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Abstract: The nuclear spin symmetry conversion transition, whereby a methyl group changes 

tunnelling state (A ⟷ E) and total nuclear spin (ΔI = ± 1), is made resonant by the flip of an 

unpaired electron spin (Δms = ± 1). The coupling between an unpaired electron in a free radical 

and a methyl group in a nearby molecule is via the inter-molecular spin-spin interaction. The 

matrix elements and transition probabilities for this transition are calculated explicitly. The 

motivation behind the calculation is to aid in the interpretation of electron spin relaxation 

experiments in γ-irradiated 4-methyl-2,6-t-butylphenol where these resonant transitions have a 

profound effect. The results presented have also been useful in the interpretation of nuclear 

magnetic resonance experiments in the same substance. 

 

1. Introduction 

 

Nuclear spin symmetry requires that a change of methyl group tunneling state be 

accompanied by nuclear spin conversion. If unpaired electron spins in the form of free radicals 

are present, this spin conversion tunnelling transition can be made resonant by the simultaneous 

flip of an electron spin. This resonant condition is satisfied at an applied magnetic field where 

the field dependent electron Larmor frequency is the same as the field-independent tunnelling 

frequency. 

Free radicals can be produced by y-irradiation and in γ -irradiated 4-methyl-2,5-di-t-

butylphenol (γ -MDBP), the methyl group tunnelling frequency is 9･45 GHz [1]. This is a 

convenient frequency, since it is accessible with a conventional X-band electron spin resonance 

(E.S.R.) spectrometer. Methyl group spin conversion has been observed directly by a clever 

temperature and magnetic field switching experiment [2] and by its effect on electron spin 

relaxation [3]. A detailed study of the frequency dependence of the relaxation process [4] may 

give considerable insight into the distribution of tunneling frequencies. Phenomena related to the 

E.S.R. studies can also be observed with nuclear magnetic resonance (N.M.R.). The shape and 

other interesting properties of the tunnelling resonance can be investigated by a frequency study 

of the nuclear spin relaxation [5-7] and the conversion process manifests itself in a temperature 

study of the nuclear spin relaxation rate [8]. Also, spin symmetry conversion of tunnelling 

methyl groups can be detected thermally [9, 10]. 

In this paper we shall concentrate on the theoretical aspect of the resonant conversion 

process involving a methyl group and an electron. Although the main incentive of such an 

investigation is the need to calculate certain transition probabilities relevant to the E.S.R. 

experiments in γ-MDBP [4], some of the results have been applied to an analysis of N.M.R. 

experiments in γ-MDBP [6]. Finally, many of the results are quite general and it is hoped that 

they will be helpful in the interpretation of other experiments in molecular solids containing 

tunnelling methyl groups. 

The peculiar nature of the electron spin relaxation in γ -MDBP can be understood 

qualitatively by considering the following model. γ -irradiation of a single crystal of MDBP 

produces a very low concentration of free radicals containing a single unpaired electron and it 
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can be assumed that a methyl group on a nearby undamaged molecule will interact with only one 

electron. At low temperatures, only the 4-methyl group need by considered, since the di-t-butyl 

groups are completely hindered. Also, the 4-methyl group on the damaged molecule can be 

neglected, since it has a tunnelling frequency of 4-13 GHz [1]. The coupling between the 4-

methyl groups on undamaged molecules and an electron on a damaged molecule is due to the 

intermolecular spin-spin interaction between the electron and the three protons. When the 

resonant condition is satisfied, a change of methyl group tunnelling state accompanied by an 

electron flip will tend, independent of the lattice, to bring the electron and a methyl group to a 

common temperature. At the same time, however, the electron is coupled to the lattice which 

tends to bring the electron to an equilibrium temperature given by that of the lattice. This 

electron-lattice coupling is introduced phenomenologically through the relaxation rate Rs. The 

coupling between the methyl groups and the lattice is extremely weak at 4 K, as has been 

demonstrated experimentally [3], and can be completely ignored. Therefore, the only 

communication link between the methyl group and the lattice is via the electron. With this 

model, Clough and Hill [3] constructed the following coupled equations describing the relaxation 

process of a system composed of an electron in a sea of methyl groups; 

 
βs and β𝒾 refer to the departure from equilibrium of the inverse temperature for the electron and 

the ith methyl group. The electron relaxation rate is Ra and Wi8 

is the transition probability per unit time for the resonant transition discussed 

previously and indicated in figure 1. The initial conditions for (1) depend on the 

experimental preparation but if the E.S.R. signal is saturated for a time ta, it can 

easily be shown that βs(0) = − βl and βi(0) = βl(exp ( − Wista) − 1) where βl is the inverse lattice 

temperature. 

 In order to solve the coupled equations (1), the Wis are required. As discussed in greater 

detail in § 2, these transition probabilities depend on the distance between the methyl group and 

the electron, the orientation of the methyl group with respect to the position of the electron and 

the orientation of the methyl group with respect to the applied magnetic field. In MDBP, all these 

parameters can be determined, since the crystal structure is well known [ 11]. The only unknown 

parameter in Wis is the tunnelling frequency of each methyl group. Even though the average 

tunnelling frequency is known to be 9·45 GHz, it is also known that the presence of the free 

radical leads to a distribution of tunnelling frequencies [5, 7], probably because the defect creates 

strain in the crystal which perturbs the intermolecular potential and therefore the barrier to 

hindered rotation. Of interest at this time are the details of this distribution and in particular the 

dependence of the tunnelling splitting on the distance from the electron. For a given model of the 

tunnelling distribution the Wis can be solved explicitly with no adjustable parameters. The 

coupled equations (1) can then be solved and compared with the experimental results [4]. 

 The two-fold splitting of the ground torsional oscillator state of a methyl group [12] is 

shown in figure 1. The ground, or A state, has associated with it a total nuclear spin of I = 
3

2
 and 

the doubly-degenerate excited, or E state, has associated with it I = 
1

2
. These conditions are 

imposed by nuclear spin symmetry in complete analogy with ortho and para-hydrogen. Thus a 

transition between tunnelling states corresponds to spin conversion since ΔI = ± 1. Such a 



transition will be accompanied by a change of Δm (no subscript on m implies m1) of 0 or ± 1 

since the electron-methyl group spin-spin interaction hamiltonian is linear in the nuclear (and 

electron) spin operator. Similarly, for the electron, Δm8 = 0, ± 1, but since we are interested in 

the resonant process only, we restrict ourselves to Δm8 = ± 1. The total transition probability W 

(suppressing the subscripts) appearing in the coupled equations (1) relevant to the E. S. R. 

experiments and also appearing in expressions relevant to the N.M.R. experiments [5] can be 

thought of as the sum of three terms, corresponding to |ΔM| = 0, 1 or 2 where ΔM = Δm8 + Δm 

with Δm8 = ± 1 and Δm8 = 0, ± 1. Such a separation is particularly relevant to the N.M. R. 

experiments. Each of these three types of transitions will, in turn, be the sum of several transition 

probabilities since a given Δm can occur in several ways as indicated in figure 1. 

The transition probabilities W for the resonant process are calculated in the following 

section. Those persons not concerned with the mathematical details can go directly to § 3 without 

loss of continuity, since it is intended to be self-contained. 

 

 

2. CALCULATION OF RESONANT TRANSITION PROBABILITIES 

2.1. Introduction 

We consider the composite system of a methyl group and an electron. The former is 

assumed to be in its ground torsional state [12]. The hamiltonian for this system can be taken to 

be 

 
 The first term is the tunnelling hamiltonian which gives rise to the two-fold splitting hv1 

of the ground torsional state. The ground state is labelled by T = A and the doubly-degenerate 

excited states by T = Ea and Eb. The second term in (2) is the nuclear Zeeman hamiltonian for 

the three protons in the methyl group and the nuclear Zeeman states are characterized by the 

quantum numbers I and m. Spin symmetry statistics require that T = A ⟷ I = 
3

2
 and T = Ea, Eb 

⟷ I = 
1

2
 The projections m are ± 

1

2
 for I = 

1

2
 and ± 

3

2
, ± 

1

2
 for I = 

3

2
· The third term in (2) is the 

electron Zeeman hamiltonian and the electron Zeeman states are characterized by the projections 

m8= ± 
3

2
. The last term in (2) is the dipolar interaction hamiltonian which couples the states of the 

system which are characterized by the set (TImm8). 

 A resonant transition implies I = 
3

2
 ⟷ 

1

2
 accompanied by m8 =  

1

2
 ⟷ 

1

2
. In general, 

however, the total transition probability for a change of state (I'm8') (Im) is given by 

 
where PTm is the probability of being in the state (Tm) given the system is in the state (Im8). In 

determining PTm, we can neglect the nuclear Zeeman energies since the nuclear Larmor 

frequency vn, is much smaller than either the tunneling frequency v1 or the electron Larmor 

frequency v8. Thus PTm
−l is the degeneracy associated with the (Im8) state and is equal to 4 since 

there is one T state and four m states for I =  
3

2
 and two T states and two m states for I =  

1

2
. The 

transition probabilities between individual states of the system are given by [13], pages 27-28, 



 
where we can associate l =2 with T = Ea, Eb and l = 1 with T = A. 

The wavefunctions Ψ(TImm8) are discussed in the next section and 𝓗d is discussed in § 

2.3. The matrix element and transition probabilities are calculated in § 2.4. The normalized 

distribution function g(v) appearing in (4) is discussed in § 3. 

 

2.2 The wavefunctions 

 

 We require wavefunctions diagonal in the first three terms of (2). The dipolar hamiltonian 

is then assumed to be small in the usual quantum-mechanical sense that its effect can be treated 

by first-order perturbation theory via its matrix elements in (4). The total wavefunctions 

Ψ(TImm8) in ( 4) will contain spatial as well as spin parts, so we now write them Ψ(TImm8rr8), 

where r refers to the methyl group and r8 to the electron. The methyl group state has associated 

with it a spin (plus tunnelling) function χ(Tlm) and a spatial function K(r). The electron state has 

associated with it a spin function φ(m8) and a spatial function L(r8). It is convenient to construct 

these functions according to their transformation properties under the operations of the point 

group C3, the group relevant to a triangle of spins where only even permutations or real rotations 

about an axis perpendicular to the group are permitted [12]. The label Γ refers to the three 

possible one-dimensional irreducible representations of C3 [14]; A, Ea and Eb. Since C3 contains 

only one-dimensional representations, the total wavefunction is given by a single product of the 

four constituent wavefunctions and we can write 

 
where no superscript means the function must transform according to the totally symmetric A 

representation. This is clearly the case for L and Φ, since the electron is to be treated as a point 

source. If χΓ transforms like the Γ representation, then KΓ* must transform like the Γ* 

representation, since the representation product Γ*⊗ Γ= A (where Ea* = Eb). Thus Ψ will 

transform like A. 

 The electron spin functions are trivial. For the electron spatial functions, we assume a 

Kronecker delta function, namely L(r8) = δ(r8-R8), where the eigenvalue of any spatial operator 

𝑓(r8) is simply 𝑓(R8). The methyl group spin functions χΓ(Tlm) can be written χΓ(Im), since there 

is a one-to-one correspondence between the tunnelling states T and the irreducible representation 

Γ for these functions. The functions χΓ(Im) are known [12] and can be expressed in the 

convenient form 

 
where Δp

Γ are the elements of the character table for C3 [14] as given in the table. The spin 

functions for m = − 
3

2
 and − 

1

2
 are obtained by interchanging + and − which refer to the ± 

1

2
 and − 

1

2
 spin states of the individual protons in the methyl group. In constructing the methyl-group 

spatial functions, it is assumed [15] that the classical rotation of the methyl group is strongly 

hindered. This means that the proton coordinates are localized at the corners of an equilateral 



triangle fixed in space. At the same time, however, this rigid rotor can undergo rapid quantum-

mechanical tunnelling between the three equivalent positions of the fixed triangle. With this 

assumption, the properly symmetrized methyl-group spatial functions can be taken to be 

 
where the subscripts on r refer to the protons and the subscripts on R refer to the coordinates of 

the fixed triangle. 

 
As an aside, we note that even though the two tunnelling states T = Ea and Eb are 

degenerate, they are distinguishable, as shown by rotational polarization experiments [16]. Thus 

we do not treat the two degenerate irreducible representations Γ = Ea, Eb by which the methyl-

group spin functions for T = Ea and Eb transform as the two components of a two-dimensional 

representation. 

We now discuss two reference frames relevant to the problem. The nuclear spin 

eigenvalues m and the electron spin eigenvalues m8 refer to a space-fixed frame (SFF) whose z-

axis is coincident with the applied magnetic field F. The molecular or methyl-group fixed frame 

(MFF) has its origin at the centre of the triangle of spins and its z-axis perpendicular to the 

group. The first proton coordinate makes an angle λ with the x-axis of MFF. In this frame the 

vectors RP in (7) specifying the proton co-ordinates are Rp = (Rp, θp, φp) = (Δ, π/2, φp), where φ1 

= λ, φ2 = λ + 2π/3 and φ3 = λ – 2π/3. The parameter Δ is the distance from the centre of the 

triangle to each proton. The electron coordinates in MFF will be denoted R8 = (R8, θ8, φ8). The 

orientation of SFF as expressed in MFF is specified by the angles (θ1, φ1). In order to transform 

from SFF to MFF we must rotate through the Euler angles (as defined by Rose [17]) αβγ = 0, − 

θj, − φj. That the first angle is zero follows from the fact that we need not specify uniquely the xy 

plane of SFF. The vectors and angles discussed in this section are shown in figure 2. 

 

2.3 The dipolar Hamiltonian 

  

  The dipolar interaction between a methyl group and an electron has been discussed 

previously [5]. The advancement here is, that by expressing the hamiltonian in spherical tensor 

form, the relevant angles appear in a natural way and, more important, the matrix elements are 

easily calculated via the Wigner-Eckart theorem. Throughout the rest of § 2 we shall refer 

frequently to Rose [17]. Equations referred to as (Rn) imply equation (n) in Rose. Also, all 



spatial and spin operators will appear with a tilde underneath. Those referring to SFF will have a 

hat over them and those referring to MFF will not. 

 The dipolar interaction between two magnetic moments is given in the conventional form 

by Abragam ( [13], pages 97 and 103-104). This, in turn, can be transformed into spherical 

tensor form [18, 19]. If one then sums over the three protons (p = 1, 2, 3) the hamiltonian for the 

dipole-dipole interaction between an electron and a methyl group takes on the form 

 
Y2,μ is a spherical harmonic of the angles (operators) θps, φps that specify the vector (operator) rps 

between the pth proton and the electron. The gyromagnetic ratios of an electron and a proton are 

γe and γn respectively and both are defined as positive quantities. T2,μ( ) is the μ. component 

of an irreducible spherical tensor of rank 2 as defined by (R5.2) and given in (10) below in terms 

of the spin operators. Equation (8) is specified in MFF. However, the angular momentum 

eigenvalues m and m8 in the spin functions are those of the SFF spin operators. Therefore, we 

express T2,μ( ), where  and  refer to MFF in terms of T2,μ( ), where  and   refer 

to SFF. This transformation is given by (R5.1) 

 
where Dvμ

(2) is a rotation matrix of order 2 as defined by Rose and is a function of the Euler 

angles specifying the magnetic field as discussed in the previous section. Finally, the second-

rank spin tensor is given by 

 

where C(L1, L2, L ; M1, M − M1) is a Clebsch-Gordan coefficient and  or ) is the τ 

component of a spherical vector operator l defined in (R5.9) in terms of the lowering and raising 

operators.  

 In order to cast (8) in a form which is irreducible with respect to C3, we first 

express the spatial operators ps = ( ps, ps, ps) in terms of vectors more relevant 

to the symmetry of the problem; namely the position operator for the electron 

s = ( s, s, s) and the position operator for the pth protor p = ( p, p, p). The 

three vectors are related by ps = s − p as can be seen from the corresponding 

coordinate vectors shown in figure 2. This transformation is straightforward 

but tedious and the details are discussed in the Appendix. The result is an 

infinite series in powers of p| s (times s 
−3) and since the eigenvalue of this ratio 

is Δ/Rs (see previous section), and since Δ ⪡ Rs, we carry the calculation to order 

p/ s. The result from the Appendix is that the factor ps
−3 Y2,

 
−μ(  ps,  ps) in (8) 

is given by 

 
Substituting (11) (with (9) and 10)) into (8) gives rise to two terms corresponding to the two 

terms in (11). 

The first term does not depend on the proton spatial operators p or, equivalently, 



it does not depend on the structure of the methyl group. The only dependence on p is via the spin 

operator p. The symmetrized nuclear spin operators are given by [5]  

  

and the sum on p of p in this first term just gives A since ΛpA= 1 for all p (table). Matrix 

elements of A between the nuclear spin functions χΓ'(I'm') and χΓ (Im) will only be non-zero 

when (Γ')*⊗A⊗Γ = A, which implies I' = I. Thus this term in the hamiltonian cannot contribute to 

spin symmetry conversion and therefore will not contribute to any resonant phenomenon 

involving the methyl group and the electron.  

 For the second term arising from the substitution of (11) in (8) the dependence 

on p (using (9) and (10)) is given by pY1,ξ(θp, φp) ν−η
p. This is easily symmetrized 

with respect to C3 by defining ξ
Γ through the relation 

 
Since Γ*⊗ Γ = A, the total hamiltonian will transform like A. It is easily shown from (12) and 

(13) that the nuclear spin symmetry adapted spatial operators are given by 

  
Since rY1r(θφ) is just the τ spherical component of the vector r, the ξ

Γ can be thought of as the 

components of a vector Γ∝  Λp
Γ*rp which is precisely the transformation used by Clough 

and Hobson [5]. When (13) is substituted into the hamiltonian, we can omit the Γ = A part for the 

same reasons given in the previous section. In any event, it can be shown that all the spatial 

matrix elements of A are zero, even the ones allowed by the group theoretical multiplication 

rules. 

 Using (8), (9), (10), the second term in (11), and (13) with Γ = Ea, Eb (or equivalently, Γ 

= Ex with x = a, b) we have the final symmetry-adapted form for the hamiltonian. We define the 

component indices α, β, ρ and σ by α = η, β = ν − η, σ = ξ and ρ = − μ − ξ, where η, ν, ξ and μ are 

those which appear in (8) to (11) and (13). The hamiltonian is 

 

with G and given by 

 

Equation (15) contains two spatial operators and  and two spin operators  and , the 

former of each pair referring to the electron and the latter to the methyl group. The spatial 

operators are expressed in MFF and the spin operators in SFF. The correlation between the two 

frames is given by the dependence on the magnetic field angles θj, φj in Gαβρσ. 

 

2.4. Spin conversion matrix elements and transition probabilities 

 



 From (5) and (15), the matrix elements required in (4) are given by 

 
The electron spatial matrix elements are trivial and from the discussion of the L functions in § 

2.2 and the form of N in (17), we have 

 
This is equivalent to replacing the operator s in 𝓗d by RS, the position coordinate of the 

electron in MFF. 

 For the methyl-group spin and spatial matrix elements, we must satisfy Γ’*⊗Ex⊗ Γ = A 

for  = a, b. Thus, for fixed Γ' and Γ in (18) only one term in the sum on x is non-zero. We can, 

without loss of generality, choose Γ' = A and Γ =Ex*, since we are interested only in matrix 

elements which involve a change of tunnelling state. The methyl-group spatial matrix elements 

can be calculated from (7) and (14) and shown to be  

 
Thus for a given x (i.e. Ea or Eb), only one term in the sum over σ in (18) is nonzero. As an 

aside, we note that the matrix element of MA between all states Γ' and Γ is zero. The non-zero A-

type matrix elements arise from the first term in (11) which has been discarded. 

The electron and methyl-group spin matrix elements are calculated by employing the 

Wigner-Eckart theorem (R5.14) and are given by 

 
The reduced matrix elements ⟨Γ, J || Γ', J' || Γ", J") in (21) and (22) have been calculated by 

computing a single matrix element explicitly for each case. In order that the Clebsch-Gordan 

coefficients in (21) and (22) be non-zero, we must have mS + α = mS ' and m + β = m'. Thus for a 

given m, m', mS and mS ' the sums on α and β in (18) reduce to a single non-zero term. 

 The desired matrix elements are obtained by substituting (16), (19), (20), (21) and (22) 

into (18). Only the sum on p remains. There are two kinds of non-zero matrix elements: 

A⊗Ea⊗Eb and A⊗Eb⊗Ea. We emphasize that these two matrix elements are not equal and neither 

are their transition probabilities. This will be discussed later. It is convenient to define a function 

ZΔM
Ex that contains all the angular dependence of the matrix element and further, has the useful 

property that a powder average of | ZΔM
E |2 gives unity. ZΔM

E is defined by 



 
 

where ΔM = Δm + ΔmS = m' − m + mS' − mS and where the upper signs are chosen for Ex = Ea 

and the lower signs for Ex = Eb. In obtaining (23) we have used (R3.17 a) and (R4.12) to 

transform the Clebsch-Gordan coefficient and the rotation matrix. With this definition, the matrix 

elements are given by 

 
where M is just shorthand notation for mS ', mS, m', m and q(M) is just the product of three 

Clebsch-Gordan coefficients 

 
In (25), the first two terms arise out of the electron and methyl-group spin matrix elements 

respectively and the third term has its origin in the hamiltonian (equation (10)). 

It is now convenient to investigate the properties of ZΔM
Ex in (23). First, since the 

transition probabilities depend on | ZΔM
E |2, it is clear they do not depend on the angle λ 

specifying the orientation of the methyl group in the plane (figure 2). Secondly, using (R4.12) 

and (RIII.7) it can be shown that the dependence of | ZΔM
E |2 on φF and φS is only through their 

difference φjs = φj − φs as indicated in figure 2. This is to be expected and simply says that the 

choice of the xy axes in MFF does not matter. Using (R4.22), (R4.31) and (R3.16 a) it can be 

shown that 

 
It is this property on which the rotational polarization experiments are based [16] and which 

leads to the distinguishability of the Ea and Eb states. It can be shown from (R4.60), (R4.61) and 

(R3.7) that a powder average of | ZΔM
E |2 gives unity. 

 
Further, an average over the electron angles, but not the field angles, a situation which may be 

relevant for a single crystal, gives 

 
where W(abcd;ef) is a Racah coefficient and PJ(cos θ1) is a Legendre polynomial. Equation (29), 

which is evaluated explicitly in § 3, is obtained by using (R4.61), (R4.22), (R4.25), (R4.30), 

(R4.27 b), (R3.16 b), (R3.17 b), (R6.5 a) and (R3.16 c). It is easily verified that (28) and (29) are 

consistent. 

The transition probabilities in (4) can now be given explicitly using (24) and (25). In 

order to make the general transition probability one which corresponds to a resonant transition, 

we can, without loss of generality, choose T' = A, I' = 3

2
, ms' = 1

2
, 1'=1, T = Ex* I = 1

2
, ms= − 1

2
 and 1 



= 2 in (4), since this is the case we have used in producing (24 ). Evaluating the first Clebsch-

Gordan coefficient in (25), and substituting (24) and (25) into (4) gives the desired result 

 
Substituting (30) into (3) with PAm' = 1

4
 gives the final result. In (3), the sum over T' reduces to a 

single term T' =A and the sum over T to two terms T = Ea and Eb. It is convenient to write the 

total transition probability as a sum over Δm (three terms for fixed Δms rather than a sum over m' 

and m. When this is done, the total transition probability is given by (31) and (32) in the next 

section. 

 

3. SUMMARY OF RESONANT TRANSITION PROBABILITY CALCULATION 

 

The transition probability for the resonant spin conversion transition Δ1 = −1 (A → E), 

Δ1 = +1, Δms = 1 (or Δ1 = +1 (E → A), Δ1 = -1, Δms = −1) indicated in figure 1 is given by  

 
The three individual contributions in (31) are given by 

 
where ΔM = Δms + Δm. In (32) γe and γn are the electron and proton gyromagnetic ratios of an 

electron and a proton, Δ( = 1·02 Å in MDBP) is the distance from the centre of the triangle of 

protons in the methyl group to each proton and Rs is the distance between the methyl group and 

the electron. The parameter a| ΔM | is 6, 3 and 1 for | ΔM | = 2, 1 and 0. Clearly | ΔM | = 2 implies 

Δm = Δms, | ΔM | = 1 implies Δm = 0 and | ΔM | = 0 implies Δm = −Δms, since | Δms | = 1. We 

now discuss the remaining parameters in (32). 

 The normalized distribution function g(v) has been introduced phenomenologically as in 

the ' Golden Rule ' approach to first-order perturbation theory ([13], pp. 27 and 28). Clearly, for a 

resonant process, involving a single methyl group and a single electron, we require vs – vl − Δmvn 

= 0, where vl is the tunnelling frequency and vs and vn are the electron and nuclear Larmor 

frequencies respectively. However, since there will, in general, be a spread in values of vs and vl 

there will be a spread in values of vs (or vo) for which vs – vl = 0. (We are neglecting vn, since vn 

⪡ vs, vl, but in some N.M.R. experiments the term Δmvn in g(v) is important [5].) Thus g(v) is 

given by a convolution of the tunnelling frequency lineshape and the E.S.R. lineshape (and in 

some cases, the nuclear lineshape). In order to interpret the E.S.R. relaxation experiments, the 

following procedure is adopted to determine a specific form for g(v). A model is assumed which 

gives the tunnelling frequency of each individual methyl group in a system composed of a single 

electron and its surrounding methyl groups. Now an ensemble of such systems is assumed where 

the set of tunneling frequencies in one system is the same as the set of tunnelling frequencies in 

any other system, but where the electron Larmor frequency vs is allowed to vary from system to 

system. With this model the distribution function can be taken as the E.S.R. Gaussian lineshape 

function given by 



  
where v is the halfwidth of the E.S.R. spectrum which in the case of y-MDBP is 45 MHz. It must 

be remembered, however, that with this form for g(v), explicit values of v1 must be associated 

with each individual methyl group.  

 The transition probability in (32) is proportional to Rs
–8 so the strength of the interaction 

falls off rapidly with distance. This factor Rs
–8 can be understood qualitatively by the following. 

The local dipolar field at the site of a methyl group due to an electron at a distance Rs is 

proportional to Rs
–3. However, a methyl group can only convert from one nuclear spin species to 

another if there is a gradient in this local field over a distance A characteristic of the size of the 

group. This gradient is proportional to (Δ)Rs
–4 and the transition probability is proportional to 

(Δ)2 Rs
–8. 

 The factors ZΔM
Ex with x = a and b contain the angular dependence of the matrix 

elements. The fact that there are two terms takes into account the degeneracy of the I = 1

2
 

tunnelling state. The function ZΔM
Ex has the property that the transition probability for A ⟷   Ea 

transitions for a given ΔM is the same as the transition probability for A ⟷   Eb transitions for − 

ΔM. This is stated formally in (27). Thus, replacing ΔM by − ΔM in (32) does not change the 

total transition probability as would be expected. 

 There are five angles that enter into ZΔM
Ex and they are measured in a reference frame 

whose z-axis is perpendicular to the plane of the group. The angle λ specifies the orientation of 

the group in the plane, the angles θs, φs specify the vector Rs and the angles θl, φs specify the 

orientation of the magnetic field. These angles are shown in figure 2. The matrix elements 

depend on the four angles λ − φs (or λ – φl), φs – φl, θs and θl, and since the first of these four 

enters only through a phase factor, the transition probability only involves the latter three. The 

explicit form for ZΔM
Ex is given in (23). This is a useful expression, partially because it is 

straightforward to calculate on a computer, but more important, it is easily manipulated 

algebraically. This latter advantage manifests itself when it comes to computing averages as 

discussed below. Equation (23) can be interpreted in the following way. The matrix elements 

depend, via a third-order spherical harmonic, on the angles θs, φs specifying the electron-methyl 

group vector Rs However, the angular momentum projection quantum numbers m and ms 

through which the transition is characterized refer to the magnetic field. Thus, this third-order 

spherical harmonic which concerns only the relative orientation of the methyl group and the 

electron must be rotated into the magnetic field axis. The rotation matrix is a function of the 

angles θj, φj specifying the relative orientation of the methyl group and the magnetic field. The 

particular rotation will depend on the values of ΔM = ΔM + ΔMs = m' – m + ms' − ms. 

 For experiments with a powder sample, the transition probability can be averaged over 

the angles θs, φs, θj, φj, and the factor in curly brackets in (32) becomes 

 
since the powder average of | ZΔM

Ex |2 is unity as indicated in (28). For a single 

crystal, an average of the magnetic field angles θj, φj is, in general, not appropriate 

and, in fact, there will be as many unique sets of θj, φj as there are molecules per 

unit cell, since these angles are specified in the reference frame of the molecule. 

If one transforms the sum over all methyl groups in the coupled equations (1) to 

a sum over shells of methyl groups (i.e. those between R and R + δR), then there 

will be many sets of angles θs, φs (one for each methyl group) in each shell. In 



this case, an average over θs, φs may be appropriate, even for a single crystal. 

Such an average of | ZΔM
Ex |2 (i.e. an average involving θs, φs but not θj, φj) is 

given by (29) and (29) calculated explicitly yields 

 
where the upper sign is taken for Ex = Ea and the lower sign for Ex = Eb. As expected, the field 

angle φj does not enter. That (35) is consistent with the total angular average of | ZΔM
Ex |2 being 

unity is clear. When (35) is used in (32), the middle term of (35) drops out and the factor inside 

the curly brackets in (32) can be replaced with 

 
Whether or not the average in (34) and (36) can be used will depend on the crystal structure of 

the material under study. 

For an E.S.R. experiment, we can drop the term Δmvn in the spectral density in (32). For 

a powder sample, therefore, the total transition probability per unit time for a spin conversion 

tunnelling transition is given by (using (31), (32) and (34)) 

 
where the subscript i labels the methyl group as in the coupled equations (1). 

 

4. CONCLUDING REMARKS 

 

We have calculated the transition probability for the resonant process whereby a change 

of methyl-group tunnelling state is accompanied by the flip of an electron spin. The only 

approximation employed is that the distance between the electron and the methyl group (5.2 Å 

being the smallest such distance in γ-MDBP) be large compared with the size of the methyl 

group (1·02 Å for MDBP). The role such a process plays in electron spin relaxation has been 

discussed and the results have been presented in a form which is readily useable in aiding the 

interpretation of E.S.R. experiments. On reading the paper by Clough and Hobson [5], the 

application of the results obtained here to N.M.R. experiments will become apparent. In order to 

obtain numerical results for the transition probabilities one requires a knowledge of the crystal 

structure of the material under investigation. If a powder is used, only the electron-methyl group 

distances are required. If these parameters are known, the only remaining parameters involve the 

methyl group tunnelling frequencies as a function of distance from the electron. Thus, in a 

substance like γ -MDBP where all the geometric factors are known, the results presented here, in 

conjunction with E.S.R. relaxation experiments, should provide a test for models of the tunneling 

distribution [4]. In turn, successful models of the tunnelling frequency distribution can be used as 

a test for calculation of the intermolecular potential [7]. 

 

APPENDIX 

 

Equation (Rn) refers to •equation (n) in Rose [17]. We wish to express ps
−3 Y2,

 
−μ( ps, 

ps) in equation (8) in terms of ( s, s, s)and ( p, p, p). From the relation 



 
Equation (A 3) is multiplied by ps

2 and (A 2) substituted twice into the result. This will give a 

term involving only ( s, s, s), another term involving only ( p, p, p)and a cross term 

involving all six parameters. For the first two terms, (A 3) can be used to retrieve Y2,
 
−μ( s, s) 

and Y2,
 
−μ( ps p). Further, it can be shown that the two cross terms are equal. The result is  

 
In order to obtain the desired result, we must multiply (A 4) by  ps

−5 to calculate this one can 

expand  ps
−1 in spherical harmonics [20). 

 
One can then multiply (A 5) by itself and the pairs of spherical harmonics involving the same 

angles can be expressed as a sum over single spherical harmonics. This is done using (R4.30) 

and (R4.25). One then multiplies the result by (A 5) three more times until ps
−5 is achieved; at 

each step using (R4.25) to reduce the expression to a single spherical harmonic for each pair of 

angles ( p, p) and ( s, s). This is an extremely tedious procedure and the result is 18 

summations over one expression involving 16 Clebsch-Gordan coefficients (see, for example, 

[21]. Since we only require an expression to order p/ s, a more practical approach is to express 

(using (A 1)) ps
−5 in the form 

 
Dropping the term in p

2/ s
2 in (A 6) and expanding the remainder in a Taylor expansion, gives, 

to order p/ s 

 
Finally, the inner product in (A 7) is expressed in terms of spherical harmonics (see R5.2) to give 

 
The desired result is (A 4) times (A 8). The leading term of (11) comes from the leading terms in 

(A 4) and (A 8). The term in p/ s is given by the third term in (A 4) times the first term in (A 8) 

plus the first term in (A 4) times the second term in (A 8). This gives 



  
The product of spherical harmonics in the first term inside the brackets in (A 9) can be expressed 

in terms of a sum of spherical harmonics of order 3 and 1 (see R4.32). When this is done, the 

term involving the spherical harmonic of order 1 is identical and of opposite sign to the second 

term in equation (A 9) and the two cancel. One is then left with a single term involving a 

spherical harmonic of order 3 as indicated in the second term in (11). 
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