Community Service with Web-Based Geographic Information Science and Technology (GIST)

Blended Pedagogies for the Twenty-First Century

Andy Anderson
Amherst College, Academic Technology

Jon Caris
Smith College, Spatial Analysis Lab

Scott Gilman
Smith College, Spatial Analysis Lab

Charlie Schweik
UMass, Environmental Conservation
Web GIST: A New Course at UMass

Student learning goals are to understand:

- how the World-Wide Web works;
- the nature of geographic information and how it is processed and visualized on the Web;
- the importance of open standards, software, and data;
- the value of teamwork;
- how to creatively apply their knowledge of GIST and Web programming to benefit a community organization.
A Five College Effort

Five College Blended-Learning Grant

- Charlie led first half:
 - OGC, QGIS, PostGIS, GeoServer
- Andy led second half:
 - HTML/CSS/SVG, JavaScript, REST, Bootstrap, Leaflet, Node
- Jon and Scott provided content, feedback, and student support.
Blended Pedagogies

The course implemented several non-traditional teaching methods:

- blended learning
- flipped (workshop) learning
- open learning
- team-based learning
- service learning
Blended Learning

Course materials covered foundational knowledge and:

- were online and organized in Moodle;
- were often visual and interactive;
- used examples from local geography;
- included localized exercises;
- provided short quizzes requiring **recall, understanding, and application**.
In an HTML document, markup elements provide

Select one:
- Meaning
- Visual styling
- Document Structure
- All of the above ✅

Moodle Quizzes

For an object like

```javascript
var someplace = {
  County: 'Hampshire',
  Organization: 1662,
  Area: 585,
  "Population 1910": 19431,
  "County Seat": 'Northampton'
};
```

the following method returns population density and could be assigned to similar objects.

Select one:
- a. function popDensity(someplace) { return someplace["Population 1910"] / someplace.Area }
- b. function popDensity() { return someplace["Population 1910"] / someplace.Area }
- c. function() { return this["Population 1910"] / this.Area } ✅ Correct!
- d. function() { return someplace["Population 1910"] / someplace.Area }
Flipped (Workshop) Learning

Class time was student-centered, with:

- review of exercise and quiz difficulties;
- Q&A and discussions about important concepts in the course materials;
- active learning with hands-on problem-solving tasks that encourage **analysis, evaluation, and creativity**;
- project work, eventually increasing to fill class time;
- shared successes as students found solutions to problems.
Open Learning

The course explicitly used:

- open educational resources to build content
- open-source software in its examples
- open data whenever possible
- open standards for GIS and Web technologies
- open components in student projects
- open to all Five College students with GIS skill
Open Educational Resources

The main course content was made available via GitBook, and built from many pieces:

- documentation available on-line
- openly-licensed material, some by others, some by us, repurposed with our examples
- brand-new material providing just enough background, sharable via a Creative Commons Attribution license
Chapter 7: Dynamic Data on the World-Wide Web

Lesson Goals

Students are knowledgeable composers of JavaScript, the programming language of the Web, and can create Web pages by manipulating the Document Object Model.

Lesson Outcomes

Students can:

- Program basic JavaScripts to process content
- Develop Web pages using JavaScript
- Manipulate the Document Object Model using the programming library jQuery

Introduction

Web pages are built from textual, graphic, and other content using the HyperText Markup Language (HTML) and Scalable Vector Graphics (SVG), and are styled using Cascading Style Sheets (CSS).
Open-Source Software: QGIS

The course introduced students to QGIS:

- a desktop application to process data
- similar to ArcMap
- focus on connecting to Internet servers
Open-Source Servers: OpenVZ

To provide servers for students, we set up an OpenVZ system:

- sits on top of an underlying Linux system
- provides multiple containers for lightweight subsystems:
 - one for the course and one for each student team
- each configured with enterprise software (an OIT first!):
 - Database: PostgreSQL
 - Web map server: GeoServer
 - Web page servers: Apache, Node
World-Wide Web Development

Students learned the basics of developing Web content:

- **HyperText Markup Language** (HTML) and **Cascading Style Sheets** (CSS), the languages of documents and *rasters*;
- **Scalable Vector Graphics** (SVG), the language of *vector features*;
- **JavaScript**, the programming language that builds documents — *and maps*;
Leaflet.js greatly simplifies the creation of Web maps:

- a lightweight Google Maps-style interface
- easily load data from servers, directly or as WMS or WFS
Team-Based Learning

23 students (14 F, 9 M) formed 7 teams based on interests, and:
- were 2 – 5 in size
- distributed different skills:
 - on 1–5 scale: GIS skill 3±0.7; other tech skill 2.4±0.7
- learned about team roles, project management, and gender dynamics:
 - NDGI = (F – M)/(F + M) > 0 for all teams but one = –1
Service Learning

Students created projects that:

- provided a useful service for a community organization or one of the Five Colleges;
- were developed in consultation with their representatives.
- For this first run of the course, we focused on “safe” projects, i.e. our campuses or very familiar groups.
Project: 5CollegeRide

Goal: help fellow students looking for a ride or willing to offer someone else a ride.
- used Leaflet routing engine;
- eventually an account system.
Project: Glacial Lake Hitchcock

Goal: provide an animated presentation of this prehistoric lake’s retreat, 16 Ky – 12 Ky BCE.

- extensive research into current knowledge of extent and locations of dams
- eventually a time slider, perhaps a 3D model
Project: Northampton Trails

Goal: provide an interactive map for the Friends of Northampton Trails and Greenways.

- eventually routing, mileage, elevation
Project: Smith College Dashboard

Goal: monitor campus usage of water, gas, and electricity.
- pulled data from existing monitoring system, *Building OS*
- colored buildings by usage
- eventually real-time data and display temporal patterns
Project: UMass ECo Forests

Goal: provide an interactive map of the forest properties maintained by UMass Department of Environmental Conservation.

- used Mapbox API (an extension of Leaflet)
- eventually add account system to access “sensitive” information
Project: UMass Twitter Chatter

Goal: Track the on and off-campus Twitter pulse for UMass Facilities and Planning.

- Used the Cartodb platform and its Twitter interface
- Eventually expand the keyword search and control the time-frame
Project: Corporate Toxics Database

Goal: an interactive map displaying toxic air pollution facilities, for UMass’ [Political Economy Research Institute](https://www.umass.edu/pe).

- Nominatim location search
- open-source database mapping framework
- eventually census info
Issues

- not all content was prepared in advance but JIT or delayed
- not all exercises and applications met our objectives
- some concepts didn’t immediately connect to maps
- many students were overwhelmed with learning new languages and learning to program for the first time
- some students shouldered more of the work than others
- not all projects reached a completed state
Future Possibilities

Course materials will hopefully be enhanced with:

- animations and additional interactive features;
- videos of technical procedures;
- videos of instructors and guest speakers;
- build projects using git or Github for sharing and version control.
Acknowledgements

● Teagle Foundation (blended learning grantor)
● Five Colleges, Inc.: Luke Phelan, Nate Therien, Criss Guy
● UMass IT Enterprise Services: Andrew DeSiervo, Lars Marshall
● Sponsors and supporters:
 ○ Michael Ash, UMass PERI
 ○ Sasha Stepanov, UMass Facilities and Campus Planning
 ○ Julie Brigham Grette, UMass Geosciences
 ○ Tekla Harms, Amherst College Geology
Many of these pedagogies aim to improve learning by reaching more of these cognitive objectives:

- remembering
- understanding
- applying
- analyzing
- evaluating
- creating
Open-Source Server: PostgreSQL

To make data available, students learned to use PostgreSQL + PostGIS:
- a spatial database
- remote administration with pgAdmin + QGIS
- learned to write SQL
Students also worked with GeoServer:

- provides a REST interface for the Web

 e.g.

 http://geoserver/ows?service=WFS& typeName=massachusetts:towns&outputFormat=application%2Fjson

 ○ tiled basemap imagery via WMS
 ○ feature data as GeoJSON via WFS
Open-Source Server: Node.js

A lightweight and efficient web server: Node.js

- Express.js framework
- JavaScript can be used:
 - to process forms
 - interact with Postgres
 - apply templates

```javascript
var express = require('express');
var path = require('path');
var favicon = require('serve-favicon');
var logger = require('morgan');
var cookieParser = require('cookie-parser');
var bodyParser = require('body-parser');
var routes = require('./routes/index');
var users = require('./routes/users');
var app = express();
app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'ejs');
app.use(logger('dev'));
app.use(bodyParser.json());
app.use(bodyParser.urlencoded({ extended: false }));
app.use(cookieParser());
app.use(express.static(path.join(__dirname, 'public')));
```
World-Wide Web Libraries

Web development is greatly enhanced by the use of libraries that hide cross-browser complexities:

- **jQuery.js** to facilitate document object management and server interaction

 `$('map').click(function)`

- **Bootstrap.js** to build “responsive” Web pages that work well on mobile devices

- **Leaflet.js** to build Web maps