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Abstract

When a Legendrian submanifold admits a generating family (GF), Sabloff and Traynor

proved that there is an isomorphism between the GF-cohomology groups of the Leg-

endrian and the cohomology groups of any GF-compatible embedded Lagrangian

filling. In this paper, we show that a similar isomorphism exists for immersed GF-

compatible Lagrangian fillings; this imposes restrictions on the minimum number

and types of double points for any such filling. We also show that from an immersed

GF-cobordisms between Legendrian submanifolds, there exists a long exact sequence

relating the GF-cohomology groups of the two Legendrians and cohomology groups

associated to the immersed Lagrangian. In addition, we give some constructions of

immersed GF-compatible fillings.
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Chapter 1

Introduction

Euclidean space R2n becomes a symplectic manifold when equipped with the sym-

plectic form given by ω0 = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn. Dimension n submanifolds of

(R2n, ω0) on which the symplectic form vanishes are known as Lagrangian submani-

folds. Lagrangian submanifolds are extremely important in symplectic geometry. In

fact, Alan Weinstein’s famous “symplectic creed” asserts that “everything is a La-

grangian submanifold,” meaning that important objects in symplectic geometry can

be expressed in terms of Lagrangians [29].

The existence of a Lagrangian embedding of a closed manifold Σn into (R2n, ω0)

forces strong topological restrictions on Σ. For example, the torus is the only ori-

entable surface that admits a Lagrangian embedding into (R4, ω0). Imposing an

additional exactness condition, a celebrated result of Gromov states that there is no

exact Lagrangian embedding of a closed manifold into (R2n, ω0). On the other hand,

Lagrangian immersions are more flexible: Gromov-Lee’s h-principle for Lagrangian
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(a)
(b)

Figure 1: (a) An embedded genus 1 Lagrangian filling of a Legendrian trefoil. (b) An
embedded genus 2 Lagrangian cobordism between two Legendrian unknots.

immersions states that Σ admits a Lagrangian immersion into (R2n, ω0) if and only if

its complexified tangent bundle is trivial (See, for example [20], [24]). For example,

this implies that every closed orientable 2-manifold admits a Lagrangian immersion

into (R4, ω0). Recently, the minimal number of double points of a Lagrangian immer-

sion of a closed manifold has been of interest and explored in [9], [10], [11], [12], [27].

The purpose of this dissertation is to understand restrictions on the double points of

an immersed orientable Lagrangian with an embedded Legendrian boundary.

Motivated by Relative Symplectic Field Theory [16], there has been a great deal

of interest in Lagrangian fillings of a Legendrian submanifold and, more generally, in

Lagrangian cobordisms between two Legendrian submanifolds. (For schematic pic-
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tures of these objects, see Figure 1.) Over the past ten years, significant progress has

been made in understanding embedded Lagrangian fillings. In 2010, Chantraine [5]

gave obstructions to the existence of a Lagrangian filling in terms of the Legendrian’s

classical invariants - the rotation and Thurston-Bennequin numbers. Further obstruc-

tions can be found in nonclassical Legendrian cohomological invariants.

In particular, given a Lagrangian filling of a Legendrian, there is an isomorphism,

commonly referred to as the Seidel Isomorphism, between the topologically invariant

singular relative cohomology groups of the filling and the Legendrian invariant coho-

mology groups of the boundary. More precisely, if f+ is a linear-at-infinity generating

family for Λ+, and (Λ+, f+) admits an embedded GF-compatible filling L (or if ε+ is

an of augmentation Λ+ induced by a filling L), then

GHk(Λ+, f+) ∼= Hk+1(L,Λ+) (Sabloff-Traynor [27]), (1)

LCHk+1(Λ+, ε+) ∼= Hk+1(L,Λ+) (Ekholm [8], Dimitroglou Rizell [7]). (2)

In (1), GHk denotes the “relative” generating family cohomology groups of (Λ+, f+),

defined in Definition 5 below.

Remark 1. Observe that by Poincaré duality, the isomorphism in (1) can be rewritten

as GHk(Λ+, f+) ∼= Hn−(k+1)(L). In particular, if n = 2, GHk(Λ+, f+) ∼= H1−k(L).

Furthermore, Sabloff and Traynor provide an isomorphism involving the “total”

generating family cohomology groups,

G̃H
k
(Λ+, f+) ∼= Hk+1(L). (3)
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The total and relative generating family cohomologies are related via the following

long exact sequence:

· · · → Hk(Λ)→ GHk(Λ+, f+)→ G̃H
k
(Λ+, f+)→ · · · (4)

Defining a Poincaré polynomial with coefficients taken as either the dimensions of

the Legendrian contact homology groups or the relative generating family cohomology,

the isomorphism in Equation 1 has a nice interpretation for Legendrian knots and

embedded, orientable Lagrangian surface fillings. Due to Sabloff’s duality principle

[26], the Poincaré polynomial for a Legendrian knot must be of the form

Γf+(t) = cnt
−n + ...+ c1t

−1 + c0t
−0 + t+ c0t

0 + c1t
1 + ...+ cnt

n,

where the coefficients ci ∈ Z+ ∪ {0}. We will refer to any polynomial satisfying this

duality principle as a polynomial satisfying one-dimensional duality. There is

also a duality for higher dimensional Legendrians which is described in [4]. Figure

2 lists two Legendrian m(52) knots with the same classical invariants but different

Poincaré polynomials. Applying (1) and Lefschetz duality, we can conclude the fol-

lowing:

• dimGH0(Λ+, f+) = dimH1(L,Λ+) = dimH1(L) = 2g,

where g is the genus of L;

• dimGH1(Λ+, f+) = dimH2(L,Λ+) = dimH0(L) = 1; and

• GHk(Λ+, f+) vanishes elsewhere.
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Thus, in order for a Legendrian knot to admit an embedded GF-compatible filling of

genus g, it must have polynomial Γf+(t) = t+ 2g.

A main goal of this dissertation is to extend the isomorphism in (1) and the corre-

sponding polynomial obstruction for embedded fillings to immersed fillings. Although

the existence of an embedded Lagrangian filling is a rather rare trait among Legen-

drian knots, this is not the case for immersed Lagrangians. In fact, any Legendrian

knot with rotation number 0 has an immersed exact Lagrangian filling. (See, for ex-

ample, [5].) Furthermore, Bourgeois, Sabloff and Traynor [4] show that a Legendrian

with a generating family will admit an immered GF-compatible filling. In this paper,

we explore what geometric restrictions exist on such fillings, including the minimum

number of double points and their indices.

Using methods similar to those in [27], we produce an isomorphism between the

generating family cohomology groups of the Legendrian boundary and the homology

groups of a space associated to the immersed Lagrangian. To formulate this state-

ment, let Σ denote the n-dimensional domain of the immersion and define graded

groups C(Σ, {xi}) with

• dimHk (Σ) generators of index k − 1 for each k ≤ n, and

• xi generators of index i, and xi generators of index −i.

The following theorem states that if there exists a Lagrangian immersion of Σ with

xi double points of index i, then a boundary map ∂ exists, producing a chain com-

plex (C(Σ, {xi}), ∂), whose homology groups are isomorphic to the generating family

cohomology groups.
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Theorem 1. Suppose (Λ+, f+) admits an immersed GF-compatible filling L which is

the immersed image of Σ and has xi immersed double points of index i. If C(Σ, {xi})

are the chain groups defined above, then there exists a boundary map ∂ such that

GHk(Λ+, f+) ∼= Hn−k (C(Σ, {xi}), ∂) .

Remark 2. If L has no double points, the isomorphism in Theorem 1 is identical

to that in (1). In particular, if n = 2, then GHk(Λ+, f+) ∼= H2−k (C(Σ, {xi}), ∂) ∼=

H1−k(L).

In Chapter 6, we will prove the existence of the chain complex C(Σ, {xi}) by

defining a Morse function ∆ whose critical points correspond to double points of L.

This will determine the index of the double points, and the homology groups described

above will be equated with the relative Morse cohomology of pairs of sublevel sets of

∆. This theorem has a useful interpretation in terms of the Poincaré polynomial for

Legendrian knots.

Corollary 1. Given a Legendrian knot Λ+ with a linear-at-infinity generating family

f+ and Poincaré polynomial

Γf+(t) = cmt
−m + ...+ c1t

−1 + c0t
−0 + t+ c0t

0 + c1t
1 + ...+ cmt

m, (5)

an immersed GF-compatible Lagrangian filling (L, F ) of (Λ+, f+) of genus g satisfies

the following:

(i) L has at least |g − c0|+ c1 + c2 + · · ·+ cm double points.
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(ii) L has at least ck immersion points of index k, for k ≥ 1.

(iii) If g ≤ c0, then L has at least c0 − g immersion points of index 0.

(iv) If g > c0, then L has at least c1 + g − c0 immersion points of index 1.

Furthermore, for a specified Legendrian knot and generating family, the genus and

number of immersed double points for all possible immersed GF-compatible fillings

satisfy a modulo 2 relationship, which is described in the next theorem. This justifies

the lattice configurations in Figures 3 and 4 depicting the possible immersed GF-

compatible fillings of the given Legendrian knots.

Theorem 2. Given a Legendrian knot Λ+ with a linear-at-infinity generating family

f+ and Poincaré polynomial

Γf+(t) = cmt
−m + ...+ c1t

−1 + c0t
−0 + t+ c0t

0 + c1t
1 + ...+ cmt

m,

any GF-compatible filling of (Λ+, f+) of genus g with p immersed double points sat-

isfies the following:

p+ g =
m∑
k=0

ck mod 2.

Remark 3. Figures 3 and 4 picture the possible immersed fillings of the Legen-

drian m(52) knots in Figure 2 organized by their genus and number of double points.

Theorem 2 implies that these possibilities form a lattice.

Example 1. Corollary 1 implies that any immersed GF-compatible disk filling of

the Legendrian m(52) knot in Figure 2a has at least one double point of index 2, and
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(a) Γ(t) = t−2 + t + t2 (b) Γ(t) = t + 2

Figure 2: Two Legendrian m(52) knots with different Poincaré polynomials.

any immersed filling with genus g has an additional g double points of index 1. The

possible immersed fillings of this knot are organized in the lattice in Figure 3.

Example 2. The Legendrian m(52) knot in Figure 2b has an embedded filling of

genus 1. Corollary 1 implies that any immersed GF-compatible disk filling has at

least 1 double point. Any filling with genus g ≥ 2 must have an additional g double

points. The non-obstructed fillings live above the “check mark” in Figure 4.

Extending Theorem 1 to GF-compatible cobordisms between two Legendrians,

we obtain a long exact sequence relating the generating family coholology groups of

(Λ+, f+) and (Λ−, f−) with homolgy groups associated to the chain complex (C(Σ, {xi}), ∂).

Theorem 3. Suppose there exists an end-stretched GF-compatible cobordism (L, F )

from (Λ−, f−) to (Λ+, f+), where L is the immersed image of Σ and has xi double

points of index i for each i ∈ {0, · · · ,m}. Then there exists a boundary map ∂ for

C(Σ, {xi}) such that the following sequence is exact:

· · · → GHk(Λ+, f+)→ G̃H
k
(Λ−, f−)⊕Hn−k (C(Σ, {xi}), ∂)→ G̃H

k
(Λ−, f−)→ · · · .
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Double Points

...

7

6

5

4

3

2

1

0

· · ·76543210
Genus

Figure 3: Possible (blue) immersed GF-compatible fillings of a Legendrian m(52) knot
with Γ(t) = t−2 + t+ t2.

Double Points

...

7

6

5

4

3

2

1

0

· · ·76543210
Genus

Figure 4: Possible (blue) immersed GF-compatible fillings of a Legendrian m(52) knot
with Γ(t) = t+ 2.
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Example 3. Let Λ− be the m(61) in Figure 5a and Λ+ be the m(101) knot in

Figure 5b. Using the long exact sequence in (4), one can compute that for any

generating family f− of Λ−, dim G̃H
3
(Λ−, f−) = 1, and for any generating family

f+ of Λ+, dimGH3(Λ+, f+) = 3. Exactness of the sequence in Theorem 3 implies

that H−3 (C(Σ, {xi})) ≥ 2. This means that a genus 0 immersed end-stretched GF-

compatible cobordism from (Λ−, f−) to (Λ+, f+) must have at least two double points

of index 3. We will revisit this example in Chapters 6 and 7.

(a) (b)

Figure 5: (a) A Legendrian m(61) with polynomial t−3 + t + t3. (b) A Legendrian
m(101) with polynomial 3t−3 + t+ 3t3.

With a good set of obstructions in hand, we conclude by asking which immersed

GF-compatible fillings are realizable. We focus on answering this question for Leg-

endrian knots. To do so, we construct a series of combinatorial moves that can be

performed on a front diagram with a graded normal ruling. Rulings encode homolog-

ical information about the generating family of the Legendrian and will be discussed

more in Chapter 7. Two Legendrians whose front diagrams differ by these combinato-

rial moves admit an immersed GF-compatible Lagrangian cobordism. In particular,
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the clasping move (C) in Figure 6 will produce a Lagrangian with one immersed dou-

ble point. Under certain conditions on the ruling of the Legendrian, the unclasping

move (U) can be performed and will also produce a Lagrangian with one immersed

double point.

U

C

Figure 6: The (un)clasping move can be performed on a front diagram and, under
certain conditions on the rulings, will result in a GF-compatible cobordism. These
conditions will be outlined in Chapter 7.

Given a polynomial satisfying one-dimensional duality, namely Γ(t) = cmt
−m +

... + c1t
−1 + c0t

−0 + t + c0t
0 + c1t

1 + ... + cmt
m, we consider a minimal immersed

GF-compatible disk filling to be a filling with genus 0 and ck immersion points of

index k for all k ∈ {0, ..., n}. Based on a construction of Melvin and Shrestha in [25],

we obtain a partial converse to Corollary 1. Starting with a polynomial, we show

there exists a Legendrian knot with a generating family having that polynomial and

such an immersed minimal disk filling.

Theorem 4. Given a polynomial Γ satisfying one-dimensional duality, there exists a

Legendrian knot Λ with generating family f such that

• Γf = Γ, and

• (Λ, f) has a minimal immersed GF-compatible disk filling.
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Furthermore, from existing fillings, we construct a method of creating fillings with

the same genus and additional pairs of immersion points. We can also create new

fillings with higher genus at the expense of additional immersion points.

Theorem 5. For any GF-compatible immersed filling (L, F ) of (Λ, f) of genus g and

any k ∈ Z+ ∪ {0},

• There exists another immersed GF-compatible filling (L′, F ′) of (Λ, f) that has

the same genus and with two additional immersion points, one of index k and

one of index k + 1;

• There exists another GF-compatible immersed filling (L′, F ′) of (Λ, f) that has

genus g + 1 and one additional immersion point of index 1.

We organize the data associated to a given Legendrian consisting of the obstructed,

non-obstructed, and realized fillings, in an “existence lattice” as in Figure 7. Each

lattice point represents an immersed GF-compatible filling of the Legendrian with a

specified genus and number of double points. Theorems 1 and 4 imply that for a

general polynomial Γ satisfying one-dimensional duality, there exists a Legendrian Λ

with generating family f such that Γf = Γ and such that there exists a “check mark”

in the existence lattice, above which fillings of (Λ, f) are not obstructed. Theorem

4 implies that the minimal immersed GF-compatible disk filling always exists (i.e.

the lowest lattice point in the green region.) The first bullet in Theorem 5 implies

that the lattice points along the diagonal extending from the minimal immersed disk

filling always exists, and the second bullet implies that the lattice points above this

diagonal always exist.
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Double Points

...

7

6

5

4

3

2

1

0

· · ·76543210
Genus

Figure 7: For a general polynomial Γ satisfying one-dimensional duality, there exists
a Legendrian Λ with generating family f such that Γf = Γ and (Λ, f) has a “check
mark” (blue and green) of non-obstructed fillings. Theorems 4 and 5 imply that the
lattice points in the green region always exist, perhaps with a different generating
family for Λ.
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Double Points

...

7

6

5

4

3

2

1

0

· · ·76543210
Genus

Figure 8: This lattice represents the immersed fillings that exist (green) and do
not exist (red) for the Legendrian Λ, which is the m(52) shown in Figure 2a with
polynomial t−2 + t+ t2. Figure 32 in Chapter 7 shows a series of moves which proves
that there exists a generating family f for Λ such that (Λ, f) has a minimal immersed
disk fiiling. Theorem 5 proves the existence of the remaining lattice points.
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Chapter 2

Legendrians and Lagrangians

2.1 Contact Manifolds and Legendrians

A contact (2n+1)-manifold is an odd dimensional manifold X together with

a 1-form ξ that induces a completely non-integrable hyperplane field. The non-

integrability condition is defined as follows: if ξ is locally defined as kerα then

α ∧ (dα)n 6= 0. Geometrically, this means that there cannot exist an m-manifold,

for m ≥ n+ 1, that is everywhere tangent to the planes of a contact manifold.

The standard contact structure ξ0 on R2n+1 is given by kerα where α =

dz−Σyidxi. In R3, the standard contact structure (R3, ξ0) is the plane field spanned by

the vectors ∂y and ∂x+y∂z at each point (x, y, z). See Figure 9. The standard contact

structure can more generally be placed on the 1-jet space of any smooth manifold M .

Recall that the 1-jet space is given by J1M = T ∗(M)×R. If (q1, . . . , qn) are the local

coordinates for M and (q1, p1, . . . , qn, pn) are the local coordinates for T ∗M , then the
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standard contact form on J1M is given by kerα where α = dz − Σpidqi.

An important submanifold of a contact manifold that will be of interest for this

dissertation is a Legendrian submanifold. Given a 2n+1-dimensional contact manifold

(J1M, ξ), an n-dimensional submanifold Λ ⊂ M is Legendrian if its tangent space

satisfies TpΛ ⊂ ξ for all p ∈ Λ.

y

z

x

Figure 9: Standard Contact Structure (R3, ξ0)

From a contact manifold M , we define its Reeb vector field to be the vector

field Rα : M → TM such that

dα(Rα, ·) = 0, and α(Rα) = 1.

For the standard contact structure on J1R, this is just given by ∂z. A Reeb chord

of a Legendrian is a trajectory of the Reeb vector field that intersects the Legendrian

at two distinct points. For a Legendrian knot in the standard contact structure, these
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are vertical trajectories that hit the Legendrian at both ends (points with the same

x-coordinate and slope in the xz-projection).

Figure 10: The front projection of a Legendrian trefoil knot with three of its Reeb
chords shown.

2.2 Legendrian Knots and Invariant Groups

As with smooth knots, we generally work with projections of Legendrian knots. We

call the xz-projection of the knot the front projection and the xy-projection the

Lagrangian projection. Since the contact planes are never vertical, a Legendrian

knot can have no vertical tangencies in its front projection. Instead, it has “cusps”.

See Figure 10. Notice that this diagram does not specify which strand is the over-

strand in each crossing. Since we always view the y-axis as pointing into the page,

and the contact planes increase slope as they move in the positive y direction, the

strand with the lesser slope will always be the overstrand.

There are several invariants that are useful in classifying Legendrian knots. Since

every Legendrian knot is also a smooth knot, the underlying smooth knot type is an



2.2. Legendrian Knots and Invariant Groups 18

invariant of Legendrian knots. Two other important invariants, known as the classi-

cal invariants, are the Thurston-Bennequin and rotation numbers. For Legendrian

knots, these invariants can be calculated easily from their front projections.

The Thurston-Bennequin number, tb(Λ), is the linking number between Λ

and a push-off Λ′ of Λ in the positive z direction and can be calculated from the front

projection as follows:

tb(Λ) = w(Λ)− 1

2
C

where the writhe w(Λ) is the number of positive crossings minus the number of

negative crossings, and C is the number of cusps. The rotation number r(Λ) is

defined for an oriented Legendrian knot and is given by:

r(Λ) =
1

2
(D − U)

where D is the number of cusps oriented downward and U is the number of cusps

oriented upwards. Figure 11 shows some calculations of tb and r.

These classical invariants can be used to distinguish between Legendrian knots

that would otherwise be isotopic as smooth knots. For example, each point in the

“mountain range” in Figure 11 represents a distinct Legendrian unknot with a spec-

ified set of classical invariants.
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0 1 2 3-1-2-3

rot

-1

-2

-3

-4

tb

-4-5

-5

. . .

. . .. . . 4 5

Figure 11: This mountain range classifies all Legendrian unknots based on their
rotation and Thurston Bennequin numbers.

2.3 Symplectic Manifolds and Lagrangians

For a smooth 2n-dimensional manifold B, recall that a differential p-form ω on B

is closed if dω = 0. We say that ω is non-degenerate if for all p ∈ B and for

all non-zero ~v ∈ TpB, there exists ~w ∈ TpB such that ω(~v, ~w) 6= 0. A symplectic

manifold is a pair (B,ω) where ω is a closed, nondegenerate, differential 2-form. A

symplectic manifold is exact if ω = dλ for some λ. We call λ a primitive of ω.

There are two symplectic spaces we will work in for the purposes of this paper.

The standard symplectic form on R2n is given by

ω = dx1 ∧ dy1 + ...+ dxn ∧ dyn
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This form is exact with preferred primitive

λ = x1dy1 + . . .+ xndyn.

The standard symplectic form can be more generally placed on the cotangent bundle

of any smooth manifold B. If (q1, p1, . . . , qn, pn) are the local coordinates for T ∗B,

then the standard symplectic form is given by dp1 ∧ dq1 + . . .+ dpn ∧ dqn.

From a contact manifold (J1M, kerα), we can obtain the symplectic manifold,

(R× J1M, esα). We call this the symplectization of a contact manifold. These

two spaces are equivalent via the following symplectomorphism:

θ : R× J1M → T ∗(R+ ×M)

(s, x, y, z) 7→ (es, x, z, esy).

A submanifold L of a symplectic manifold (B2n, ω) is isotropic if ω|L = 0, that

is, if for all p ∈ L and for all ~v, ~w ∈ TpL, ω(~v, ~w) = 0. If an isotropic submanifold is

also n-dimensional, we call it a Lagrangian. A Lagrangian submanifold L is exact

if λ|L = df , for some function f .

2.4 Lagrangian Cobordisms

Lagrangians are the “even-dimensional analog” of Legendrians. There is an interplay

between Legendrians and Lagrangians through embedded cobordism in that an em-

bedded Lagrangian submanifold can have Legendrians as boundary components. To
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define this more rigorously, we first define the cylinder over a Legendrian Λ to be

the Lagrangian submanifold Λ × R ⊂ J1M × R. A Lagrangian cobordism, L, from

a Legendrian Λ− to a Legendrian Λ+ is a Lagrangian submanifold that is cylindrical

over Λ− and Λ+ at its ends. We can also consider immersed Lagrangian cobordisms

between embedded Lagrangian submanifolds, as in the following.

Definition 1. An immersed Lagrangian cobordism L ⊂ R × J1M from Λ− to

Λ+ is an immersed Lagrangian submanifold such that for some s−, s+ ∈ R+, we have

• L ∩ ({t} × J1M) = {t} × Λ− whenever t < s− and

• L ∩ ({t} × J1M) = {t} × Λ+ whenever t > s+.

If L is exact, we say L is an exact Lagrangian cobordism. If Λ− = ∅, we say L is

a filling.

In the next section, we describe a method of defining Legendrians and Lagrangians

in terms of generating families. In particular, we explain how a Lagrangian cobordism

can be given a generating family that is “compatible” with its Legendrian ends.
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(a) (b)

Λ+

Λ−

Λ−

Λ+

Figure 12: (a) There exists an exact Lagrangian cobordism from Λ− to Λ+. (b) There
does not exist an exact Lagrangian cobordism from Λ+ to Λ−.
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Chapter 3

Generating Families

3.1 Generating Families for Legendrians and La-

grangians

While many techniques have been used to study Legendrian submanifolds, we will be

primarily working with generating families, a way of describing Legendrians through

funtions. Given a smooth manifold M and a function f : M → R, its 1-jet,

j1f = {(x,Df(x), f(x))}

defines a Legendrian in the 1-jet space, J1M = T ∗(M)×R, where Df denotes all the

Jacobian of all partial derivatives. For Legendrians that cannot be described in this

way, we extend to a generating family of functions.

Suppose f : M × RN → R is a smooth function and that 0 is a regular value of
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∂f
∂η

. We will call the submanifold Σf =
(
∂f
∂η

)−1

(0) the fiber critical set and define

on it a map

jf : Σf → J1M, where

jf (x, η) =

(
x,
∂f

∂x
(x, η), f(x, η)

)
.

The image of jf is a potentially immersed Legendrian submanifold. We say that a

Legendrian, Λ, is generated by f , or f is the generating family for Λ, if Λ = jf (Σf ).

Whereas Legendrians can arise from the 1-jet of a function, F : B → R, La-

grangians can arise from the graph of its derivative,

ΓDF = {(x,DF (x))} ⊂ T ∗B.

We can similarly extend this idea to define generating families for Lagrangians. For

a smooth map, F : B × RN → R such that 0 is a regular value of ∂F
∂η

, we define

∂F : ΣF → T ∗B,

∂F (x, η) =

(
x,
∂F

∂x
(x, η)

)
.

The image of ∂F is a (potentially immersed) Lagrangian submanifold. We say that

a Lagrangian, L, is generated by F , or F is the generating family for L, if L is

equal to the image of ∂F . We always assume F is generic so that immersed points

are always double points.

For the remainder of this paper, we will be working with Legendrians and La-
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grangians that have generating families. Thus, our Legendrians will be submanifolds

of the 1-jet of a smooth manifold, J1M and Lagendrians will be submanifolds of the

cotangent bundle of a smooth manifold, T ∗B. As mentioned above, we would like

to be able to use Morse-theoretic techniques on these functions. Since J1M is non-

compact, it will often be necessary to impose the following linearity condition on our

generating families. A function f : M × RN → R is linear-at-infinity if it can be

written as the sum

f(x, η) = fc(x, η) + A(η)

of a compactly supported function fc and a non-zero linear function A.

Figure 13: A generating family for a Legendrian trefoil.
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3.2 GF-compatible Lagrangian Cobordisms

In order to describe a Lagrangian cobordism with generating families, we will apply

the syplectomorphism:

θ : R× J1M → T ∗ (R+ ×M)

(s, x, y, z) 7→ (es, x, z, esy)

and consider L = θ(L) to be the immersed Lagrangian cobordism living in T ∗(R+ ×

M). Given Legendrians Λ± generated by f± : Mm×RN → R, we would like to define

a Lagrangian cobordism L that has a generating family “compatible” with f±.

Definition 2. Given generating families f± : M × RN → R of Legendrians Λ±, we

say

F : (R+ ×M)× RN → R

extends f± if F generates a (potentially immersed) Lagrangian L and for some values

t− < t+, we have

F (t, x, η) =


tf−(x, η), t ≤ t−,

tf+(x, η), t ≥ t+.

To aid in future calculations, we will require that F , f−, and f+ satisfy the fol-

lowing conditions:

Definition 3. A function F : (R+ ×M)× RN → R is slicewise-linear-at-infinity

if for all t ∈ R+, there exists a compactly supported function F c
t : M ×RN → R and

a non-zero linear function At : RN → R so that F (t, x, η) = F c
t (x, η) +At(η). A triple
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of functions (F, f−, f+) satisfying the GF-compatibility condition is called tame if F

is slicewise-linear-at-infinity and f± are linear-at-infinity.

Given that F , f−, and f+ satisfy these tameness conditions, the lemma below

follows from Definition 2.

Lemma 1. If F extends f±, then F generates a (potentially immersed) exact La-

grangian cobordism from Λ− to Λ+.

Definition 4. A cobordism of the type described in Lemma 1 is called an (im-

mersed) GF-compatible cobordism. If Λ− = ∅, we call it an (immersed) GF-

compatible filling.

Remark 4. All GF-compatible cobordisms are necessarily exact.

3.3 Generating Family Cohomology

For Legendrians with generating families, we can define a cohomology group that

captures information about its Reeb chords. Given a contact form α, recall that

the Reeb vector field R satisfies R ∈ ker dα, α(R) = 1, and a Reeb chord is an

integral curve of R with positive length and with both endpoints on the Lagrangian.

To each generating family, we shall define an associated difference function, δ :

M × RN × RN → R given by

δ(x, η, η̃) = f(t, x, η̃)− f(t, x, η). (6)
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The critical points of δ with non-zero critical value are in 2-1-correspondence with

the Reeb chords of Λ.

Proposition 6 (Proposition 3.1 in [27]). For each Reeb chord γ with length l(γ),

there are two critical points (x, η, η̃) and (x, η̃, η) of δ with critical values ±l(γ). All

other critical points of δ lie in the non-degenerate critical submanifold,

{(x, η, η) : (x, η) ∈ Σf}

and have critical value 0.

Because the critical points and values of this difference function carry strong

geometric meaning, it is natural to apply Morse theoretic techniques to sublevel sets

of δ,

δa = {(x, η, η̃) : δ(x, η, η̃) ≤ a} .

Let l denote the smallest Reeb height of Λ, and let l denote the largest. We may

then define the following cohomology groups of a Legendrian with generating family,

(Λ, f).

Definition 5. Let positive constants ω and ε be chosen so that

0 < ε < l < l < ω. (7)

The relative generating family cohomology of f is given by

GHk(f) = Hk+N+1(δω, δε).
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The total generating family cohomology of f is given by

G̃H
k
(f) = Hk+N+1(δω, δ−ε).

Remark 5. (a) Here, we take H∗(δω, δε) to be the dual to the singular homology

of the pair of sublevel sets with coefficients are taken over a field.

(b) Generating family homology groups can be defined using an analogous defini-

tion.

(c) The degree shift of N is chosen to account for stabilization in the generating

family by a quadratic and the degree shift of +1 is chosen so that the generating

family homology groups agree with the linearized contact homology groups.

It has been shown that for a linear-at-infinity generating family, GHk(f) does not

depend on choice of ω and ε (see, for example [27]). By Poposition 6, ω and ε are

chosen such that all positive critical values of δ lie in [ε, ω]. For any other ω′ and ε′

satisfying (7), a Morse-theoretic argument can be used to show that the pair (δω, δε)

is a deformation retract of
(
δω
′
, δε
′)

.

It should also be noted that these cohomology groups are associated to a particular

choice of generating family for the Legendrian. The generating family cohomology

groups of equivalent generating families will remain equal. However, if the Legen-

drian is redefined by a non-equivalent generating family, the cohomology groups may

change. We get an invariant by taking the set of all generating family cohomol-

ogy groups taken over all generating families of a Legendrian. That is, we have the

following:
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Proposition 7. (Traynor [28]) For a Legendrian Λ ∈ J1M , the set

{
GHk(f) : f generates Λ

}
is invariant under Legendrian isotopy.

Consequently, we can define the following polynomial invariant.

Definition 6. For a Legendrian Λ ∈ J1M , the set

{
Γf (t) =

∑
k

dim(GHk(f))tk : f generates Λ

}

is invariant under Legendrian isotopy. Each Γf (t) is a Poincaré polynomial of Λ.
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Chapter 4

Wrapped Generating Family

Cohomology

With the notion of a GF-compatible Lagrangian cobordism between Legendrian sub-

manifolds in mind, we seek a homology theory that detects information both about

the topology of the domain of the Lagrangian immersion, the double points in the

image, and the Reeb chords of the Legendrian ends. As described in [27], we invoke

the notion of wrapped Floer homology (see, for example, [1], [2], and [19]) by building

a chain complex generated by intersections of the Lagrangian with its image under

an appropriately defined Hamiltonian shift.

4.1 Pre-Sheared Difference Function

Before defining the Hamiltonian function, let us first analyze the difference function

associated to a generating family F for a Lagrangian L ⊂ T ∗(R+ ×M). We will call
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∆0 : R+ ×M × RN × RN → R the difference function of F and define it by

∆0(t, x, η, η̃) = F (t, x, η̃)− F (t, x, η). (8)

As with δ, the critical points and values of ∆0 capture geometric information. When

t ∈ [t−, t+], ∆0 has an embedded, non-degenerate critical submanifold C with critical

value 0, as well as pairs of critical points of opposite critical value for each immersed

double points of the Lagrangian:

Theorem 8. The set of critical points of ∆0 with t ∈ [t−, t+] is equal to the set D∪C,

where

D = {(t, x, η, η̃) : (t, x, η) 6= (t, x, η̃) ∈ ΣF and ∂F (t, x, η) = ∂F (t, x, η̃)} ,

and

C = {(t, x, η, η) : (t, x, η) ∈ ΣF and t ∈ [t−, t+]} .

The non-degenerate critical submanifold, C has critical value 0, and is diffeomorphic

to the fiber critical set, ΣF . For each immersed double point in L, there is a pair of

critical points in D whose critical values are negatives of one another. This value is

equal to
∫
γ
λ where γ = ∂F ◦ h is a closed curve on L and h is a path from (t, x, η) to

(t, x, η̃).

Remark 6. Points (t, x, η, η̃) and (t, x, η̃, η) of D correspond to the same immersed

double point of L.

Proof. For any t ∈ [t−, t+], the vanishing of all partial derivatives of a critical point



4.1. Pre-Sheared Difference Function 33

(t, x, η, η̃) of ∆0 imply the following:

0 = −∂F
∂η

(t, x, η) =
∂F

∂η̃
(t, x, η̃), (9)

and

0 =
∂F

∂t
(t, x, η̃)− ∂F

∂t
(t, x, η) =

∂F

∂x
(t, x, η̃)− ∂F

∂x
(t, x, η). (10)

Equation (9) implies that (t, x, η), (t, x, η̃) ∈ ΣF , and Equation (10) implies that

∂F (t, x, η) = ∂F (t, x, η̃). If η̃ = η, then (t, x, η, η̃) is an element of C, and if η̃ 6= η, then

(t, x, η, η̃) is an element of D.

It remains to compute the critical values. If (t, x, η, η) is a point of C, then its

critical value is

∆0(t, x, η, η) = F (t, x, η)− F (t, x, η) = 0.

The calculation of the critical value for a point in D is detailed in Lemma 2 below

and will complete the proof.

Lemma 2. If (t, x, η, η̃) ∈ D is a critical point of ∆, then the critical value,

∆(t, x, η, η̃) =

∫
γ

λ,

where γ = ∂F ◦ h is a closed curve on L and h is a path from (t, x, η) to (t, x, η̃).

Proof. Fix a path h : [0, 1]→ ΣF from (t, x, η̃) to (t, x, η). Then

γ = ∂F ◦ h : [0, 1]→ T ∗(R+ ×M)
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is a closed loop on L at ∂F (t, x, η̃) = ∂F (t, x, η). We then have:

∫
γ[0,1]

λ =

∫
∂F ◦h[0,1]

λ =

∫
h[0,1]

∂∗Fλ. (11)

We shall show that ∂∗Fλ = dF̄ , where F̄ : ΣF → R, is the restriction of F to the fiber

critical set, ΣF .

Take (q1, q2, q3, p1, p2, p3) to be coordinates of T ∗((R+×M)×RN) and (q1, q2, p1, p2)

to be the coordinates for T ∗(R+ ×M). Then the primitive of the symplectic form ω̄

associated to T ∗((R+ ×M)× RN) is

λ̄ = p1dq1 + p2dq2 + p3dq3,

and the primitive of the symplectic form ω associated to T ∗(R+ ×M) is

λ = p1dq1 + p2dq2.

With this in mind, we define the following maps:

∂̄ : (R+ ×M)× RN → T ∗((R+ ×M)× RN)

(t, x, η) 7→
(
t, x, η,

∂F

∂t
,
∂F

∂x
,
∂F

∂η

)
,

and

∂ : ΣF → T ∗((R+ ×M)× RN) ∩ {p3 = 0}

(t, x, η) 7→
(
t, x, η,

∂F

∂t
,
∂F

∂x
, 0

)
.
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Letting A = T ∗((R+ ×M)× RN) ∩ {p3 = 0}, we see that

A⊥ = {v : ω(v, w) = 0,∀w ∈ T (A)} = q3,

and thus, we can define

π : T ∗((R+ ×M)× RN) ∩ {p3 = 0} → T ∗(R+ ×M)

(q1, q2, q3, p1, p2, 0) 7→ (q1, q2, p1, p2)

to be the characteristic foliation along q3. Letting i : A ↪→ T ∗((R+ ×M)× RN) and

ī : ΣF ↪→ (R+ ×M) × RN be the inclusion maps, we get the following commutative

diagram:

R

(R+ ×M)× RN T ∗((R+ ×M)× RN)

ΣF T ∗((R+ ×M)× RN) ∩ {p2 = 0}

T ∗(R+ ×M)

F

i

∂̄

i

∂

π
∂F
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Therefore, the following equalities hold:

π∗(λ) = π∗(p1dq1 + p2dq2)

= p1dq1 + p2dq2

= i∗(p1dq1 + p2dq2 + p3dq3)

= i∗λ̄, (12)

and

∂̄∗(λ̄) = ∂̄∗(p1dq1 + p2dq2 + p3dq3)

=
∂F

∂t
dt+

∂F

∂x
dx+

∂F

∂η
dη

= dF. (13)

From Equations (12) and (13), and by commutativity of the diagram, we arrive at

the following:

∂∗Fλ = ∂∗π∗λ = ∂∗(i∗λ̄) = (∂̄ ◦ i)∗λ = i∗(∂̄∗(λ̄)) = i∗dF = dF̄ . (14)

This gives us our desired equality, and we can conclude:

∫
γ

λ =

∫
h

∂∗Fλ =

∫
h

dF̄ =

∫
∂h

F̄ = F̄ (h(1))− F̄ (h(0)) = ∆(t, x, η, η̃).
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4.2 Top-stretched Fillings and Stretched Cobor-

disms

Theorem 8 shows that the difference function captures the topology of C, which is the

domain of the immersion, and M, the number of immersed double points. However,

after some slight modifications to the difference function, it will also capture the Reeb

chords of the Legendrian ends. In particular, we will tweak the difference function to

a sheared difference function by defining a Hamiltonian shearing function.

This idea is described by Sabloff and Traynor in [27] in order to define the wrapped

generating family cohomology groups for embedded Lagrangians with cylindrical ends.

The shearing function allows us to associate Reeb chords of the Legendrian with

intersection points of the Lagrangian and its image under the appropriate Hamiltonian

function. The schematic picture in Figure 14 identifies the critical values of ∆ for an

embedded GF-comaptible filling.

When considering immersed fillings, we also have the additional critical points of

∆ arising from the immersed double points, namely those in D. In Figure 15, these

pairs of critical values are all shown to lie in the region [−µ, µ]. However, a priori,

this need not be the case. This condition is convenient for later analysis arguments

in order to capture all critical values of ∆ when taking cohomology. We will show

that by performing a Legendrian isotopy, we can ensure this occurs.

To that end and with Lemma 8 in mind, let

µD(F ) = max
α∈D
{|∆0(α)|} , (15)
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C

Ω

v+

l+

µ

l+

u+t− t+

R

λΩ

λ−µ

Figure 14: A schematic picture of the critical points and values of ∆ for an embedded
filling. The values Ω and µ are chosen so that critical values of the set of critical points
of ∆|[u+,v+], which we call R, lie within [µ,Ω]. We will see in a future lemma that

these correspond to the positive critical values of δ. Notice that
(

∆Ω
[u+,v+],∆

−µ
[u+,v+]

)
can be identified with the cone, C(δω, δε). This will be shown more rigorously in the
proof of Lemma 9 and is the key to proving Theorem 11. Furthermore, there is a
critical submanifold with critical value 0 that can be identified with ΣF (or C), and
captures the topology of the filling.
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C

Ω

v+

l+

µ

l+

u+t− t+

R

λΩ

λ−µ

D

Figure 15: A schematic picture of the critical points and values of ∆ for an immersed
filling. Notice that this diagram is essentially equivalent to that in Figure 14 with the
additional set D of pairs of critical points within the region [t−, t+] having opposite
critical values. Each of these pairs of critical points correspond to immersed double
points in the Lagrangian.
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the largest critical value of ∆0 with t ∈ [t−, t+]. We then define the following:

Definition 7. An immersed GF-compatible Lagrangian cobordism (L, F ) is called

top-stretched if

4µD(F ) < t+l+.

An immersed GF-compatible Lagrangian cobordism (L, F ) is end-stretched if

4µD(F ) < max
{
t+l+, t−l−

}
.

For ease of calculation in future lemmas, we will restrict our focus to top-stretched

fillings and stretched cobordisms. In the proposition below, we show that any im-

mersed GF-compatible Lagrangian filling (cobordism) can be stretched to a top-

stretched (stretched) one.

Proposition 9. Let (L, F ) be an immersed GF-compatible cobordism from (Λ−, f−)

to (Λ+, f+). Suppose L is cylindrical outside the region [t−, t+]. Then there exists a

value t̃+ > t+ and a Legendrian Λ̃+ with generating family f̃+ such that:

• Λ̃+ is Legendrian isotopic to Λ+, and differs only by a z-direction stretch;

• f̃+ is homotopic to f+; and

• there exists a top-stretched cobordism
(
L̃, F̃

)
from (Λ−, f−) to

(
Λ̃+, f̃+

)
that is

cylindrical outside the region [t−, t̃+].

Furthermore, L̃ is homeomorphic to L and L̃|[t+,t̃+] is a concordance.
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Proof. Our strategy is to remove the top cylindrical portion of (L, F ), glue in a cobor-

dism from (Λ+, f+) and (Λ̃, f̃), and then extend cylindrically. The same procedure

can be performed on the negative end to obtain a stretched cobordism.

Let l+ be the smallest Reeb height of (Λ+, f+). Consider a smooth function

ρ : R→ R such that for some fixed value A,

ρ(s) =


1, s ≤ 0

4µD
t+
, s ≥ A

Then γ : M × RN × R → J1M given by γ(x, η, s) = ρ(s)f(x, η) is a homotopy of

generating familes and for each s,

jγs(x, η) =

(
x, ρ(s)

∂f

∂x
(x, η), ρ(s)f(x, η)

)

is a Legendrian with generating family fs = ρ(s)f . We will show later in Lemma 11

that this homotopy of generating families induces an embedded Lagrangian cobor-

dism. However, this homotopy of generating families also induces an isotopy of Leg-

endrians between (Λ+, f+) and (Λ̃, f̃ = fA) with smallest Reeb height l̃+ > 4µD
t+

. Since

Legendrian isotopy induces Lagrangian cobordism (see, for example, [13]), there ex-

ists an embedded GF-compatible Lagrangian concordance (L′, F ′) between (Λ+, f+)

and (Λ̃, f̃).

To form the desired top-stretched cobordism, remove the region of L with t ∈

[t+,∞), replace it with L′ and then extend cylindrically. Since L′|[t−,t+] = L|[t−,t+],
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there are no additional critical points of ∆ in this region. Thus,

4µD(F̃ ) = 4µD(F ) < l̃+t+,

and hence (L̃, F̃ ) is a top-stretched cobordism from (Λ−, f−) to (Λ̃+, f̃+).

We now have a good understanding of the critical points and values of ∆0 with

t ∈ [t−, t+]. In order to capture information about the critical points that live outside

this region, we will adjust the difference function ∆0 to a sheared difference function ∆

by adding a Hamiltonian shearing function H, which takes the form H : R+ → R

where

H(t) =



r−
2

(t− t−)2, t ≤ u−

0, t ∈ [t−, t+]

− r+
2

(t− t+)2, t ≥ u+.

See Figure 16. The constant r+ will determine the slope of the derivative of the

quadratic portion of H and the constant u+ will determine the length of a “transition

zone” where H will change from flat to quadratic.

Definition 8. Define the following constants, r±, u± as follows:

(i) r+ is chosen sufficiently large such that r+ > l+t+(> l+t+ > 4µD);

(ii) r− is chosen sufficiently large such that r− < l−t−;

(iii) u± are chosen such that 2µD
r±

< min
{∣∣t2± − u2

±
∣∣ , |t± − u±|2} < l±t±

2r±
.
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u+t+

t−u−

Figure 16: The Hamiltonian shearing function H(t). Note that H is smooth, decreas-
ing, equal to 0 when t ∈ [t+, t−], and quadratic outside of the region [u−, u+].

Remark 7. 1. By the construction of a top-stretched filling, l+t+ > 4µD and

hence 2µD
r+

<
l+t+

2r+
.

2. The lower bound in Inequality (iii) is necessary in defining µ below and the

upper bound is useful in the proof of Lemma 9(ii).

With r+ and u+ set, observe that the following inequalities hold:

t±l± +
l±

2

2r±
> t±l± > µD,

r+

2
(u+ − t+)2 > µD,

r±
2

∣∣u2
± − t2±

∣∣ > µD,
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u+l+

2
>
t+l+

2
> µD.

Consequently, we are able to fix a large constant Ω and small constant µ so that all

critical values of ∆ with t ∈ [t−, t+] lie within the region [−µ,Ω].

Definition 9. Define the following constants, µ, and Ω as follows:

(i) µ is chosen to satisfy µD < µ < min

{
t−l−︸︷︷︸

1

, t+l+ +
l+

2

2r+︸ ︷︷ ︸
2

,
r+

2
(u+ − t+)2︸ ︷︷ ︸

3

,
u+l+

2︸ ︷︷ ︸
4

,
r±
2

∣∣u2
± − t2±

∣∣︸ ︷︷ ︸
5

}
;

(ii) Ω is chosen sufficiently large such that Ω > max

{
t±l± +

l±
2

2r±︸ ︷︷ ︸
1

,
l+
u+

− r+

2
(u+ − t+)2︸ ︷︷ ︸
2

}
.

Remark 8. In (i), Inequality 1 is needed in the proof of Lemma 10. Inequality 2

ensures that µ is less than all critical values coming from Reeb chords. Inequality 3

is needed in the proof of Lemma 9. Inequalities 4 and 5 are needed in the proof of

Lemma 5.11 in [27] which allow us to identify terms in the long exact sequences.

In (ii), Inequality 1 is chosen so that Ω is larger than all critical values of ∆. This

is needed in the proofs of Lemma 8.3 in [27]. Inequality 2 is needed in the proof of

Lemma 9, to ensure that λΩ(u+) > l+.

With these values in hand, the sheared difference function, ∆H : R+ ×M ×

RN × RN → R is defined by

∆H(t, x, η, η̃) = F (t, x, η̃) +H(t)− F (t, x, η). (16)

Remark 9. As shown in [27], if the pair (F, f) is tame, then the associated differ-

ence functions are tame. Furthermore, if (L, F ) is a GF-compatible cobordism from
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(Λ−, f−) to (Λ+, f+) then for any H, the triple (∆H , δ−, δ+) is equivalent to a tame

triple of functions.

For ease of notation, we will simplify the notation of this sheared difference func-

tion to ∆ if the choice of shearing function is clear from context. In the following

theorem, we classify all critical points of ∆.

Theorem 10. Suppose (Λ−, f−) ≺(L,F ) (Λ+, f+). Then, there is a one-to-one corre-

spondence between

(i) The critical points of ∆ in the region t ∈ (−∞, u−) ∪ (u+,∞) and the Reeb

chords, γ± of Λ±. We will refer to this set of critical points as R. The critical

value of the critical point corresponding to Reeb chords γ± is

tl(γ±) +
1

2r±
(l(γ±))2. (17)

(ii) The critical points of ∆ in the region t ∈ [t−, t+] and the elements of the set

D t C, where

D = {(t, x, η, η̃) : (t, x, η) 6= (t, x, η̃) ∈ ΣF and ∂F (t, x, η) = ∂F (t, x, η̃)} ,

and

C = {(t, x, η, η) : (t, x, η) ∈ ΣF and t ∈ [t−, t+]} .

The non-degenerate critical submanifold, C has critical value 0, and is diffeo-

morphic to the fiber critical set, ΣF . For each immersed double point in L,
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there is a pair of critical points in D whose critical values are negatives of one

another.

The critical points of types (i) and (ii) make up all of the critical points of ∆. The non-

degenerate critical submanifold, C has index N and for any critical point (t, x, η, η̃) ∈

D with index k, there is a critical point (t, x, η̃, η) ∈ D with index (1 +m+ 2N)− k,

where m = dimM and F is defined on R+ ×M × R2N .

Proof. The proof of part (i) can be found in [27]. The correspondence in part (ii)

follows from Lemma 8. It remains to compute the indices of the critical points.

To calculate the index of the critical submanifold C, let (t0, x0, η0, η0) ∈ C be

arbitrary. Since (t0, x0, η0) ∈ ΣF , we have

∂F

∂η
(t0, x0, η0) = 0.

Thus, η0 is a critical point of the function F(t0,x0) : RN → R given by

F(t0,x0)(η) = F (t0, x0, η).

By the Morse Lemma, there exist local coordinates (η1, ..., ηN) such that

F(t0,x0)(η) = F(t0,x0)(η0)− η2
1 − ...− η2

k + η2
k+1 + ...+ η2

N .
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Thus, the following equalities hold locally near (t0, x0, η0):

∆(t, x, η, η) = F (t, x, η)− F (t, x, η)

= F(t0,x0)(η)− F(t,x)(η)

= F(t0,x0)(η0)− η2
1 − ...− η2

k + η2
k+1 + ...+ η2

N

−
(
F(t0,x0)(η0)− η2

1 − ...− η2
k + η2

k+1 + ...+ η2
N

)
= −η2

1 − ...− η2
k − η2

k+1 − ...− η2
N + η2

1 + ...+ η2
k + η2

k+1 + ...η2
N .

Therefore, (t0, x0, η0, η0) has index N and hence the critical submanifold C has index

N .

Now, let (t0, x0, η0, η̃0) be a critical point of index i living in D. Then, again by

the Morse Lemma, there exist local coordinates (y1, ...y1+m+2N) such that

∆(t, x, η, η̃) = ∆(t0, x0, η0, η̃0)− y1 − ...− yi + yi+1 + ...+ y1+m+2N .

Then, we have:

∆(t, x, η̃, η) = −∆(t, x, η, η̃)

= −∆(t0, x0, η0, η̃0) + y1 + ...+ yi − yi+1 − ...− y1+m+2N

= ∆(t0, x0, η̃0, η0) + y1 + ...+ yi − yi+1 − ...− y1+m+2N .

Thus, (t0, x0, η̃0, η0) has index 1 +m+ 2N − i. This completes the proof.

By restricting to stretched cobordisms, the positive constants Ω and µ were chosen
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in such a way that all critical points of ∆ with t ∈ [t−, t+] lie in [−µ, µ] and all critical

values of ∆ arising from Reeb chords lie in [µ,Ω]. Keeping in mind that we will use

Morse theory on ∆, we will define the wrapped generating family homology groups

on F in terms of sublevel sets.

Definition 10. For any a ∈ R, the sublevel set of ∆ is given by

∆a = {(t, x, η, η̃) : ∆(t, x, η, η̃) ≤ a} .

and the sublevel set of ∆ restricted to a region [i, j] ⊂ R is given by

∆a
[i,j] = {(t, x, η, η̃) : t ∈ [i, j],∆(t, x, η, η̃) ≤ a} .

Due to the fact that L is cylindrical after a certain value for t, critical values of ∆

within this region can be identified with critical values of δ. It is therefore useful to

define the function below, which translates a critical value of ∆ into the corresponding

critical value of δ.

Definition 11. Define the (∆, δ)-translator function, λa(t) : R→ R by

λa(t) =
1

t
(a−H(t)).

Observe that for [i, j] ⊂ [t+,∞),

∆a
[i,j] = {(t, x, η, η̃) : t ∈ [i, j], δ+(x, η, η̃) ≤ λa(t)} .
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To summarize the analysis in this section, we have shown that the sublevel sets of

∆ within [u−, u+] capture the critical sumbanifold and immersed double points of L

and the sublevel sets outside of this region capture the Reeb chords of the cylindrical

Legendrian ends. At this point, one should be convinced that it makes sense to

consider the following homology groups for stretched cobordisms:

Definition 12. Suppose (L, F ) is a stretched GF-compatible cobordism from (Λ−, f−)

to (Λ+, f+). The total wrapped generating family cohomology of F is given by

W̃GH
k

(F ) = Hk+N(∆Ω,∆−µ).

The relative wrapped generating family cohomology of F is given by

WGHk(F ) = Hk+N(∆Ω,∆µ).

Remark 10. In [27], the same name is given to the analogous homology groups of

embedded GF-compatible Lagrangian cobordisms. Since these homology groups of

immersed stretched cobordisms are defined in a similar way, we use the same name.

Remark 11. For tame (F, f−, f+), W̃GH
k

and WGHk do not depend on choice of

Ω and µ, as proven in [27]. The proof relies on Lemma 3 below and uses a Morse-

theoretic argument similar to the one used to show independence of ω and ε.

The following Lemmas of [27] will be useful in proving Theorem 1.

Lemma 3. (Corollary 4.10 in [27]) There exist values v− < t− and v+ > t+ such
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that

WGHk(F ) = Hk+N
(

∆Ω
[v−,v+],∆

µ
[v−,v+]

)
and

W̃GH
k

(F ) = Hk+N
(

∆Ω
[v−,v+],∆

−µ
[v−,v+]

)
Lemma 4. (Proposition 4.12 in [27]) W̃GH

k

(F ) = 0.



51

Chapter 5

Mapping Cones and Gradient

Flows

5.1 Mapping Cone Background

The proof of Theorem 1 will follow from the following theorem which equates the

generating family cohomology groups of the Legendrian to Morse cohomology groups

associated to the Lagrangian filling:

Theorem 11. Suppose (Λ+, f+) admits an immersed GF-compatible filling (L, F ).

Then

GHk(Λ+, f+) ∼= Hk+N+1
(

∆Ω
[v−,u+],∆

−µ
[v−,u+]

)
. (18)

The proof of this theorem follows a similar structure to that in [27]. We show

that the total space,
(

∆Ω
[v−,u+],∆

−µ
[v−,u+]

)
, whose cohomology vanishes, can be viewed

as a mapping cone. Then we show that the cohomology groups in (18) fit into a long
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exact sequence involving this mapping cone. To that end, we now recall the following

definition and lemma.

Definition 13. Let (X,A), (Y,B) be pairs, and let φ : (X,A) → (Y,B) be a map

between the pairs. Let I denote the unit interval [0, 1]. The relative mapping cone

C(X,A) of (X,A) is the pair (X × I, A× I ∪X × {1}). The relative mapping

cone C(φ) of φ is the pair C(X,A)∪φ (Y,B), where ∪φ denotes the identification of

(x, 0) with φ(x).

Lemma 5 (Lemma 5.3 in [27]). Let φ : (X,A) → (Y,B) be a map between pairs.

Then the following long exact sequence exists:

...→ Hk(C(φ))→ Hk(Y,B)→ Hk(X,A)→ ...

The proof of this lemma can be found in [27]. For the reader’s convenience, it is

included below.

Proof. From the triple,

(c, b, a) := ((X × I) ∪φ Y, (A× I ∪X × {1}) ∪φ Y, (A× I ∪X × {1}) ∪φ B),

we obtain the following long exact sequence:

...→ Hk(c, b)→ Hk(c, a)→ Hk(b, a)→ ...
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Excising (A× I ∪X × {1}) from (b, a), we get

Hk(b, a) ∼= Hk(Y,B).

In addition, we have

Hk(c, a) ∼= Hk(X × I, A× I ∪X × {1}) ∪φ (Y,B))

∼= Hk(C(X,A) ∪φ (Y,B))

∼= Hk(C(φ)).

Finally, by collapsing Y to a point, we get

Hk(c, b) ∼= Hk(X × I, A× I ∪X × {0, 1})

∼= Hk(Σ(X,A))

∼= Hk−1(X,A),

giving us the desired sequence.

The following lemmas from [27] will be useful in identifying pairs of sublevel sets

with relative cones.

Lemma 6 (Lemma 5.6 in [27]). Let δ : X → R be a smooth function whose negative

gradient flow exists for all time. Let a, b : J = [t0, t1] → R be continuous functions

satisfying the following:

1. b(t) = b(t0) for all t,
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2. a(t) strictly increasing with a(t1) = b(t0),

3. a(t0) has a neigborhood of regular values of δ.

Then (BJ , AJ) =
(⋃

t∈J{t} × δb(t),
⋃
t∈J{t} × δa(t)

)
deformation retracts onto C

(
δb(t0), δa(t0)

)
.

Remark 12. To prove this theorem, Sabloff-Traynor define a map σ that is homotopic

to the identity map on BJ and follows its negative gradient flow. For the reader’s

convenience, we include the details of the proof below. Schematic pictures of σ and

its image are pictured in Figures 17 and 18.

Proof. Fix 0 < ε < b(t0)− a(t0) such that no critical values lie in the region [a(t0)−

ε, a(t0) + ε]. Consider the strictly increasing straight-line function α(t) such that

α(t0) = a(t0) and α(t1) = a(t0) + ε. Define a map σ : BJ → BJ as follows:

σ(t, x) =



(t, x), δ(x) ≤ α(t)

(α−1(δ(x)), x), α(t) ≤ δ(x) ≤ α(t1)

(t1, x), α(t1) ≤ δ(x) ≤ a(t)

∗, a(t) ≤ δ(x) ≤ a(t) + ε

(t, x), δ(x) ≥ a(t) + ε.

*On this region, σ interpolates between the two extremes. (See Figure 17.) Following

the flow of the horizontal vector field ∂t gives a homotopy of σ to the identity map

on BJ . Following the negative gradient flow of δ gives a map from (σ(BJ), σ(AJ)) to(
J × δb(t0), J × δa(t0) ∪ {t1} × δb(t1)

)
= C

(
δb(t0), δa(t0)

)
.
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b(t)

a(t) + ε

a(t)
α(t)

Figure 17: Schematic picture of σ.

b(t)

a(t) + ε

a(t)
α(t)

Figure 18: Schematic picture of the image of σ.
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Lemma 7. (Corollary 5.5 in [27]) Let δ : X → R be a continuous function and let

a, b : J = [t0, t1]→ R be continuous functions satisfying the following:

1. a(t) ≤ b(t) for all t, and

2. a(t) and b(t) are strictly increasing.

Then (BJ , AJ) =
(⋃

t∈J{t} × δb(t),
⋃
t∈J{t} × δa(t)

)
deformation retracts onto (Bt1 , At1).

Remark 13. To define an appropriate deformation retraction, one first follows the

horizontal gradient flow, taking (BJ , AJ) to (AJ ∪Bt1 , AJ) and then retracting (AJ ∪Bt1 , AJ)

onto (Bt1 , At1) under the map (t, x) 7→ (t1, x).

5.2 Analysis of Sublevel Sets

In the proofs to follow, it will often be convenient to understand the negative gradient

flow of ∆ at certain values of t. These are summarized in the lemma below and

pictured in Figure 19.

Lemma 8. Set constants

σ± = r±u±|u± − t±| ±
r±
2

(u± − t±)2 .

The gradient flow of ∆ satisfies the following:

1. ∂t∆ < 0 on {v−} ∩ {µ < ∆ < Ω};

2. ∂t∆ < 0 on {u−} ∩ {µ < ∆ < σ−};
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Ω

σ+

σ−

µ

v− u− t− t+ u+ v+

Figure 19: Negative gradient flow of ∆.

3. ∂t∆ > 0 on {u−} ∩ {σ− < ∆ < Ω};

4. ∂t∆ > 0 on {t−} ∩ {µ < ∆ < Ω};

5. ∂t∆ < 0 on {v+} ∩ {µ < ∆ < Ω};

6. ∂t∆ < 0 on {u+} ∩ {µ < ∆ < σ+};

7. ∂t∆ > 0 on {u+} ∩ {σ+ < ∆ < Ω};

8. ∂t∆ > 0 on {t+} ∩ {µ < ∆ < Ω}.
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Proof. Recall that when t ≥ t+ or t ≤ t−,

∂t∆ = δ± +H ′(t),

and when −µ < ∆ < Ω, we also have for each t,

δ± < λΩ(t) and δ± > λ−µ(t).

1. Since v− was chosen so that λΩ(v−) < −l− < 0 and H ′(v−) < 0, we have

∂t∆|t=v− = δ− +H ′(v−) < 0.

2. At t = u−, ∂t∆|{t=u−} = δ− + r−(u− − t−). Since

δ− < λσ(u−) =
1

u−

(
σ − r−

2
(u− − t−)2

)
= r−|u− − t−|,

it follows that ∂t∆|{t=u−} < 0.

3. Similarly, since

δ− > λσ(u−) =
1

u−

(
σ − r−

2
(u− − t−)2

)
= r−|u− − t−|,

it follows that ∂t∆|{t=u−} > 0.

4. At t−, we have ∂t∆|{t=t−} = δ− ≥ λµ(t−) = µ
t−
> 0.

5. - 8. (Similar.)
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With Lemma 5 in hand, we now seek a map between pairs that relate to the

cohomology groups in Theorem 11. A natural map to consider is the inclusion map

φ :
(

∆Ω
{u+},∆

−µ
{u+}

)
→
(

∆Ω
[v−,u+],∆

−µ
[v−,u+]

)
.

We first show that the cohomology groups Hk
(

∆Ω
{u+},∆

−µ
{u+}

)
coincide with the gen-

erating family cohomology of the Legendrian. From this, we will also be able to

identify the mapping cone of φ with the pair
(

∆Ω
[v−,v+],∆

−µ
[v−,v+]

)
.

Lemma 9 (Lemma 6.2 in [27]). There exists a diffeomorphism

(
∆Ω
{u+},∆

−µ
{u+}

)
∼=
(
δω+, δ

ε
+

)
,

and a retract

ρ :
(

∆Ω
[u+,v+],∆

−µ
[u+,v+]

)
→ C

(
δω+, δ

ε
+

)
.

Remark 14. The first statement follows exactly from the definitions of ∆Ω
{u+} and

λΩ(u+). The proof of the second statement is an application of Lemma 6 with a, b :

[u+, v+]→ R given by a(t) = λ−µ(t) and b(t) = λΩ(t). Some work is required to show

that a and b satisfy the necessary conditions of Lemma 6. We include the details

below for the reader’s convenience.
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Proof. To prove the first statement, observe that

∆Ω
{u+} = {(u+, x, η, η̃) : ∆(u+, x, η, η̃) < Ω}

∼= {(x, η, η̃) : δ+(x, η, η̃) < λΩ(u+)}

= δω+,

since λΩ(u+) > l+ by (ii.2) in Definition 9.

The proof of the second statement will be an application of Lemma 6. Consider

the paths a, b : [u+, v+] → R given by a(t) = λ−µ(t) and b(t) = λΩ(t), as defined

in Definition 10. To apply Lemma 6, we must show that a(t) is increasing and has

a neighborhood of regular values, and that b(t) can be identified with a constant

function equal to a(v+).

To see that a(t) is increasing, first note that for t ∈ (t+, v+], H(t), H ′(t), and

H ′′(t) are all negative. Then, for t in this region, we have

t2λ′−µ(t) = µ− tH ′(t) +H(t), and

t2λ′−µ(t+) = µ > 0.

Since (
t2λ′−µ

)′
(t) = −tH ′′(t) > 0,

λ′−µ is increasing and thus positive for all t ∈ [t+, v+]. Therefore, a(t) = λ−µ(t) is

increasing on this region as well.

To show that a(u+) has a neighborhood of regular values we will show that it is
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positive and strictly less than l+. We have

a(u+) =
1

u+

(−µ−H(u+))

=
1

u+

(
−µ+

r+

2
(u+ − t+)2

)
, which is positive by Definition 9(i.3),

≤ 1

u+

(
−µ+

1

2

(
l+t+

2|u+ − t+|2
)

(u+ − t+)2

)
by Definition 8(iii),

= − µ

u+

+
l+t+

4u+

< l+,

as desired.

In order to identify b(t) with a(v+), first note that by definition of v+, a(v+) is

greater than all critical values of δ+. We will show that b(t) is also greater than all

critical values of δ. Then, since there are no critical values between b(t) and a(v+)

for t ∈ [t+, v+], we can follow the gradient flow of δ to redefine b(t) = a(v+) for all

t ∈ [t+, v+].

To show that b(t) is greater than all critical values of δ, we will show that there

is a unique minimum tm+ on [t+,∞) such that λΩ(tm+ ) > l+. Since H ′(t) is unbounded

below and decreasing on [t+,∞), there is a unique point t+ such that H ′
(
t+
)

= −l+.

Now,

t+
2
λ′Ω
(
t+
)

= −t+H ′
(
t+
)
− Ω +

l+
2

2r+

= t+l+ − Ω +
l+

2

2r+

< 0,
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by Inequality (ii.1) in Definition 9 of Ω. On the other hand, for sufficiently large t,

t2λ′Ω(t) > 0,

and thus there exists tm+ such that t2λ′Ω
(
tm+
)

= λ′Ω
(
tm+
)

= 0. Since λ′Ω is increasing,

tm+ is a unique minimum on this region. Now, since

(
tm+
)2
λ′Ω
(
tm+
)

= Ω− t̄m+H ′
(
tm+
)

+H
(
tm+
)

= 0,

we have

λΩ

(
tm+
)

=
1

tm+

(
Ω−H(tm+ )

)
=

1

tm+

(
Ω−

(
−tm+H ′((tm+ )− Ω

))
= −H ′

(
tm+
)
> H ′

(
t+
)

= l+,

as desired.

With all conditions of Lemma 6 satisfied, we can conclude that
(

∆Ω
[u+,v+],∆

−µ
[u+,v+]

)
retracts to C

(
δ
b(u+)
+ , δ

a(u+)
+

)
= C

(
δω+, δ

ε
+

)
.

Corollary 2. The pair
(

∆Ω
[v−,v+],∆

−µ
[v−,v+]

)
is the mapping cone of the map

φ :
(

∆Ω
{u+},∆

−µ
{u+}

)
→
(

∆Ω
[v−,u+],∆

−µ
[v−,u+]

)
,

where φ is given by inclusion.

Proof. By definition,
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C(φ) = C
(

∆Ω
{u+},∆

−µ
{u+}

)
∪φ
(

∆Ω
[v−,u+],∆

−µ
[v−,u+]

)
,

which, by Lemma 9, is homotopy equivalent to

(
∆Ω

[u+,v+],∆
−µ
[u+,v+]

)
∪φ
(

∆Ω
[v−,u+],∆

−µ
[v−,u+]

)
=
(

∆Ω
[v−,v+],∆

−µ
[v−,v+]

)
.
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Chapter 6

Proofs of Obstruction Theorems

The proofs of Theorem 11, Theorem 1, and Corollary 1 are now straightforward

applications of the above Lemmas, which are datailed below.

6.1 Filling Obstructions

Proof of Theorem 11. Let Λ be a Legendrian in J1M with linear-at-infinity gener-

ating family f+. Suppose (Λ+, f+) has an immersed, GF-compatible, top-stretched

Lagrangian filling (L, F ) in R× J1M .

Letting v± and φ be defined as above, we have the following long exact sequence:

· · · → Hk(C(φ))→ Hk
(

∆Ω
[v−,u+],∆

−µ
[v−,u+]

)
→ Hk

(
∆Ω
{u+},∆

−µ
{u+}

)
→ · · · .
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By Lemma 9 and the definition of generating family cohomology of Λ+,

Hk
(

∆Ω
{u+},∆

−µ
{u+}

)
∼= Hk

(
δω+, δ

ε
+

) ∼= GHk−N−1(Λ+, f+).

By Lemmas 2 and 4

Hk(C(φ)) ∼= Hk
(

∆Ω
[v−,v+],∆

−µ
[v−,v+]

)
= W̃GH

k−N−1

(F ) = 0.

Thus, we get the isomorphism

Hk+N+1
(

∆Ω
[v−,u+],∆

−µ
[v−,u+]

)
∼= GHk(Λ+, f+),

as desired.

Proof of Theorem 1. We shall show that

Hk+N+1
(

∆Ω
[v−,u+],∆

−µ
[v−,u+]

)
∼= Hn−k (C(ΣF , {xi}), d∗) , (19)

where n is the dimension of ΣF and d∗ is defined by the gradient flow between the

corresponding critical points of ∆. First note that by Poincaré duality,

Hk+N+1
(

∆Ω
[v−,u+],∆

−µ
[v−,u+]

)
∼= HN+m−k

(
∆Ω

[v−,u+],∆
−µ
[v−,u+]

)
.

Thus, for some sequence of nonnegative integers xi, Theorem 11 implies that ∆ will

have
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• a critical submanifold of index N ,

• xi critical points of index N +m− i and of index N +m+ i.

Similarly, since ΣF is dimension m+ 1, C (ΣF , {xi}) has

• dimHk (ΣF ) generators of index k + 1 for each k ∈ {0, ...,m},

• xi generators of index i and of index −i.

My standard Morse-Bott theory, perturbing the index N critical submanifold of ∆

will give rise to a set of critical points whose indices lie within the range [N,N+m+1].

These correspond exactly to the generators of C(ΣF , {xi}) in the first bullet point

shifted by N .

To show that Equation 19 holds, we will first show that the homology groups of(
∆Ω

[v−,u+],∆
−µ
[v−,u+]

)
agree with those of

(
∆
σ+
[t−,t+],∆

−µ
[t−,t+] ∪∆

σ+
{t+}

)
using an argument

similar to that in the Proof of Lemma 6.5 in [27]. Since the critical submanifold C is

properly embedded in R+ ×M × RN × RN and since ∆ has no critical points when

t = t±, there is a choice of metric that allows us to assume the gradient flow of ∆ is

tangent along this boundary. The Morse-Bott Lemma will then allow us to identify

the homology groups in Equation 19.

In order to show that the homology groups of
(

∆Ω
[v−,u+],∆

−µ
[v−,u+]

)
and

(
∆
σ+
[t−,t+],∆

−µ
[t−,t+] ∪∆

σ+
{t+}

)
agree, we will first show that

(
∆Ω

[v−,u+],∆
−µ
[v−,u+]

)
deformation retracts onto

(
∆
σ+
[v−,u+],∆

−µ
[v−,u+]

)
.

This is achieved by flowing along the negative gradient vector field of ∆ on [v−, u+]×

M × R2N and stopping when the value of ∆ reaches σ+. Since σ+ > µ, the top-

stretched condition implies that there are no critical values ∆ within [σ+,Ω]. Num-
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bers 1 and 7 in Lemma 8 show that the negative gradient flow is inward pointing at

the boundaries.

Next, consider
(

∆
σ+
[v−,t−],∆

−µ
[v−,t−]

)
. Applying Lemma 7 with a(t) = λΩ(t) and

b(t) = λ−µ(t) shows that this deformation retracts onto
(

∆
σ+
{t−},∆

−µ
{t−}

)
.

Finally, consider
(

∆
σ+
[t+,u+],∆

−µ
[t+,u+]

)
. Applying Lemma 6 with a(t) = λ−µ(t) and

b(t) = λΩ(t) on the interval [t+, u+], produces a deformation retract onto the cone

space: (
∆
σ+
{t+} × [t+, u+],

(
∆−µ{t+} × [t+, u+]

)
∪
(

∆
σ+
{t+} × {u+}

))
.

Thus, we have a deformation retract of
(

∆Ω
[v−,u+],∆

−µ
[v−,u+]

)
onto:

(
∆
σ+
[t−,t+] × [t+, u+],

(
∆−µ[t−,t+] × [t+, u+]

)
∪
(

∆
σ+
{t+} × {u+}

))
.

Excising [t+, u+], the cohomology groups of this space agree with those of:

(
∆
σ+
[t−,t+],∆

−µ
[t−,t+] ∪∆

σ+
{t+}

)
.

Proof of Corollary 1. In the case that Λ is a Legendrian knot, m = 1. If ΣF has genus

g then the generators C (ΣF , {xi}) corresponding to the index N critical submanifold

of ∆ include one generator of index 1 and 2g generators of index 2. Suppose Ck

denotes the kth chain in C (ΣF , {xi}). Then, by Theorem 1,

dimGHk(f+) = dimH2−k (C(ΣF , {xi}), ∂) ≤ dimC2−k.
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Thus, dimGHk(f+) determines a lower bound for the minimal number of generators

of C2−k. Since m = 1, this is equal to the number of index N + 1±k critical points of

∆. By Theorem 10, this corresponds to a minimal number of immersed double points

of index ±k. There is a special case when considering the index k = 0 of GHk(f+).

In this case, a pair of generators could either correspond to an immersion point of

index 0 or additional genus.

In Chapter 7, we discuss methods of constructing immersed GF-compatible fillings,

including ways of creating new fillings from existing ones. Before switching our focus

to constructions, we provide a final obstruction to the existence of immersed GF-

compatible fillings for Legendrian knots which justifies the lattice configuration of the

diagrams in the introduction. The proof of this obstruction relies on the following

classical result of J.H.C. Whitehead. Barannikov also gives a proof of this in [3].

Proposition 12. Suppose C∗ is an ordered chain complex, that is, for each k, the

generators of Ck have a fixed ordering. Any ordered chain complex C∗ is equivalent

to an ordered chain complex C̃∗ such that for each generator a in C̃k, either da = 0

or da = b for a unique generator b ∈ C̃k−1.

Remark 15. The notion of equivalence between ordered chain complexes C∗ and C̃∗

we refer to in the proposition is the following: for each k, Ck and C̃k have the same

dimension and their differentials coincide on coinciding generators. We assume that

coefficients are taken over a field, F . Such an ordered basis is said to be of canonical

form over F. The proof of this theorem can be found in Lemma 2 of [3]. For the

reader’s convenience, it is included below.
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Proof. Let ekj denote a generator in C∗ of index k such that one of the following is

satisfied:

1. for i = k and for all m ≤ j, deim has the required form; or

2. for all i ≤ k and for all m, deim has the required form.

We shall show that both dekj+1 and dek+1
j can be adjusted to be of the proper form.

First, consider ekj+1. We will produce a new generator ẽkj+1 expressed in terms of

{ekq}jq=1 that is of the required form. For some {αn} ⊂ F ,

dekj+1 =
∑
n

αne
k−1
n .

Rearrange this equation by moving any terms such that ek−1
n = dekq , with q ≤ j, to

the left hand side. We then get the following:

d

(
ekj+1 −

j∑
q=1

αn(q)e
k
q

)
=
∑
n

βne
k−1
n ,

where where βn = 0 if ek−1
n = dekq and βn = αn otherwise. For such n where βn = 0,

define the following:

ẽkj+1 = ekj+1 −
j∑
q=1

αn(q)e
k
q .

To define ẽkj+1 for all other values of n, choose a value n0 6= n(q) for all q ≤ j such

that βn0 6= 0, and

d

(
ekj+1 −

j∑
q=1

αn(q)e
k
q

)
= βn0e

k−1
n0

+
∑
n≤n0

βne
k−1
n .
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Since d2 = 0, dek−1
n = 0 for all n with βn 6= 0. Now define:

ẽkj+1 =

(
ekj+1 −

j∑
q=1

αn(q)e
k
q

)
/βn0 ,

and

ẽk−1
n0

= ek−1
n0

+
∑
n≤n0

(βn/βn0)e
k−1
n .

Then

d(ẽkj+1) = d

((
ekj+1 −

j∑
q=1

αn(q)e
k
q

)
/βn0

)

=

(
βn0e

k−1
n0

+
∑
n≤n0

βne
k−1
n

)
/βn0

= ẽk−1
n0

,

making ẽkj+1 of the required form. A similar process can be preformed to construct

ẽk+1
j so that dẽk+1

j is of the proper form.

It remains to show uniqueness of C̃∗. Suppose there exist two canonical forms of

C∗ over F . Let {akj} and {bkj} be sets of ordered generators of Ck for these canonical

forms. Assume that in one of the following cases:

1. for i = k and for all m ≤ j; or

2. for all i ≤ k and for all m,

daim = ai−1
n implies dbim = bi−1

n , in other words, the canonical forms coincide. Suppose

that dakj = ak−1
t and dbkj = bk−1

l . Without loss of generality, assume t > l. Since {akj}
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is an ordered basis for Ck, there exists {αn}, {βn} ⊂ F such that

bkj =

j∑
n=1

αna
k
n,

and

bk−1
l =

l∑
n=1

βna
k−1
n .

Then d
(∑j

n=1 αna
k
n

)
=
∑l

n=1 βna
k−1
n , and solving for d(akj ) yields

d(akj ) =
l∑

n=1

βna
k−1
n − d

(
j−1∑
n=1

αn
αj
akn

)
.

But this implies that

ak−1
t =

l∑
n=1

βna
k−1
n − d

(
j−1∑
n=1

αn
αj
akn

)
,

contradicting the linear independence {ak−1
j }. Thus, the canonical form of C∗ is

unique.

Proof of Theorem 2. Fix an arbitrary immersed GF-compatible filling of (Λ, f) with

genus g with p immersed double points. Theorem 1 states that d∗ can be chosen so

that H−k(C(ΣF , {xi}), d∗) ∼= GHk(f). Recall that genus or an immersion point in the

Lagrangian corresponds to two generators of C(ΣF , {xi}) whose indices are negatives

of each other.

Suppose the generators of C(ΣF , {xi}) are ordered by their critical values. Let
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C̃∗ be the equivalent chain complex given by Proposition 12, such that for all a in

C̃k, either da = 0 or da = b for a unique generator b ∈ C̃k−1. This has the following

interpretation: For each k, C̃k has dimGHk(f) generators of index k that get sent to

0 under d. The remaining generators makes up a set of

NF = 2p+ 2g + 1−
∑
k

dimGHk(f)

elements. Let GF denote this set. Since d2 = 0, this produces a partition of GF into

pairs

GF =
⊔{

ikl , i
k+1
m

}
such that dk+1

(
ik+1
m

)
= ikl . Thus, NF is a multiple of 2. But, for each pair

{
ikl , i

k+1
m

}
,

there is a corresponding pair
{
i−k−1
l′ , i−km′

}
. Thus, NF is a multiple of 4 and we have

2p+ 2g =
∑
k

dimGHk(f)− 1 mod 4, or

p+ g =
1

2

(∑
k

dimGHk(f)− 1

)
=

m∑
k=0

ck mod 2.

Theorem 2 justifies the lattice configurations of the diagrams in Figures 3 and 4.

It is interesting to point out that for a given polynomial, if c0 = 0, then the obstructed

fillings all lie below a diagonal extending from the point with p = g = 0. If c0 6= 0, the

the obstructed fillings all lie below a “check mark” whose left-most point is at g = 0

and p = c0.
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6.2 Long Exact Sequence of a Cobordism

Until this points, we considered cobordisms with Λ− = ∅. We now consider the more

general case and set out to prove Theorem 3. The following lemma which will help

us identify terms of the long exact sequence in the proof of Theorem 3.

Lemma 10. The following statements hold:

1.
(

∆Ω
[v−,t−],∆

−µ
[v−,t−]

)
deformation retracts onto

(
∆Ω
{t−},∆

−µ
{t−}

)
;

2.
(

∆Ω
[u−,t−],∆

−µ
[u−,t−]

)
deformation retracts onto

(
∆Ω
{t−},∆

−µ
{t−}

)
;

3. Hk+N+1
(

∆Ω
{t−},∆

−µ
{t−}

)
∼= G̃F

k
(f−).

Proof. Statements 1 and 2 are direct applications of Lemma 7 by letting a(t) = λΩ(t)

and b(t) = λ−µ(t).

To prove 3, observe that since λΩ(t−) > l−,

∆Ω
{t−} = {(t−, x, η, η̃) : ∆(t−, x, η, η̃) < Ω}

∼= {(x, η, η̃) : δ−(x, η, η̃) < λΩ(t−)}

= δω−.

Similarly,

∆−µ{t−} = {(t−, x, η, η̃) : ∆(t−, x, η, η̃) < −µ}

∼= {(x, η, η̃) : δ−(x, η, η̃) < λ−µ(t−)} ,
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and, by Inequality 1 in Definition 9(i),

0 > λ−µ(t−) =
−µ
t−

> −l−.

Thus, ∆−µ{t−} can be identified with δ−ε− .

Proof of Theorem 3. We will consider the triple of pairs (X, Y ) = (A,C) ∪ (B,D)

where:

(X, Y ) =
(

∆Ω
[v−,u+],∆

−µ
[v−,u+]

)
,

(A,C) =
(

∆Ω
[v−,t−],∆

−µ
[v−,t−]

)
, and

(B,D) =
(

∆Ω
[u−,u+],∆

−µ
[u−,u+]

)
.

Note that

(A ∩B,C ∩D) =
(

∆Ω
[u−,t−],∆

−µ
[u−,t−]

)
and consider the associated Mayer-Vietoris sequence:

· · · → Hk+N+1(X, Y )→ Hk+N+1(A,C)⊕Hk+N+1(B,D)→ Hk+N+1(A∩B,C∩D)→ · · · .

In the proof of Theorem 1, the isomorphism between Hk+N+1
(

∆Ω
[v−,u+],∆

−µ
[v−,u+]

)
and

GF k(f+) is not dependent on the assumption that Λ− = ∅. Thus we can identify

Hk+N+1(X, Y ) with GF k(f+) and Hk+N+1(B,D) with Hn−k (C(Σ, {xi})), where n is
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the dimension of Σ. Lemma 10 implies that both Hk+N+1(A,C) and Hk+N+1(A ∩

B,C ∩ D) can be identified with G̃F
k
(f−). Thus we get the desired long exact

sequence:

· · · → GHk(f+)→ G̃H
k
(f−)⊕Hn−k (C(Σ, {xi}))→ G̃H

k
(f−)→ · · · .

To conclude this chapter, let us revisit Example 3 from the introduction. Using

the long exact sequence in (4), it can be verified that dim G̃H
2
(f−) = 0. ∗ Thus,

the map GH3(f+) → G̃H
3
(f−) ⊕ H2−3 (C(Σ, {xi})) is injective. Using the same

long exact sequence in (4), it can also be verified that dim G̃H
3
(f−) = 1. † Since

dimGH3(f+) = 3, this means that dimH2−3 (C(Σ, {xi})) = H3 (C(Σ, {xi})) ≥ 2.

Therefore, any immersed GF-compatible cobordism from (Λ−, f−) to (Λ+, f+) has at

least two double points of index 3.

∗Since dimH2(Λ−) = dimH3(Λ−) = 0, the map GH2(Λ−) → G̃H
2
(f−) is an isomorphism.

Since dimGH2(Λ−) = 0, so does dim G̃H
2
(f−).

†Since dimH3(Λ−) = dimH4(Λ−) = 0, the map GH3(Λ−) → G̃H
3
(f−) is an isomorphism.

Since dimGH3(Λ−) = 1, so does dim G̃H
3
(f−).
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Chapter 7

Constructions

Now that we have a set of obstructions to the existence of immersed GF-compatible

fillings, a natural next step is to see which immersed fillings are realizable. In this

section, we first show that an immersed Lagrangian cobordism can be obtained from

a homotopy of generating families. We also construct a series of combinatorial moves

that can be performed on front diagrams that guarantee the existence of an immersed

gf-cobordism. With these moves, we prove a partial converse to Corollary 1 by show-

ing that for any polynomial satisfying one-dimensional duality, there exists a pair

(Λ, f) having that polynomial with a minimal immersed filling. Furthermore, we give

an algorithm for creating new immersed fillings from existing ones with additional im-

mersion points or genus. Together, these show existence of the entire upper diagonal

region of the lattice diagram for a polynomial, as in Figure 7.
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7.1 Generating Family Homotopies

Lemma 11. Suppose fs : M × RN → R with s ∈ R is a homotopy of generating

families such that for each s, fs generates a Legendrian Λs. Suppose further that

there exists s0 < s1 such that for all s < s0, fs = fs0 and for all s > s1, fs = fs1.

Then, letting t = es, there is an immersed gf -compatible Lagrangian cobordism L

from Λs0 to Λs1 generated by F : R+ ×M × RN → R, where

F (t, x, η) = tft(x, η).

Furthermore, if (t0, x0, η0, η̃0) is a critical point of ∆, then (x0, η0, η̃0) is a critical

point of δt0 with critical value equal to

t0
∂ft
∂t

(x0, η0)− t0
∂ft
∂t

(x0, η̃0).

The indices of these critical points satisfy the following:

Ind(t0,x0,η0,η̃0)∆ = Ind(x0,η0,η̃0)δt0 +


0, t∂

2δt
∂t2

+ 2∂δt
∂t
> 0

1, t∂
2δt
∂t2

+ 2∂δt
∂t
< 0

Proof. Since fs generates a Legendrian γs for all s, 0 must be a regular value of

∂fs
∂η

(x, η), and hence a regular value of ∂ft
∂η

(x, η) for all t. For all elements of ∂ft
∂η

(x, η)−1(0),

the derivative map is the N × (N +m) matrix:

d

(
∂ft
∂η

(x, η)

)
=

(
∂2ft
∂η∂x

,
∂2ft
∂η2

)
,
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which has rank N . Since t 6= 0 and F = tft, elements of ∂F
∂η

(t, x, η)−1(0) are in

correspondence with elements of ∂ft
∂η

(x, η)−1(0), and the derivative map is the N ×

(N +m+ 1) matrix:

d

(
∂F

∂η
(t, x, η)

)
=

(
∂2F

∂η∂t
,
∂2F

∂η∂x
,
∂2F

∂η2

)
=

(
∂2tft
∂η∂t

,
∂2tft
∂η∂x

,
∂2tft
∂η2

)
=

(
∂ft
∂η

,
t∂2ft
∂η∂x

,
t∂2ft
∂η2

)
,

which also has rank N . Thus, 0 is also be a regular value of ∂F
∂η

. By Lemma 3.7 in [4],

this implies that F generates an immersed Lagrangian.

The double points of this immersed Lagrangian occur when there exists (t0, x0, η0, η̃0)

such that

(
t0, x0, ft0(x0, η0) + t0

∂ft0
∂t

(x0, η0), t0
∂ft0
∂x

(x0, η0)

)
=

(
t0, x0, ft0(x0, η̃0) + t0

∂ft0
∂t

(x0, η̃0), t0
∂ft0
∂x

(x0, η̃0)

)
. (20)

Recall that (t0, x0, η0, η̃0) is also a critical point of ∆. A direct calculation of partial

derivatives shows that (x0, η0, η̃0) is also a critical point of δt0 . Equality of the third

coordinates in (20) gives us the following equation:

ft0(x0, η̃0)− ft0(x0, η0) = t0
∂ft0
∂t0

(x0, η0)− t0
∂ft0
∂t0

(x0, η̃0). (21)
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Notice that the left hand side of this equation is δt0(x0, η0, η̃0), making the right hand

side the critical value of the critical point (x0, η0, η̃0) of δt0 .

It remains to show the correspondence between the indices of critical points. The

Hessian matrix of ∆ takes the following form:



t
∂2δt
∂t2

+ 2
∂δt
∂t

t
∂2δt
∂t∂x

+
∂δt
∂x

t
∂2δt
∂t∂η

+
∂δt
∂η

t
∂2δt
∂t∂η̃

+
∂δt
∂tη̃

t
∂2δt
∂t∂x

+
∂δt
∂x t0H(δt0)

t
∂2δt
∂t∂η

+
∂δt
∂η

t
∂2δt
∂t∂η̃

+
∂δt
∂tη̃



By the Morse Lemma, since (x0, η0, η̃0) is a critical point of δt0 , there exist local

coordinates in a neighborhood of (x0, η0, η̃0) such that

δt0(x, η, η̃) = δt0(x0, η0, η̃0) +Q0(x) +Q1(η) +Q2(η̃)

where each Qi is a quadratic function of the given variable. Thus, we get the following

equalities:
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0 =
∂δt0
∂t

(x0, η0, η̃0);

0 =
∂δt0
∂x

(x0, η0, η̃0) = Q′0(x0);

0 =
∂δt0
∂η

(x0, η0, η̃0) = Q′1(η0);

0 =
∂δt0
∂η̃

(x0, η0, η̃0) = Q′2(η̃0),

and the Hessian matrix takes the following form:



t
∂2δt
∂t2

+ 2
∂δt
∂t

0 0 0

0
t0H(δt0)0

0


By the symmetry of the matrix and the well placed zeros, the lower block of the

matrix can be diagonalized and the eigenvalues can be picked off the diagonal. The

number of negative eigenvaules is exactly Ind(x0,η0,η̃0)t0δt0 . Thus we obtain the desired

equality.

Remark 16. For F defined as in Lemma 11, there is a one-to-one correspondence

between double points of the Lagrangian generated by F and Reeb chords of Λt

with height
∣∣t∂ft

∂t
(x, η)− t∂ft

∂t
(x, η̃)

∣∣ . In the next section, we produce generating family
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homotopies using a series of combinatorial moves with the clasping and unclasping

moves in Figure 23 corresponding to an immersed double point in the Lagrangian.

It is important to note that the immersed double point in the Lagrangian does not

occur exactly when the two strands in a clasp meet, but rather when they pass a

Reeb chord of height
∣∣t∂ft

∂t
(x, η)− t∂ft

∂t
(x, η̃)

∣∣ .

In the case that ft is generating family homotopy such that each ft generates a Leg-

endrian knot Λt, Lemma 11 gives us an easy way to determine the indices of immersion

points. Suppose for some t0, Λt0 has a Reeb chord c of height
∣∣∣t0 ∂ft0∂t (x0, η0)− t0 ∂ft0∂t (x0, η̃0)

∣∣∣ ,
where (t0, x0, η0, η̃0) is the corresponding critical point of ∆. Let b denote the branch

containing the point, (x0, ∂xf(x0, η0), f(x0, η0)) and b̃ denote the branch contain-

ing the point, (x0, ∂xf(x0, η̃0), f(x0, η̃0)). In neighborhoods U and Ũ of (x0, η0) and

(x0, η̃0), respectively, there exist local coordinates such that

ft0(x, η) = g(x) +Q(η)

and

ft0(x, η̃) = g̃(x) + Q̃(η̃).

Since (x0, η0, η̃0) is a non-degenerate critical point of δf , x0 is a non-degenerate critical

point of g̃−g. Furthermore, g and g̃ locally trace the front-projections of the branches.

That is,

πxz(b) = {(x, g(x) +Q(η0))} and πxz(b̃) =
{

(x, g̃(x) + Q̃(η̃0))
}
.



7.1. Generating Family Homotopies 83

0

1

2

3

4

Figure 20: Example assignment of Maslov potentials to the spanning arcs of this front
projection of a Legendrian m(52) knot.

Definition 14. Suppose Λ is a Legendrian knot in J1M with a Reeb chord c corre-

sponding to a critical point (x0, η0, η̃0) of δ. For g and g̃ defined as above, define the

graph index, G(x0) to be the Morse index of g̃ − g at x0.

Definition 15. Let Λ be a Legendrian knot with rotation number 0 and consider its

front projection. Define a spanning arc to be a path between two cusps on the front

diagram. To each spanning arc, the Maslov potential µ assigns an integer in such

a way that at any cusp, the integer assigned to the upper arc is one more than the

integer assigned to the lower arc.

Remark 17. By our construction, η0 and η̃0 are also non-degenerate critical points

of Q and Q̃, respectively. The indices of these critical points are given by the Maslov

potential. That is, Indη0(Q(η)) = µ(b) and Indη̃0(Q̃(η̃)) = µ(b̃).

By reparamaterizing if necessary, the homotopy f can be assumed to be approx-

imately linear in the t coordinate, we can obtain the index of a critical point of ∆
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from a shift of the difference in branch indices of the corresponding Reeb chords. To

that end, let ε > 0 be chosen such that ε� |δt0(x0, η0, η̃0)|.

Corollary 3. Suppose γt is a generating family homotopy satisfying
∣∣∣ ∂2∂t2 δt∣∣∣ < ε that

induces a Lagrangian generated by F . If (t0, x0, η0, η̃0) is a critical point of ∆F then

the index of p = (t0, x0, η0, η̃0) satisfies the following:

Ind(t0,x0,η0,η̃0)∆F = µ(η̃)− µ(η) +N + 1 +


G(x0), if ∆(p) > 0

−G(x0), if ∆(p) < 0.

(22)

Proof. Let f be a generating family homotopy and F be defined as in Lemma 11.

Suppose (t0, x0, η0, η̃0) is a critical point of ∆F . We will first compute the index of

(x0, η0, η̃0) as a critical point of δt0 .

There exist local coordinates in neighborhoods of (x0, η0) and (x0, η̃0) such that

ft0(x, η) = g(x) +Q(η)

and

ft0(x, η̃) = g̃(x) + Q̃(η̃).
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Thus,

Ind(x0,η0,η̃0)δt0 = Ind(x0,η0,η̃0) (f(x, η̃)− f(x, η))

= Ind(x0,η0,η̃0)

(
g̃(x) + Q̃(η̃)− (g(x) +Q(η))

)
= Indx0

(
g̃(x)− g(x)) + Indη̃0(Q̃(η̃)) + Indη0(−Q(η)

)
= G(x0) + Indη̃0(Q̃(η̃)) + (N − Indη0(Q(η)))

= G(x0) + µ(η̃)− µ(η) +N.

It remains to analyze the contribution to the index of ∆F from the t coordinate.

Since | ∂2
∂t2
δt| < ε, we need only determine the sign of ∂

∂t
δt. Solving for

∂ft0
∂t0

(x0, η̃0) −
∂ft0
∂t0

(x0, η0) in (21), we get

∂

∂t
δt0(x0, η0, η̃0) =

−1

t
δt0(x0, η0, η̃0).

Thus, if the critical value, δt0(x0, η0, η̃0) > 0, then ∂
∂t
δt < 0 and by Lemma 11, the

index shifts by 1, yielding the +1 in (22). If δt0(x0, η0, η̃0) < 0, then ∂
∂t
δt > 0, and the

index shifts by 0, which yields the term 1−G(x0) in (22).

Remark 18. For critical points (t0, x0, η0, η̃0) and (t0, x0, η̃0, η0),

Ind(t0,x0,η̃0,η0)∆F − (N + 1) = −
(
Ind(t0,x0,η̃0,η0)∆F − (N + 1)

)
.
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Definition 16. Let d be a double point corresponding to critical points (t0, x0, η0, η̃0)

and (t0, x0, η̃0, η0). Define the index of the double point to be

Ind(d) =
∣∣Ind(t0,x0,η̃0,η0)∆F − (N + 1)

∣∣ .

7.2 Constructions from Front Diagrams

It is known that if two front diagrams are related by a series of Legendrian Reide-

meister moves (Figure 21) and surgeries (Figure 22), then there exists an embedded

GF-compatible cobordism between them. See, for example [4]. We shall introduce

additional “clasping” and “unclasping” moves (Figure 23) that will guarantee the

existence of an immersed GF-compatible cobordism. In order to guarantee generat-

ing family compatibility of the cobordism, certain conditions will be specified for the

surgery and (un)clasping moves.

R1 R2 R3

Figure 21: Legendrian Reidemeister Moves. There is also a version of the R1 move
with the diagram flipped about a horizontal axis. There are versions of the R2 move
with the diagram flipped along either the vertical or horizontal axes.
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Figure 22: A surgery move replaces a 0-tangle with an∞-tangle. It can be performed
on strands with opposite orientation in the same “eye” of a graded normal ruling.
Two surgeries result in additional genus in the cobordism.

U

C

Figure 23: An unclasping move replaces clasped strands with a 0-tangle. A clasping
move replaces a 0-tangle with a clasp.

In order to define the conditions under which the surgery and (un)clasping moves

are admissible, we must first recall the notion of normal rulings, an idea introduced

by people such as Eliashberg [15], Chekanov-Pushkar [6], and Fuchs [17]. Roughly,

the idea is to resolve crossings in the front diagram in order to decompose it into

“eyes”, or unknots with tb = −1 and no crossings.

Definition 17. Given a front diagram of a Legendrian knot Λ such that r(Λ) = 0,

an eye consists of:

1. A left and a right cusp, and

2. Two disjoint paths joining these cusps that meet only at their shared endpoints.

A ruling of a front diagram is a decomposition of the diagram into eyes such that

paths of different eyes meet only at crossings. A switch in a ruling is a crossing in
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the original diagram where two paths of the ruling meet but don’t cross. A ruling is

normal if the switches are all of the type in Figure 24(a). A normal ruling is graded

if at each switch, the difference in Maslov potentials of the strands is 0.

Figure 24: The switches in (a) admit normal rulings. Paired strands must be either
disjoint from or nested with other pairs. The switches in (b) do not admit normal
rulings as the two pairs overlap but are not nested.

The following proposition due to Chekanov-Pushkar [6] gives us an important re-

lationship between graded normal rulings and generating families. Fuchs-Rutherford

also gave an explicit construction of a generating family from a normal ruling in [18].

Proposition 13 (Section 12 in [6], Theorem 2.4 in [18]). A Legendrian knot with

rotation number 0 has a linear-at-infinity generating family if and only if its front

diagram has a graded normal ruling.

This proposition allows us to describe the conditions under which the surgery and

(un)clasping moves are generating family compatible purely from front diagrams. The
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Figure 25: Four rulings of a Legendrian trefoil. The rulings in (a)-(c) are graded
normal rulings and the ruling in (d) is not since the switch is of the last type in
Figure 24(b).

surgery moved can be applied to pairs of strands that correspond to the same eye in

the normal ruling, a proof for which can be found in [4]. The conditions under which

an (un)clasping move is generating family compatible are described in the following

theorem.

Theorem 14. Suppose Λ0 and Λ1 are two front diagrams with graded normal rulings

and Λ1 can be obtained from Λ0 via a clasping or unclasping move c such that either

• neither of the crossings in the clasp are switches, or

• both of the crossings in the clasp are switches,

as in Figure 26. Then there exist generating families for Λ0 and Λ1 and an immersed

GF -compatible cobordism between them. Furthermore, the Lagrangian has one im-
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mersed double point and the corresponding critical points of ∆ have index

± (µ(η̃)− µ(η)) +N + 1±


0, if c is an unclasp,

1, if c is a clasp.

(23)

Figure 26: Two cases for a (un)clasp. In (a), there are no switches at the clasp. In
(b), switches occur at both crossings in that clasp.

Figure 27: Three subcases for a clasp with two switches.
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The proof of this theorem relies on Fuchs-Rutherford’s construction in Section

3 of [18] of a generating family from a graded normal ruling by means of a Morse

complex sequence. While we have omitted background on Morse complex sequences

in this paper, the reader is encouraged to refer to [21], [22], and [23] for a thorough

discussion on Morse complex sequences and their connection to generating families.

In the proof of Theorem 14, we make use of the fact that if a front diagram can be

given a Morse complex sequence, then the Legendrian has a generating family, i.e.

the following:

Proposition 15 (Section 12 in [6], Proposition 4.6 in [22]). A Legendrian knot with

rotation number 0 has a linear-at-infinity generating family if and only if its front

diagram can be given a Morse complex sequence.

Proof of Theorem 14. Let Λ0 be a front diagram with a graded normal ruling. Fol-

lowing Fuchs-Rutherford’s construction in Section 3 of [18], assume that the Maslov

potential of all strands in Λ0 is greater than 2 and less than N − 1. We will construct

a family of functions fs : M ×RN → R with s ∈ [0, 1] in terms of the Morse complex

sequence. For fixed s, let fs,x = fs(x, ·). For values of s away from switches, fs,x takes

the following simple form: for each “eye” in the normal ruling, we get two critical

points whose indices agree with the Maslov potentials of the strands, as well as a

single trajectory between them. Anywhere a switch occurs in the normal ruling, a

handle slide is performed immediately before any after the crossing.

In the case that the clasp has no switches, we directly apply this method to con-

struct a generating family for the Legendrian recorded by its Morse complex sequence.
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Figure 28: This Morse complex sequence corresponds to the generating family of the
Legendrian trefoil pictured in Figure 13 and to the graded normal ruling pictured in
Figure 25a. A Morse complex sequence can be thought of as a 1-parameter family
of chain complexes which encodes the key data of the generating family. Each grey
box has a chain complex representing the generating family restricted to the specified
value of x. The points represent critical points and the vertical lines are ordered
according to their index (0 or 1 in this example). The heights of the points represent
their critical values. The sloped lines indicate that there is a trajectory between the
two critical points. For example, ∂y1 = y2 +y3. The vertical marks on the Legendrian
knot represent handleslides, which are trajectories between two critical points of the
same index.

We then extend this to a 1-parameter family of Morse complex sequences, which gives

us a homotopy of generating families. Such a series of Morse complex sequences is

depicted in Figure 29. Applying Lemma 11, this induces a GF-compatible Lagrangian

cobordism.

In the case that the Legendrian has a ruling such that the clasp in question has two

switches, there are three cases for the relative heights of paired strands in the ruling.

These are depicted in Figure 27. One-parameter families of Morse complex sequences
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for Cases 1 and 2 are given in Figure 30. Notice that handle slides occur immediately

before and after the crossings of the clasp. In order to construct a 1-parameter family

of Morse complex sequences, the resulting unclasp also has two handleslides. Case 3

is completely analogous to Case 2. This proves the existence of a generating family

homotopy fs from f0 to f1, where f0 generates Λ0 and f1 generates Λ1. To illustration

what this homotopy of generating families might look like, Figure 31 depicts possible

level sets for such a generating family homotopy. Again applying Lemma 11, we get

a GF-compatible Lagrangian cobordism.

It remains to show that performing this move corresponds to an immersed double

point in the Lagrangian. Our strategy is to define local coordinates, as described

earlier in this section, on the strands of the clasp and apply Corollary 3. Define a

linear function h(s) = −ms+ b with m, b > 0 and m < b. For s ∈ [0, 1], a homotopy

of generating families describing the unclasping move can be locally given by:

fs(x, η) = x2 + h(s) +Q(η)

f̃s(x, η̃) = −x2 +Q(η̃)

Letting t = es, locally we have δt(x, η, η̃) = −2x2 − h(ln(t)) + Q(η̃) − Q(η). Thus,

the signed Reeb chord heights are locally given by −h(s). By Lemma 11, it suffices

to show that there exists s such that Λs has a Reeb chord with height equal to

t
∂ft
∂t

(x, η)− t∂ft
∂t

(x, η̃) = t
h′(ln(t))

t
= h′(ln(t)) = −m
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Using this local model, Λs has a Reeb chord of signed height −b at s = 0, and Reeb

chord of signed height b − m at s = 1. Thus, by choice of b and m, there exists

s ∈ [0, 1] such that Λs has a Reeb chord with signed height equal to −m.

To calculate the indices of the critical points of ∆ associated to this immersed

point, we study G(x0). Suppose (t0, x0, η0, η̃0) and (t0, x0, η̃0, η0) are the associated

critical points. Locally, g̃(x), g(x) = ±x2. The sign is determined based on the

strands that b and b̃ correspond to in the clasp. It should be noted that, in practice,

we perform these moves for s decreasing.

For an unclasping move with a positive critical value, b̃ corresponds to the strand

touching the positive end of the Reeb chord. So locally, g̃(x) = x2 and g(x) = −x2,

which by definition of the graph index, implies that G(x0) = 0. If the critical value

is negative, then b̃ corresponds to the strand touching the positive end of the Reeb

chord and locally, g̃(x) = −x2 and g(x) = x2. This implies that G(x0) = 1. The

opposite phenomena occurs for a clasping move. If the critical value is positive, b̃

corresponds to the strand touching the positive end of the Reeb chord and locally,

g̃(x) = −x2 and g(x) = x2, which implies G(x0) = 1. If the critical value is negative,

G(x0) = 0.
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Figure 29: A one-parameter family of Morse complex sequences, which induces a
generating family homotopy, for an (un)clasp move of the type in Figure 26(a).
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Figure 30: (Left) A one-parameter family of Morse complex sequences, which induces
a generating family homotopy, for an (un)clasp move in Case 1 of Figure 27. (Right)
A one-parameter family of Morse complex sequences for an (un)clasp in Case 2.
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Figure 31: Possible level sets for the generating family homotopy for a Case 1
(un)clasp with two switches.
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7.3 Realizing Immersed Fillings and Cobordisms

In this section, we apply the moves constructed above to some concrete examples.

First, consider the Legendrian knot Λ+ = m(52) that has polynomial t−2 + t+ t2 from

Figure 2b and Example 1. The set of moves in Figure 32 below shows that there

exists a generating family f+ for Λ+ and an immersed GF-compatible cobordism

from (Λ+, f+) to the (−1, 0)-unknot, that is the unknot with tb = −1 and r = 0.

Since one unclasping move was performed, the resulting cobordism has one immersed

double point of index 2. Furthermore, since the (−1, 0)-unknot has an embedded

GF-compatible disk filling, this construction gives an immesred GF-compatible filling

of (Λ+, f+) with one immersed double point of index 2.

Figure 32: This Legendrian m(52) knot can be related to the Legendrian unknot
with tb = −1 by performing one unclasping move along with a series of Legendrian
Reidemeister moves. This implies the existence of an immersed GF-compatible filling
with one double point.

Next, consider the Legendrian knots Λ− and Λ+ which are, respectively, the m(61)
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knot with polynomial t−3 + t+ t3 and m(101) knot with polynomial 3t−3 + t+3t3 from

Figure 5 and Example 3. Performing two unclasping moves on Λ+ as in Figure 33

implies that there exists generating families f− for Λ− and f+ for Λ+ and an immersed

GF-compatible cobordism (L, F ) from (Λ−, f−) to (Λ+, f+) with two immersed double

points of index 3.

Figure 33: This Legendrian knot Λ+ = m(101) can be related to the Legendrian
Λ− = m(61) knot by performing two unclasping moves. This implies the existence
of generating families f− for Λ− and f+ for Λ+ and an immersed GF-compatible
cobordism from (Λ−, f−) to (Λ+, f+) with two double points.

The remainder of this section is devoted to proving Theorems 4 and 5. We begin

by recalling the following definition:

Definition 18. Let (Λ, f) be a Legendrian knot with polynomial

Γf (t) = cnt
−n + ...+ c1t

−1 + c0t
−0 + t+ c0t

0 + c1t
1 + ...+ cnt

n. (24)

A minimal immersed GF-compatible disk filling is one with genus 0 and ck

immersion points of index k for all k ∈ {0, ..., n}.

For Legendrian knots, the following theorem was proven by Melvin-Shrestha [25]
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in terms of Legendrian Contact Homology, and by Bourgeois-Sabloff-Traynor [4] for

generating families. The latter also gives a higher dimensional analog of this theorem.

Theorem 16 (Theorem 1.2 in [25], Theorem 1.2 in [4]). For any polynomial Γ sat-

isfying one-dimensional duality, there exists (Λ, f) such that Γf = Γ.

The proof of this theorem is entirely constructive and is based on the building block

Td in Figure 34. It can be verified that this twist Legendrian knot has a generating

family with polynomial Γ(t) = t−d + t + td. Using the fact that for two Legendrians

(Λ, f), (Λ′, f ′),

Γf#f ′(t) = Γf (t) + Γf ′(t)− t, (25)

we can take connect sums of Legendrian knots of the type Td to achieve any desired

polynomial.

We are now ready to prove Theorem 4, which is a simple extension of the argu-

ment above. Recall that Theorem 4 states that given a polynomial, there exists a

Legendrian having that polynomial which has a minimal immersed GF-compatible

disk filling.

Proof of Theorem 4. Construct a Legendrian (Λ, f) with polynomial Γ(t) in the method

described above. A normal ruling can be constructed with no switches at the clasp

and a switch on each of the twist crossings. Perform an unclasping move at each clasp

and a series of Reidemeister 1 moves for all of the twists to obtain the (−1, 0)-unknot,

which is known to have an embedded disk GF-compatible filling.
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0

1

n+ 1

n+ 1

Figure 34: The knot Td has polynomial t−d + t+ td.

Theorem 5 gives us ways of constructing new fillings from existing ones. The first

part allows us to create a new filling with the same genus and an additional pair of

immersion points. The second allows us to create a new filling with higher genus at

the expense of an additional immersion point. Together, these prove the existence

of the entire upper diagonal of the lattice in Figure 7. The proof of this theorem is

an application the following fact from [4]: performing a 0-surgery on an embedded

2-dimensional Legendrian gives rise to an embedded 2-dimensional Legendrian. This

surgery is performed by attaching a 1-handle, shown in Figure 35, in a 1-attaching

region (i.e. a cusp edge, shown in green) on the Legendrian along a core disk (shown in

red). After lifting the given Lagrangian filling (L, F ) to a 2-dimensional Legendrian,

we can perform this move locally so that the boundary is not affected. Projecting

back down to the Lagrangian gives us a new filling that is still GF-compatible with

the Legendrian (Λ, f).
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Figure 35: A 1-handle with one Reeb chord, shown in blue. The 1-attaching region
is shown in green and the core disk is shown in red.

Proof of Theorem 5. Consider the Legendrian lift ΛL of (L, F ) to R× T ∗(R+ ×M).

Since L is cylindrical over Λ, there exists a neighborhood in L of the rightmost cusp

c of Λ such that in the Legendrian lift ΛL, this neighborhood consists of a cusp edge

as depicted in Figure 36. Choose a core disk between a point in this neighborhood

and a point on a cusp edge in a “Legendrian flying saucer” as in Figure 37. After

performing the 0-surgery, the new Legendrian has two new Reeb chords: one on the

1-handle and one on the flying saucer. Now, project this 2-dimensional Legendrian

in R× T ∗(R+×M) to a 2-dimensional Lagrangian (L′, F ′) in T ∗(R+×M). The two

Reeb chords result in two immersed double points in (L′, F ′). Since the modifications

made on ΛL were done locally and away from the boundary, the filling (L′, F ′) is still

GF-compatible with (Λ, f).

The proof the second part of this theorem follows a similar structure. Instead

of attaching the 1-handle along a core disk connecting to a flying saucer, create

a core disk between two points in the lifted neighborhood of c. The resulting 2-
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dimensional Legendrian will have additional genus and one additional Reeb chord.

Consequently, the Lagrangian projection (L′, F ′) will have additional genus and one

additional immersed double point.

Remark 19. Alternatively, we could use the combinatorial moves described in the

previous section on any right cusp of the front diagram of Λ, as in Figures 38 and 39.

However, these moves do not guarantee that (L′, F ′) is GF-compatible with (Λ, f).

It would however, show that there exists a generating family f ′ for Λ and a GF-

compatible immersed filling (L′, F ′) of (Λ, f ′) such that either (a) (L′, F ′) has the

same genus and two additional immersion points, one of index k and one of index

k + 1 or (b) with genus g + 1 and one additional immersion point of index 1.

Figure 36: Performing a 0-surgery on the cusp edge of ΛL with a Legendrian flying
saucer as in the proof of Theorem 5.
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Figure 37: Performing a 0-surgery along the attaching curve extending between two
points of the cusp edge of ΛL as in the proof of Theorem 5.

Figure 38: Alternate construction for Theorem 5 to create a new GF-compatible
filling with two additional immersed double points.
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Figure 39: Alternate construction for Theorem 5 to create a new GF-compatible
filling with higher genus and one additional immersed double point.
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