesses in EPR basalts (e.g. Iwamori, 1994; Kelemen et al., 1997; Lundstrom, 2000; Jull et al., 2002; Sims et al., 2002; Waters et al., 2011). We would predict the high-$^{230}\text{Th}/^{238}\text{U}$ basalts from the Kolbeinsey Ridge to have low $^{230}\text{Ra}/^{230}\text{Th}$ in such a scenario; however, while our measured sample does have a low ^{230}Ra excess, without age constraints it is impossible to tell if the measured $^{230}\text{Ra}/^{230}\text{Th}$ ratio reflects a low, deep-degree melt along the ^{230}Th-^{238}Ra inverse correlation, or if it is the product of aging. A straightforward mixing calculation suggests that such mixtures cannot produce both the high $^{230}\text{Th}/^{238}\text{U}$ ratios observed and sufficiently high degrees of melting in the same melts, but since such a mixing model requires age-constrained $^{230}\text{Ra}/^{226}\text{Th}$ data we cannot robustly constrain such a model for the Kolbeinsey Ridge.

5.4.3. Constraints on Kolbeinsey basalt genesis from $^{235}\text{U}/^{230}\text{Pa}$ disequilibria

Fig. 5 and Table 2 show that $^{231}\text{Pa}/^{235}\text{U}$ ratios for the Kolbeinsey Ridge south of 70.7°N average 2.41, while the more isotopically and trace element enriched sample north of 70.7°N has lower $^{231}\text{Pa}/^{235}\text{U} = 1.22$, more closely resembling OIB compositions (see e.g. Sims et al. (2008) for compilation of $^{231}\text{Pa}/^{235}\text{U}$ and $^{230}\text{Th}/^{238}\text{U}$ in MORB and OIB). Table 2 also presents age-corrected $^{231}\text{Pa}/^{235}\text{U}$ ratios for these samples, assuming they are the maximum possible age of 10,000 years. These age corrected $^{231}\text{Pa}/^{235}\text{U}$ max values (Table 2 and Fig. 5) thus represent the maximum possible $^{231}\text{Pa}/^{235}\text{U}$ ratios upon eruption for these samples.

The $^{235}\text{U}/^{231}\text{Pa}$ system is particularly sensitive to short-lived processes than $^{238}\text{U}/^{230}\text{Th}$ due to the comparably short half-life of ^{231}Pa (half-life of 3.2 ka; Robert et al., 1969). Unlike the $^{238}\text{U}/^{230}\text{Th}$ system, in which the relative partitioning behavior of U and Th is extremely sensitive to the presence or absence of garnet, Pa is always much more incompatible than U in all mantle phases; however, due to the shorter half-life, $^{235}\text{U}/^{231}\text{Pa}$ disequilibria are not preserved as well as $^{238}\text{U}/^{230}\text{Th}$ disequilibria during upwelling after melt extraction.

$^{231}\text{Pa}/^{235}\text{U}$ results for the dynamic and reactive porous flow melt calculations described above are combined to produce the melting grids shown in Fig. 8. The models calculate $^{231}\text{Pa}/^{235}\text{U}$ and $^{230}\text{Th}/^{238}\text{U}$ ratios at the top of the 100 km melt column, as a function of residual porosity (with constant mean melting rate) or mean melting rate (with constant porosity). Some, but not all of these model runs produce results within uncertainty of the measured Kolbeinsey data, with the exception of the basalt from the Eggvin Bank segment. The dynamic melt calculations suggest a range of conditions that can produce the range of Kolbeinsey MORB, from one set of parameters where mean melt rates are high (2×10^{-4} kg/m3/yr, or 3 cm/yr solid upwelling rate) and residual melt porosities are very low (0.2%), to another with lower mean melting rates (4×10^{-5} kg/m3/yr, or 0.6 cm/yr solid upwelling rate) and higher porosities (0.5%). The range of predicted solid upwelling rates bracket the 0.9 cm/yr half-spraying rate observed at the Kolbeinsey Ridge, suggesting upwelling rates are similar to the rate of plate spreading along the ridge. Reactive porous flow calculations, on the other hand, do not easily reproduce Kolbeinsey melt compositions because of chemical reequilibration with spinel peridotite at depths shallower than 2.5 GPa.

As demonstrated in e.g. Elkins et al. (2008) and Stracke et al. (2006), there are relatively large deviations across experimental measurements of mineral/melt partitioning for U and Th that translate into a high degree of uncertainty in the resulting calculated parameters (e.g. Sims et al., 1999). Fig. 8 highlights how calculated melt compositions are highly sensitive to the partition coefficients selected. After rounding the bulk partition coefficients of D_{U} from 0.0065 to 0.007 and D_{Th} from 0.0044 to 0.004, the ability of the melting models to reproduce the Kolbeinsey Ridge data, and the predicted conditions under which those melts might be generated, change significantly, particularly for dynamic melts. Thus, limitations in our knowledge of the partition coefficients from experiments and theoretical calculations, and how those values vary during progressive melting in an upwelling column, limit our ability to precisely determine the fundamental parameters of melting (i.e. porosity, mantle upwelling rates, melt dispersity, etc.).

In general, Kolbeinsey basalts have relatively high $^{230}\text{Th}/^{238}\text{U}$ for global MORB range and low $^{230}\text{Th}/^{238}\text{U}$ compared to the range of Icelandic lavas. With the exception of the unaltered sample from the Egggin Bank, Kolbeinsey Ridge basalts resemble global MORB in that their $^{231}\text{Pa}/^{235}\text{U}$ ratios are considerably higher than those of OIB (Fig. 5, and references therein). Fig. 8a–d demonstrates that higher $^{230}\text{Th}/^{238}\text{U}$ at a given $^{231}\text{Pa}/^{235}\text{U}$ can be achieved by (1) switching from a reactive porous flow to a dynamic melting model, i.e. by more efficient disequilibrium melt extraction (this is due to the sensitivity of porous flow melts to the disappearance of garnet during ascent in a peridotitic melt column), (2) increasing from low to intermediate melt rates for reactive porous flow melts and, conversely, by decreasing melt rate for dynamic melts; or (3) decreasing residual melt porosity.

We note that none of our peridotite melting calculations pass through the extremely low $^{231}\text{Pa}/^{235}\text{U}$ ratio measured in the sample from the Egggin Bank, despite considering a wide range of melting rates and maximum residual porosity conditions. The low $^{231}\text{Pa}/^{235}\text{U}$ ratio argues against shallow assimilation or melt–rock reaction as a source of enriched trace element signatures, which would cause higher, not lower ^{231}Pa excesses (e.g. Bourdon et al., 2000). A second possible explanation, which the models shown in Fig. 8 do not consider, is lithologic heterogeneity in the melt source region. Although the relative homogene-
ity in radiogenic isotopic composition of most Kolbeinsey Ridge basalts argued against a heterogeneous mantle source control in our discussion above, consideration of the Eggvin Bank lavas, with their isotopically enriched compositions, suggests that mantle source lithologic variation may in fact influence the generation of melts along the northernmost ridge segment. Previous studies have argued that source heterogeneity, in addition to mantle temperature, exerts an important control over variations in global MORB geochemistry (e.g. Niu and Batiza, 1993, 1997; Niu et al., 2001; Russo et al., 2009; Waters et al., 2011). In particular, the presence of small amounts of garnet-bearing eclogite in the mantle source could potentially produce melts with lower (\(^{231}\text{Pa}/^{235}\text{U}\)) ratios than peridotite, due to the presence of garnet at shallow depths and higher degrees of melting predicted for eclogite (Hirschmann and Stolper, 1996; Pertermann and Hirschmann, 2003; Waters et al., 2011). We would expect a second, more fertile lithology, such as eclogite, to have a deeper solidus and higher melt productivity than peridotite, which would be enhanced by superadiabatic heating through heat ex-

In Fig. 9 we show the results of dynamic and reactive porous flow melting for an eclogite source (Table 4) over a melting interval of 100 °C, such that the eclogite is exhausted after approximately 30 km of melting. Although none of the calculated melt compositions pass directly through our data, the dynamic melt compositions shown are considerably closer to the composition of the basalt sampled on the Eggvin Bank than our previous models (Fig. 8). The reactive porous flow melts, on the other hand, are a poor fit for any of our data; this is not surprising, since melts of minor lithologies with deeper solidi than peridotite must experience efficient, disequilibrium extraction to avoid freezing upon reaction with ambient peridotite rock. Considering predictions by Hirschmann and Stolper (1996) and Kogiso et al. (2004), and others, expected melting rates for eclogite rocks might be even higher than our calculations, likely resulting in melts with even lower (\(^{230}\text{Th}/^{238}\text{U}\)) and (\(^{231}\text{Pa}/^{235}\text{U}\)) compositions than those shown. MORB from the Eggvin Bank do contain, on exchange from ambient subsolidus material during melting (Hirschmann and Stolper, 1996; Pertermann and Hirschmann, 2003). The larger degrees of melting that would result from melting a secondary lithology are expected to reduce the (\(^{231}\text{Pa}/^{235}\text{U}\)) ratios in the melts produced, which, when mixed with the more voluminous peridotite melts produced higher in the melt column, could lower the overall \(^{231}\text{Pa}\) excesses observed.

Table 5 Calculated \(\delta_{\text{Sm-Nd}}\) Values for samples in this study.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Location</th>
<th>(\delta_{\text{Sm-Nd}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR10139-001-001G</td>
<td>Tjörnes FZ</td>
<td>1.233</td>
</tr>
<tr>
<td>POS185 1105B</td>
<td>Tjörnes FZ</td>
<td>1.155</td>
</tr>
<tr>
<td>POS185 1093</td>
<td>S. Kolbeinsey</td>
<td>1.082</td>
</tr>
<tr>
<td>POS291 485-3</td>
<td>S. Kolbeinsey</td>
<td>1.088</td>
</tr>
<tr>
<td>TR10139-007-001G</td>
<td>S. Kolbeinsey</td>
<td>0.983</td>
</tr>
<tr>
<td>POS326 540DS-4</td>
<td>S. Kolbeinsey</td>
<td>1.035</td>
</tr>
<tr>
<td>POS291 495-2</td>
<td>S. Kolbeinsey</td>
<td>1.053</td>
</tr>
<tr>
<td>POS185 1096A</td>
<td>S. Kolbeinsey</td>
<td>0.966</td>
</tr>
<tr>
<td>POS185 1094B</td>
<td>S. Kolbeinsey</td>
<td>1.024</td>
</tr>
<tr>
<td>TR10139-006-002G</td>
<td>S. Kolbeinsey</td>
<td>1.037</td>
</tr>
<tr>
<td>TR10139-013-003G</td>
<td>S. Kolbeinsey</td>
<td>1.045</td>
</tr>
<tr>
<td>TR10139-014-001G</td>
<td>S. Kolbeinsey</td>
<td>0.998</td>
</tr>
<tr>
<td>TR10139-015-001G</td>
<td>S. Kolbeinsey</td>
<td>1.058</td>
</tr>
<tr>
<td>TR10139-016-001G</td>
<td>S. Kolbeinsey</td>
<td>1.028</td>
</tr>
<tr>
<td>POS0002/2 Geo 212</td>
<td>S. Kolbeinsey</td>
<td>0.999</td>
</tr>
<tr>
<td>TR10139-020-001G</td>
<td>S. Kolbeinsey</td>
<td>0.911</td>
</tr>
<tr>
<td>POS221 596DS-1</td>
<td>S. Kolbeinsey</td>
<td>0.895</td>
</tr>
<tr>
<td>POS221 605DS-2</td>
<td>S. Kolbeinsey</td>
<td>1.011</td>
</tr>
<tr>
<td>POS2210/1 682DS-1</td>
<td>N. Kolbeinsey</td>
<td>0.947</td>
</tr>
<tr>
<td>POLARK7-1-21844</td>
<td>N. Kolbeinsey</td>
<td>1.081</td>
</tr>
<tr>
<td>POLARK7-1-21847</td>
<td>N. Kolbeinsey</td>
<td>1.216</td>
</tr>
<tr>
<td>POLARK7-1-21848</td>
<td>N. Kolbeinsey</td>
<td>1.103</td>
</tr>
<tr>
<td>POLARK7-1-21850</td>
<td>N. Kolbeinsey</td>
<td>1.236</td>
</tr>
<tr>
<td>POLARK7-1-21854</td>
<td>N. Kolbeinsey</td>
<td>1.185</td>
</tr>
<tr>
<td>POS2210/1 700 DS-2</td>
<td>Eggvin Bank</td>
<td>0.799</td>
</tr>
<tr>
<td>POS2210/1 702 DS-1</td>
<td>Eggvin Bank</td>
<td>0.924</td>
</tr>
<tr>
<td>POS2210/1 698 DS-1</td>
<td>Eggvin Bank</td>
<td>0.739</td>
</tr>
<tr>
<td>TR10139-027-005G</td>
<td>Eggvin Bank</td>
<td>0.667</td>
</tr>
</tbody>
</table>

\(\delta_{\text{Sm-Nd}} = (\text{Sm}/\text{Nd})_{\text{sample}}/(\text{Sm}/\text{Nd})_{\text{source}}\), where (\text{Sm}/\text{Nd})_{\text{source}} is derived from the measured \(\epsilon_{\text{Nd}}\) value of the sample and a model age of 1.8 Ga.
average, slightly higher SiO₂ (51% vs. 50%) contents than other Kolbeinsey Ridge basalts, and, more notably, considerably higher La/Smₜ ratios (1.83 and 0.51, respectively), Sm/Ybₜ ratios (1.08 vs. 0.84), and La/Ybₜ ratios (1.92 vs. 0.41). These trace element ratios would be inconsistent with a high degree of melting if the source compositions for the two regions were the same, but since high Th/U ratios may indicate a more trace element-enriched source for the Eggvin Bank, we consider these ratios to reflect a relatively enriched, possibly eclogite-bearing source beneath the Eggvin Bank ridge segment.

Eclogite is predicted to be a minor mantle lithology (~5%; Hirschmann and Stolper, 1996). However, it is possible that eclogite melts are more readily directly sampled in regions that experience slow upwelling and overall lower degrees of melting (e.g. the Eggvin Bank), where the eclogite signature, hence, is less overwhelmed by subsequent melting of the dominantly peridotitic mantle above the peridotite solidus. The presence of a basalt with a very low measured (²³⁵Pa/²³⁵U) value on the Eggvin Bank, which is thought to overlie thin to normal crust over a more buoyant and heterogeneous mantle (Schilling et al., 1999; Trenn et al., 1999; Haase et al., 2003; Mertz et al., 2004; Blichert-Toft et al., 2005), may reflect such a process of eclogite melt sampling at depth. In other parts of the Kolbeinsey Ridge, such extremely low (²³⁵Pa/²³⁵U) signatures are not observed, and the samples are more easily explained as melts of peridotite. This distinction demonstrates the value of a combined approach, looking at both ²³⁵Pa/²³⁵U and ²³⁵Pa/²³⁸U systematics when evaluating MORB melting scenarios.

5.5. Nature of the Kolbeinsey source: radiogenic isotope age models and trace element fractionation

While it is possible to produce coupled large ²³⁰Th and ²³⁵Pa excesses with these melting models, the Sm/Nd trace element systematics are problematic. Salters (1996) observed that aSm–Nd values, which quantify the relationship between the Sm/Nd ratio of a melt and that of its postulated source composition, are anomalously high in Kolbeinsey lavas (i.e. aSm–Nd = (Sm/Nd)sample/(Sm/Nd)source, where

![Fig. 11. Schematic one-dimensional diagrams comparing melting beneath the EPR (after Sims et al. (2002)) and the Kolbeinsey Ridge. On the EPR, melting begins in the garnet peridotite stability zone, generating melts with large ²³⁰Th excesses. The Kolbeinsey Ridge peridotite solidus is deeper than the solidus for the EPR, reflecting the hot mantle adjacent to Iceland and the higher degrees of melting necessary to generate the thick crust and Kolbeinsey MORB chemical abundances. The Kolbeinsey melt column contains recently depleted source rock compared to average MORB source mantle. The relative sizes of the arrows denote the very different passive upwelling rates predicted by the spreading rates of the two ridges (where the Kolbeinsey Ridge spreads much slower than the fast-spreading EPR). On the EPR, in particular, shallow interaction of melts in low-porosity zones with depleted residual rocks near the top of the melt column produces shallow melts with high (²²⁶Ra/²³⁰Th), while deeper melts moving in faster, disequilibrium channels preserve the large ²³⁰Th excesses from deep. Low (²³⁰Th/²³⁸U) melts are not seen at the Kolbeinsey Ridge, possibly because they are not extracted and sampled through the thicker overlying crust.](image-url)
Melt generation beneath the slow-spreading Kolbeinsey Ridge

(\text{Sm/Nd})_{\text{source}} is calculated from each sample’s ε_{Nd} value using a model age of 1.8 Ga (DePaolo, 1988; Sims et al., 1995). The $\varepsilon_{\text{Sm–Nd}}$ values for the Kolbeinsey Ridge lavas sampled in this study range from 0.91 to 1.24 and are almost all greater than one (Table 5), in agreement with Salters (1996). Salters and Hart (1989) examined the importance of garnet in producing the Lu–Hf and Sm–Nd relationships in Kolbeinsey Ridge basalts and found that a 500 Ma mantle source can explain better the Kolbeinsey MORB than an assumed 1.8 Ga mantle age.

Other trace element ratios (e.g. chondrite-normalized La/Sm$_{\text{norm}}$) are also depleted for Kolbeinsey Ridge basalts (Fig. 10), but these likewise can be reasonably well explained by melting of a peridotite source (Section 5.2). The modeled melt trajectory in Fig. 10 shows variations with progressive degree of dynamic melting in a single upwelling column, assuming an initial source rare-earth element composition based on the DMM component from Workman and Hart (2005).

5.6. MORB generation beneath the Kolbeinsey Ridge

To a first order, our model calculations show that Kolbeinsey major and trace element, isotopic, and U-series data can be reasonably well explained using a self-consistent dynamic melting model. Klein and Langmuir (1987) and Bourdon et al. (1996a) predicted a long melt column beneath the ridge that generates large degrees of melting and, thus, thick crust and shallow axial depths, and our modeling efforts support these basic predictions. Such a melt column likely would originate well within the garnet stability field, which is capable of producing the observed ^{230}Th and ^{231}Pa excesses.

By considering the role of eclogite in the melt region, we also considered hypotheses of Niu and Batiza (1997) and Russo et al. (2009) and, among others, who suggested that secondary mantle lithologies and other variations in the melt regime, besides mantle temperature, can play an important role. We conclude that alternate lithologies such as eclogite may play a minor role in melt generation, and perhaps a more significant role for samples erupted along the isotopically enriched Eggvin Bank ridge segment.

Long-lived isotopic and trace element data, particularly Sm/Nd and $^{143}\text{Nd}/^{144}\text{Nd}$ ratios, indicate that the mantle source for the majority of Kolbeinsey Ridge lavas has most likely experienced a depletion event considerably more recently than typical 1.8 Ga mantle ages. As shown schematically in Fig. 11, our measurements and calculations thus overall suggest that the mantle source for Kolbeinsey Ridge basalts begins melting deep in a long, mostly peridotitic melt column, and that it is relatively depleted and young in age relative to the decay of ^{147}Sm to ^{143}Nd.

6. CONCLUSIONS

MORB from the slow-spreading Kolbeinsey Ridge form a nearly horizontal trend on a plot of ($^{236}\text{Th}/^{232}\text{Th}$) vs. ($^{238}\text{U}/^{232}\text{Th}$). Correlation of ($^{230}\text{Th}/^{238}\text{U}$) with ($^{234}\text{U}/^{238}\text{U}$) suggests that ^{238}U excess ($^{236}\text{Th}/^{238}\text{U} < 1$) samples reflect shallow crustal alteration in the presence of seawater or seawater-derived shallow crustal materials. Thus it would appear that unaltered Kolbeinsey MORB have universally high ^{230}Th excesses.

Trace element ratios and concentrations are generally depleted in Kolbeinsey MORB, reflecting a depleted mantle source beneath the ridge axis. Most Kolbeinsey basalts also have $\varepsilon_{\text{Sm–Nd}} > 1$, which favors a relatively young source, as previously suggested by Salters (1996).

The high ($^{234}\text{Th}/^{238}\text{U}$) and ($^{238}\text{Pa}/^{238}\text{U}$) values measured along most of the Kolbeinsey Ridge are consistent with dynamic melting of a slowly-upwelling, peridotitic mantle source. The thick Kolbeinsey crust and major element systematics indicate large degrees of melting and, therefore, a deep onset of melting. These observations are consistent with a first-order, global mantle temperature control on ^{238}U–^{230}Th isotope systematics, as suggested by Bourdon et al. (1996a). On the other hand, the low ($^{238}\text{Pa}/^{238}\text{U}$) ratio of a sample from the isotopically enriched Eggvin Bank suggests that eclogite may play a role in the source for that ridge segment, reflecting local variations in source lithologies.

ACKNOWLEDGMENTS

This work has benefited from thoughtful and insightful reviews by V. Salters, A. Pietruszka, and an anonymous reviewer, and from valuable conversations and interactions with a number of colleagues: Rob Sohn, Stan Hart, Peter Kelemen, Fred Frey, Glenn Gaetani, Marc Speigelman, Susan Humphris, and Chris Waters. This research was funded by NSF OCE-0422278 to K.W.W.S. and NSF OCE-1061037/1060434 to L.J.E. and K.W.W.S. J.B.T. acknowledges financial support from the French Institut National des Sciences de l’Univers.

APPENDIX A. SUPPLEMENTARY DATA

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.gca.2011.08.020.

REFERENCES

Melt generation beneath the slow-spreading Kolbeinsey Ridge

Associate editor: Richard J. Walker