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Nuclear spin relaxation by intramolecular interactions in gases of homonuclear 

diatomic molecules 
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Abstract: The differential equations which describe the relaxation of macroscopic observables 

associated with nuclear spins in homonuclear diatomic molecules are derived using an expansion 

of the nuclear spin density matrix in terms of irreducible tensors. It is shown, using an 

intramolecular quadrupole mechanism, that the only difference between nuclear spin relaxation 

of the ortho- and para-species arises from the rotational states being restricted to odd and even 

values. This difference is vanishingly small at high temperatures so that the relaxation equations 

for nuclear magnetization become identical for both species. A previous paper predicting a 

difference even at high temperatures is shown to be in error and is corrected. 

 

In an earlier paper by one of us (Sanctuary 1973), the nuclear spin relaxation time T1 was 

derived for the ortho- and para-species of a homonuclear diatomic molecule. Using an 

intramolecular quadrupole interaction, it was found that the two species relax at different rates 

for I > 1 even at temperatures high enough that averages of molecular quantities over the odd and 

even rotational states are approximately equal. The purpose of this paper is to show that 

this result is incorrect, that the relaxation, in general, is not exponential and that the relaxation 

equations for the two nuclear spin symmetry species are identical to each other at high 

temperatures. In fact, for intramolecular quadrupolar interactions we show that the relaxation 

equations for the magnetization of the ortho- and para-species are identical to each other and 

completely equivalent to those of two uncorrelated nuclear spins. Thus the only role played by 

the identical spins is via averages of molecular quantities over the rotational states of the two 

species. 

 The intramolecular quadrupolar Hamiltonian ℋQ for a diatomic molecule is given by 

(Abragam (1961), p. 233) 

 
Y2q(θ, φ) is a spherical harmonic of the angles θ, φ associated with the vector joining the two 

nuclei and I = I1 = I2 is the spin of the each nuccleus. The quadrupolar coupling constant is eqQ 

and Ei is the identity operator for the spin degrees of freedom of nucleus i. Finally, T2q (Ii) is the 

qth spherical component of the normalized irreducible tensor of rank 2 associated with the spin Ii 

of nucleus i. It is given explicitly by 

https://doi.org/10.1139/p76-264


 
where T2q (Ii is the unnormalized spherical tensor components defined by, e.g., Rose (1957) and 

Tinkham (1964). Explicitly, T20(I) = (6)−1/2 (3Iz
2 − I(I + 1)). The normalization is chosen such 

that  

 
In the gas phase, nuclear spin relaxation is caused by molecular collisions which reorient 

the molecule thereby causing the rotational angular momentum J to change direction, or, 

equivalently, producing transitions between rotational mJ states. The effect of collision-induced 

molecular reorientation is to cause the angles θ, φ in [1] to be time dependent; thus inducing 

nuclear spin transitions via the spin-dependent interaction ℋQ (Bloom 1972; Abragam 1961). 

 The relaxation equation for the spin density matrix σ in a co-ordinate system rotating 

about the applied magnetic field at the nuclear spin Larmor frequency ω0 has been derived using 

time dependent perturbation theory to be (Abragam (1961), equation (42), p. 279  

 
where Jq(ω) is the spectral density of the correlation function of 𝛶2q(θ, φ).  

It is convenient for our purposes to expand σ, the density matrix in the laboratory frame, 

in terms of the tensors TLM (Ii) for each nucleus 

 
The products TLM(Ii)TL’M’(I2) form a complete set in the (2Ii + 1)(2I2 + 1) dimensional nuclear 

spin space of the diatomic molecule. The representation of the density matrix in terms of 

products of irreducible tensors is commonly used in relaxation problems in atomic physics 

(Happer 1972) and in the kinetic theory of polyatomic gases (Ferziger and Kaper 1972). From 

the orthonormal properties of the irreducible spherical tensors, it may be seen that a macroscopic 

observable ⟨Q⟩ associated with a quantum mechanical operator Q = Tim(I1)Tl’m’(I2) has a value 

 



The first term is just the product of the two identity operators σ0 = E1E2, i.e. L = L’ = 0  

The second term is a 'single spin term' associated with the values of the indices L = 0, L' ≠ 0 and 

L ≠ 0, L' = 0. The coefficient a
𝐿𝑂

𝑀𝑂
 and a

𝑂𝐿′

𝑂𝑀
, therefore, represent macroscopic quantities involving 

single spin quantities. In fact, the term a
𝐿𝑂

𝑀𝑂
  involves only observables associated with Ii and 

a
𝑂𝐿′

𝑂𝑀
, only those of I2 so that the spin density matrix terms associated with them may be denoted 

by σs1(t) and σs2(t) respectively, with no ambiguity. The third term involves products of 

irreducible tensors in which both L and L' are non-zero. Their coefficients a
𝐿𝐿′

𝑀𝑀
 are associated 

with macroscopic observables which depend on correlations between the two spins. 

Since all TLM(Ii) commute with all TLM (Ij) for i ≠ j, and since Ei commutes with all TLM 

(Ij) for all i, j, it is clear that 

 
where the coefficients 

 

are identical to those obtained in the corresponding differential equation foraã
𝑂𝐿

𝑂𝑀
(t).Thus the 

relaxation equations obtained for σs1 and σs2 are identical with each other and to their sum σs = 

σs1 + σs2. It follows that the relaxation equations for nuclear magnetization for the two-spin 

molecule are formally equivalent for quadrupolar relaxation to those of a single spin. The only 

difference between the relaxation rates of macroscopic observables represented by operators of 

the form Q = Tim(I1)E2 +E1 Tim(I2) such as magnetization (I = 1), for the ortho- and para-species 

arises from averages over the different rotational states of the two species of the molecular 

parameters arising from the terms in Jq(qω0) in [7]. These differences become vanishingly small 

at high temperatures. 

 The commutators in [13] can be explicitly calculated (see, e.g,, Sanctuary (1976), 

equation (46); Rose (1962); Ambler et al. (1962)) and the resulting expression written m terms of 

3-j and 6-j coefficients (Edmond 1961), 

 
The quantity φ(l1, l2, l3) is equal to unity if the sum l1 + l2 + l3 is odd and zero otherwise Hence L 

and L’ are either both even or both odd. Moreover the bLL’MM’’’s obey the symmetry relation 

 



For I = 1, the relaxation of the magnetization (L = 1) is exponential since only L" = 1 contributes 

to [14]. In this case 1/T1, is given by b1100 with I = 1, λ = 2. It is easily shown that this form 

agrees with Abragam (1961, equation (138), p. 314). For I = 3/2 and 2, L = 1 and 3 contribute to 

the nuclear spin relaxation giving rise to a sum of two exponentials. Spins of 5/2 and greater 

involve coupling to multiples of rank L" = 5 and higher and are generally nonexponential. On the 

other hand, as shown by Pyper (1971), in the extreme narrowing limit, the q dependence of 

Jq(qω0) can be neglected resulting in exponential decay for spins of any magnitude. This is seen 

from the orthogonality of the 3 − j's in [14] giving L = L". In this case l/T1 is given by b1100 with 

λ = 2 for any I and agrees with the expression given by Abragam ((1961), equation (137), p. 

314). 

 In a previous paper (Sanctuary 1973), the problem of nuclear spin relaxation m ortho- 

and paraspecies was treated by evaluating the relaxation tensor for the s~th species (1/T)s 

(equation (19) of Sanctuary (1973)). This procedure assumes that the Bloch equations are obeyed 

from the outset and focuses attention on the different spin weightings due to ortho-para 

restrictions. It was found, in contradiction to the calculation here, that the ortho- and para-species 

have different relaxation times even at high temperatures. This conclusion was obtained due to 

an error in normalization in [22] of Sanctuary (1973). The correct result is 

 
where /, / ' are the total spin magnitudes of the resultant I = I1 + I2 with values that range from 0 

to 2/I1. The prime on the summation restricts these to either odd or even integers as symmetry 

requires. Carrying the expression [16] through the calculation subsequent to [22] in Sanctuary 

(1973) gives the result l/T1 - b1100in agreement with the expression developed in this paper. 
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