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Dipole-dipole spin relaxation in solids
The unrestricted hopping model and the methyl proton-non-methyl proton
interaction*
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We develop a stochastic mode! for molecular reorientation which leads to the calculation of the dipole-dipole spin-lattice
relaxation rate in cases where the length of the spin-spin vector changes with time. The calculations are applied to methyl
group rotation-induced relaxation in planar methyl-substituted aromatic molecules like methylnaphthalenes, methylanth-
racenes and methyiphenanthrenes. Our theory considers an unrestricted hopping model in which the spin-spin vector hops
from one position to any of its other allowed positions. A general discussion of the relaxation process is presented and a
variety of general geometries for the motion of pairs of spins is considered. The case of a reorienting methyl group is
considered in some detail. The relaxation rate resulting from the interaction between methyl protons and any other fixed
proton is then presented. The general approach is appropriate for a large class of molecular solids. We compare previously
determined experimental relaxation rates with the cunent theory for methyl-substituted naphthalenes, anthracenes and
phenanthrenes. We show that the geometry for peri-substituted methyl groups corresponds .to the situation where the two
methyl protons near the peri hydrogen lie out of the plane of the aromatic ring. This expected result is in agreement with
laser jet spectroscopy experiments and ab initio calculations for 1-methyinaphthalene.

viewed elsewhere [1]. The fundamental problem
of an ensemble of reorienting isolated spin pairs
in contact with a heat bath has been set up in a
general manner [2,3]. When particular classes of
systems are considered, most theoretical investi-
gations consider the case where the distance
between spins is constant and only the orienta-
tion of the spin-spin vector with respect to the
applied magnetic field is changing. Very limited
work has been done for the case where the
distance between spins (as well as their relative
orientation) changes with time. This latter prob-
lem is more complicated and we have investi-
gated it in some detail.

In most organic Van der Waals crystalline and
glassy solids, random translationai motion is ab-
sent on the nuclear magnetic resonance time
scale and molecular and intramolecular reorien-
tation can be isolated and studied by the solid
state nuclear spin relaxation technique. These
latter motions are usually not isotropic and the

1. Introduction

Nuclear spin relaxation is a very useful tech-
nique for the study of molecular dynamics. For
an excited nuclear spin system, a spin-space
interaction is modulated by motion and the spin
system relaxes via stimulated emission by sam-
pling the local time-dependent magnetic field.
The interaction of interest in this study is the
spin™spin dipolar interaction which dominates
the relaxation process for protons in solids.
Other spin-space interactions important for the
general nuclear spin relaxation problem are re-
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our more general formalism as an introductory
example.

Two methyl-nonmethyl spin-spin interactions
are shown in 1-methylnaphthalene in fig. 1. Each
of the three methyl protons interacts with the
neighboring ring peri proton. As the methyl
group reorients, the vector r^"' between a single
methyl proton and the peri ring proton takes on
three values, one of which is shown in fig. 1. The
same is true for the interaction between a single
methyl proton arid the neighboring ring ortho
proton. One of three possible values of r°"''° for
each of the three protons is shown in fig. 1. We
emphasize at this early stage that there are three
possible values of these vectors because a single
methyl proton has three positions available to it,
not because there are three protons in a methyl
group. As the methyl group reorients, these
vectors are modulated but the three possible
values of \r'"'^°\ and Ir^^'l for each proton are,
in general, different, assuming an arbitrary
orientation of the methyl group. (In the methyl
position shown in fig. 1, two of the three dis-
tances are equal for both these vectors.) The
nuclear spin-lattice relaxation rate for this pro-
cess has not been developed before and we shall
do so here.

For all three spin-spin vectors shown in fig. 1,
each of the other two possible positions for the
vector is accessible in the next jump. That is, the
methyl group can hop by 211/3 either way (or not
hop at all). We call this the unrestricted hopping
model where the vector r can hop from its pres-
ent position to any of the allowed positions.

In the next section we review the fundamental
aspects of nuclear spin relaxation in Van der
Waals molecular solids, including the individual
elements that go into the general assumption of
exponential relaxation. In section 3 we develop
the general features for stochastic models appro-
priate for molecular reorieatation and in section
4 we develop mathematically the unrestricted
hopping model We apply this model to three
general geometries in section 4 and apply the
most complex of these, the oblique cone geome-
'try, to methyl proton-non-methyl proton inter-
actions in section 5. We then apply these specific
geometries to methyl-substituted planar aromatic

spin-spin vectors are geometrically restricted. In
this study, we model the motion by instanta-
neous hopping among sites. This approach lends
itself to a quantum description of dynamical
processes.

In order to make these matters more concrete,
we show a model molecule, l-methylnaphthalene
(CioH.CHs), in fig. 1. The methyl (CH3) group
reorients about the methyl carbon-ring carbon
bond which defines the z-axis Z^FF of a molec-
ular-fixed reference frame MFF. The spin-spin
vector labelled r""̂ '̂ '̂ in fig. 1 takes on three
values in the Xf̂ pp-̂ MFF Pl^"^ ^̂  the methyl
group reorients in its three-fold potential. The
vector r""̂ '̂ '̂ is of constant length: only its orien-
tation changes. The nuclear spin relaxation rate
resulting from the modulation of this vector is
well understood [4,5] and in this paper we will
fold the well-known solution to this problem into

^KflPR ^MFF

i jimeUiy!

ortho

^y MFF

Fig. 1. The molecule 1-methyInaphthalene. The molecular
fixed frame MFF is characterized by x^^^, y^^p, ^MFF- The
intramethyl spin-spin vector r'"'"^' reorients in the x-y plane
as the methyl group reorients. The length Ir""''" '̂] is constant.
The methyl-ring spin-spin vectors r"'""* and r""' are not of
constant length for a given methyl proton as a consequence
of methyl group reorientation. For the methyl group orienta-
tion shown, /3 = 0 for the methyl-ortho interaction and ^ =
60° for the methyl-peri interaction. The methyl proton at the
end of the solid wedge is above the plane of the page and the
methyl proton at the end of the dashed wedge is below the
plane of the page. All other atoms are in the plane of the
page,
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(LFF) whose z-axis is defined by the applied
magnetic field B. The superscript L refers to
LFF. Y2^ is the /Ath component of a spherical
harmonic of order 2. The second-rank spin ten-
sor in eq. (2.1) is defined by Rose [8] in terms of
the spherical vectors f^^ and /̂ ^ :̂

molecules in section 6. The paper is summarized
in section 7. We note that much of the algebra in
sections 4-6 has been done using Mathematica, a
software package which combines algebraic man-
ipulation, computational analysis and graphical
presentation in very useful ways.

(2.2)2. The relaxation rate R

2.1. General theory review

The reader is referred to Abragam [2] and
Slichter [3] for a review of nuclear magnetic
resonance and to our review [1] for a brief
discussion of the solid state spin relaxation pro-
cess. A spin-1/2 particle, in this case a proton
(hydrogen nucleus), in a static magnetic field B
has two levels separated by an energy E^
yhB = ho) which defines the Larmor angular fre-
quency 0). The parameter y is the magnetogyric
ratio of the nucleus. In a solid state proton spin
relaxation experiment, the Boltzmann distribu-
tion of the populations of the spin system is
perturbed by a radio frequency field at frequency
a>. The spin system then attempts to return to
equilibrium with the other degrees of freedom
(the 'lattice')- At the radio wavelengths relevant
here, this return to equilibrium occurs only via
stimulated emission so the spins need to find
Larmor frequency (radio) photons in their local
environment. These time-dependent magnetic
fields (photons) arise if nearby spins are moving.
The excited spin system will relax by sampling
the Larmor Fourier component of the local fields
which themselves refiect the local molecular or
intramolecular dynamics.

The hamiltonian for the dipolar interaction
between like spins I^ and I2 [6,7] is

^'KT') \ r' A4IT/
+2

X E (-i)''r,,^,(fi)r,,,(/<»,/'^')

c = — 1

where C(/i,/2,/; m^, m - m^) is a Clebsch-
Gordan coefficient [8] and /̂ ''̂  is the Tjth com-
ponent of the spherical vector operator for spin k
[8]. Since eq. (2.1) is specified in a frame con-
taining the spin quantization axis (i.e. LFF),
determining the appropriate spin matrix ele-
ments is straightforward [9].

The spin-spin vector r is time dependent due
to the molecular motion; this modulates the
hamiltonian in eq. (2.1) and causes transitions
between the spin states. A perturbed nuclear
magnetization

(2.3)(M)^yHl,),

where {•) refers to the expectation value, will
return to equilibrium via stimulated emission.
The appropriate quantum mechanical calculation
is done clearly by Abragam [2]. The difference
^M between the instantaneous and equilibrium
magnetizations.

(2.4)AMit)=(M{t)-M(oo)} ,

relaxes exponentially:

AM{t) - A^(0) e"''" , (2.5)

for an ensemble of identical spin pairs that are
isolated from each other but in contact with a
heat bath.

The spin-lattice relaxation rate R is given [2,3]
by

(2.1)

where r = {r,n) with O = e\ 4>^ specifies the
spin-spin vector in a laboratory fixed frame

R = I ( ^ ) V ^ ' / a + 1){AW + 4̂ 2(2'")} •
(2.6)
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The dipolar hamiltonian in eq. (2.1) is quad-
ratic in the nuclear spin operators, so in order to
relax, the spin system picks out the w (single spin
flip) and the 2&) (double spin flip) components of
this local field. At this point we can be more
general and express the spectral density J^^

M M" 1 • "

(2.9)
M

where i, j count the M spins and where each
term R^j is given by R in eq. (2.6) with subscripts
i, j in all the appropriate places in the above
equations. In eq. (2.9), all R^ = 0 but both R^^
and Rji = R^j contribute. Physically, eq. (2.9)
sums over all the pairwise interactions and di-
vides this by the number of spins which share the
relaxing magnetization. This assumes that each
spin is interacting strongly with at least one
neighbor. In nuclear spin relaxation jargon, this
means that R2^R where i?^^ ̂  T2 is the spin-
spin relaxation time.

This approach neglects the fact that several
identical spins will form higher order nuclear
spin species. For example, consider the three
7^1 /2 protons in the CH3 group in fig. 1. If
higher-order spin species were formed, rather
than being treated as three mutually interacting
spin-1/2 pairs with six terms in eq. (2.9), the
three spins should be treated as a single unit
having /-= 1/2 and / - 3/2 species [9]. This prob-
lem has been discussed thoroughly [4,9,11-13].
The four-spin-1/2 problem for CH4 has also been
discussed extensively [14,15].

The second assumption involves the manner in
which the angular dependence of the relaxation
process is treated. R in eq. (2.6) depends on the
various orientations of the spin-spin vector in
the applied magnetic field via 12 = 0^ ̂ ^ in eq.
(2.1). For a single crystal, there is a fixed num-
ber of such angles and for a macroscopic poly-
crystalline or glassy sample, there is, in effect, a
continuous distribution of such angles. The ap-
propriate averaging should be done with the
magnetization in eq. (2.4), not with the relaxa-
tion rate in eq. (2.6) which is what we will do
below. The relaxation process will, in general, be
a sum of exponentials as opposed to a single
exponential as expressed in eq. (2.5). Although
we will begin by noting the explicit angle depen-
dence for R, we will quickly perform an average
appropriate for a polycrystalUne or glassy
sample.

J..)(where 7̂ , in eq. (2.6) corresponds to 7^
in terms of the cross correlation function:

(2.7)/ . . («)= (f;(O)f»(O>e-"'"'d*

with F„ given by

1/2

Fjr(0]-(3f) {r{t)r%,mt)]. (2.8)

The Y2^ in eq. (2.8) comes directly from the
hamiltonian in eq. (2.1). The correlation func-
tion {Fl{O)FXt)) is discussed further below.
The use^of (•) in eq. (2.7) to mean ensemble
average is different from that in eqs. (2.3) and
(2.4) where it means quantum mechanical expec-
tation value.

2.2. The assumptions

The goal of this work is to develop R from eq.
(2.6) in realistic cases where the spin-spin sepa-
ration \r\ varies with time. Little progress has
been made on this important problem. There are
several important approximations leading to eq.
(2.6). It is important to understand these as-
sumptions to see how the limitations affect the
way in which our theoretical results can be ap-
plied to experimental results. There are three
effects being neglected. All three lead to nonex-
ponential relaxation and all three are related.

The first assumption is that spin symmetry
effects can be neglected. We assume that if spins
are strongly coupled then the observed R can be
determined by computing an average R obtained
by considering only the mutual pairwise interac-
tions. With this assumption, R for a collection of
M spins is given [10] by
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usually well defined [19]. In this case, R in eq.
(2.6) is appropriate. In many cases, these three
effects are not even observed, usually because
many more than three or four spins are strongly
coupled, or because the motion is not sufficiently
anisotropic, or both. Even if the motion is highly
anisotropic as in the case of a time-Independent
reorientation axis, a static but continuous dis-
tribution of reorientation axes will often mimic
isotropic reorientation. For the case of random,
isotropic hopping, eq. (2.6) results from the
multi-spin strong coupling limit. The noniso-
tropic random reorientational motion we are
considering is an enormous problem and one
intuitively feels that when exponential relaxation
is observed in a polycrystalline or glassy sample,
eq. (2.6) is again valid. This is only a conjecture,
however, and must be constantly tested by de-
veloping theoretical models and comparing these
models with experiment. We will discuss these
matters further as they arise.

The third assumption in the procedure leading
to eq. (2.6) is that interesting results involving
the combination of nuclear spin symmetry
(whose neglect we are calling assumption one)
and the correlated motions of three or more
spins are neglected. If the motion of various r
vectors is correlated, b.M will relax via a sum of
exponentials and one must deal with cross corre-
lation functions J^^,^¥^v, as defined in eq.
(2.7). For the three spins in a CH3 group, for
example, the motion of the three spin-spin vec-
tors are perfectly correlated and a sum of four
exponentials results. The angular dependencies
introduced in the discussion of the second as-
sumption play an important role in some cases
[12,13,16-18].

The matters considered above are important,
they are sometimes related, and they all lead, in
principle, to nonexponential relaxation. Fortu-
nately, they do not matter, in practice, for a
large class of Van der Waals solids, although the
effects have certainly been verified experimental-
ly for carefully selected systems. Including these
effects for the case of a spin-spin vector whose
length is time-dependent results in an extremely
complicated problem. Although this more gener-
al problem seems intractable at this time, with
new sophisticated computer algebra programs it
is a problem whose solution is on the horizon.
To our knowledge, the matters raised in the
three assumptions discussed above have only
been investigated theoretically for groups of two,
three and four spins. Experimentally, the predic-
tions have been verified for CH3 groups. The
results for CH3 groups show that if a time-

3. Hopping models for molecular reorientation

3.1. The stochastic model

We consider a general class of models where
the vector r between two spins can take on N
values labeled /•„ for 1 ^ « ^ N. We define p{n, t)
as the probability that r takes on the value r^ at
time t. The p{n, t) satisfy the Master Equation:

j , p^"' *)
dependent relaxation rate R{t) is defined by N N

E W{m,n)p(m,t)- 2 W{n, m)p{n, t),
I /dAM(O\

^^^^ AM(O) V dt I
(2.10) =1w - 1

(3.1)

for the general case including all the effects
discussed above, then in the limit that t^ 0, R{t)
in eq. (2.10) reduces to R given by eq. (2.6).
This has been verified experimentally and com-
putationally for CH3 groups [12,18]. Fortunately,
where the relaxation is observed to be nonex-
ponential, there is usually a well-defined initial
decay in the observed M{t) and R = R{0) is

l^n^N. W(m, n) is the probability per unit
time for the spin-spin vector r to hop from r^ to
r^ {m^ n). The p(n, t) satisfy the normalization

N

(3.2)E p{n, t) - 1

for all times t.
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3.2. The molecular references frame

We will perform many of the needed calcula-
tions in a reference frame centered on the mole-
cule of interest. This is the molecular-fixed frame
(MFF) and is chosen such that it is time in-
dependent. We show MFF for 1-methyl-
naphthalene in fig. 1. The same situation is
appropriate to many methyl-substituted aromatic
molecules including those discussed in section 6.
In this case, the methyl (CH3) group reorients
about the C-C bond which is taken as the z-axis
of MFF. In the sohd state, the aromatic ring
structure does not move on the nuclear magnetic
resonance time scale.

Several geometric parameters are shown in fig.
2. Two values of r, namely r^ and r^, 1 ^ n, m ^
TV are shown as well. The subscripts m and n
label two of the allowed spin-spin vectors for the
same pair of spins. The subscripts m and n do
not label spins. There are only two spins under
consideration, one of which is taken to be at the
origin in fig. 2. The Euler angles B = a,^,y

We now restrict ourselves to an important
class of motions where all the relative positions
of the spins (i.e. all r j are equally likely. This is
equivalent to saying that all the allowed positions
for the intramolecular unit or the molecule or
the molecules (if the two spins are on different
molecules) are equally likely. That is, each of the
positions r^{t),l^n^'N, for a pair of spins
corresponds to the same minimum in the spatial-
ly dependent electrostatic potential energy func-
tion. This is the case for the example in fig. 1 if
methyl reorientation is the only motion. It fol-
lows that there is no preferred final state:

(3.3)p{n, CO)
TV'

for all l^n^N. The correlation function
{Fl{^)FAt)) in eq. (2.7) [2,3,20] is

< F ; ( O ) F , ( O > - S ^FlirjF^irn)

xP{n,t;m,O)p{m,O), (3.4)

with F^ given by eq. (2.8). P{nJ;m,Q) is the
conditional probability that the spin-spin vector
r takes on the value r^ (i.e. that the system is in
spatial state n) at time t given that it had the
value r - r ^ at f = 0. F{n,t;m,Q) is obtained
from p{n, t) with the appropriate initial condi-
tion for /7(n,0):

F{n, t; m, 0) = p{n, t) given that p{n, 0) = 6̂ ^ ,
(3.5)

for all l^n,m^N.
We have assumed that the conditional prob-

abilities F(n,t;m,O) are independent of the
choice of the time origin. The reorientation of
the molecules is therefore a stationary process
[21] whose correlation function ( F ; ( O ) F , ( O ) is
also stationary. This allows us to write eq. (3.4)
for (Fl{O)F,{t)). The summations in eq. (3.4)
are over all possible initial and final spatial states
(i.e. initial and final values of r). This approach
is appropriate for discrete hopping models for
the motion. For diffusion, the summations can
be replaced by the appropriate integrals.

LFF MFF

^ ^ ^'m
Fig. 2. Schematic representation of the reference frames, the
vectors and the angles appropriate for the nuclear spin
relaxation problem. LFF and MFF are the laboratory fixed
reference frame and the molecular fixed reference frame.
The z-axis of LFF is coincident with the applied magnetic
field B. The orientation of MFF is determined by the geome-
try of the molecule. The Euler angles S = a, j8, y specify
MFF in LFF. The vectors r̂  and r^{l^m,n^ N) are two
of the Â  allowed spin-spin vectors for a single pair of spins,
one of which is taken to be at the origin. The „̂ (1 ̂  n ^ Â )
are specified by the polar and azimuthal angles fi^ = 9];,^];
in LFF and by the Euler angles €„ = <^^ 0 ^ A^ in MFF.
The frame-independent angle between r^ and r„ is t̂ ^̂ .
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angles H which relate MFF and LFF will be time
independent. For an isotropic liquid, Hwill be a
random function of time for all molecules. For
oriented liquids (i.e. liquid crystals) and some
solids, like plastic solids, H will have a compli-
cated time dependence. The problems of aniso-
tropic motion in liquid crystals is much studied
[22,23]. We are concerned with the solid state
where the angles H are time independent. One
can study a macroscopic single crystal with a set
of known values for B- Most experiments, how-
ever, have been performed on polycrystalline or
glassy samples and we shall restrict ourselves to
this case. As such, we assume an isotropic dis-
tribution of H relevant to a polycrystaliine or
glassy sample. This is referred to as a 'powder'
average. For a glass, there is no long-range
crystal structure. In a polycrystaliine structure,
however, the crystal structure will be preserved
as long as each crystallite contains many unit
cells. As an aside, for many organic molecules of
interest with several distinct proton-proton vec-
tors per molecule and several molecules per unit
cell [24,25] we speculate that a powder average
will be a very good approximation even for a
single crystal.

For a macroscopic sample, the product

K{B)^DfJi3)DfJ^{B)

contained within eq. (3.8) with B^a,f3,y is
replaced by

2TT TT 2-71

specify MFF in LFF. The polar and azimuthal
angles fl^ = 0^. '^^ with l^n^N, specify ^ in
LFF. The Euler angles f̂  = 4>'^, 0^ , A« specify
!•„ in MFF. The frame-independent angle ij/^^ is
the angle between r^ and /•„.

We transform the YziO) in eq. (2.8) from LFF
to MFF [8] via

+ 2

Y,^{n)= E <HH)y,,(^) (3.6)

where DfJ is the 8fi component of a Wigner
rotation matrix of rank two [8]. The correlation
function in eq. (3.5) becomes

N N

(3.7)m=l n-1

with

+ 2 +2
-3 -3 Y y n(2)fff\n(2)*/!:7\8-17

' mn

and the spectral density in eq. (2.7) becomes

(3.9)

with

m n

/ . » = J Pin,t;m,O)p{m,O)e-'dt.
(3.10)

We note that in the expression for 7̂ ^ in eq.
(3.9), the only dependence on /A and v involves
the H-dependent matrices Z>̂ ^̂  in eq. (3.8). As
will be seen, the effects of cross correlations
{fxv^v) and the manner in which the H-depen-
dence is handled are linked.

3.3. The sample average

For a solid composed of molecules with a
motionless part (on the nuclear magnetic reso-
nance time scale) on which MFF is anchored, the

0 0 0

(3.11)X da sin /3 d/3 dy .

As stated above, one can use distribution func-
tions 0^(B) characteristic of specific single crys-
tals, but here we invoke a powder average which
gives an a priori equal distribution of angles H
[8]:

1 J_ 1
2 2iT 2 '

(3.12)0'ia^y)

which gives
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the unrestricted hopping model. For methyl
reorientation in a three-fold potential, r is al-
lowed to hop from one position to any other
allowed position. There are iV = 3 positions. All
hops are a priori equally likely. In this case,

(3.13)
K- 5^Ss^fti'

where 8 is the Kronecker delta symbol. Equation
(3.8) becomes

^^ ^ ' (3.14)

We note that the powder average of the relaxa-
tion rate R rather than of the magnetization
which is, in principle, more appropriate as dis-
cussed previously, eliminates the need to con-
sider cross correlations. However, this is only
true in the final analysis because we have also
neglected spin symmetry effects. These are im-
portant matters which are much discussed in the
hterature referenced above. The consequence of
the combination of the three assumptions dis-
cussed above plus the powder average is that the
relaxation rate is zero unless (Ji = v which means
that cross correlations play no role.

The sum over e in eq. (3.14) can be simplified
by the spherical harmonic addition theorem [8]:

i YliUY2Mn)=JZ^2icos^^J, (3.15)

where P2 is the Legendre polynomial of order 2
and <Â^ is the angle between r^ and r^ (as shown
in fig. 2) and defined explicitly by

(4.1)W^ - W

for l^m,n^N,mf^n. The iV eqs. (3.1) are
decoupled and reduce to

dt
p{n,t) = Wll-Np{n,t)], l^n^N,

(4.2)

with solutions

(4.3)-NWt

The initial and final conditions in eqs. (3.3) and
(3.5) give

P{n, f; m, 0) = -j^ + i^d^^ i
A'

(4.4)-NWi

/ ineq. (3.10) is

i,5(.)4[5.«-i]/(o.,iVW), (4.5)

with the reduced spectral density given by

2NW

' m ' n (3.16)COStjf^

The parameter ^Z takes on the simple form ^^r) = (4.6)
{NWf + a>'

Note that this expression is independent of the
coordinate system.

The entire procedure leading to a value of R
given by eq. (2.6) is based on a perturbation
treatment of the spin-lattice and spin-spin inter-
actions and it is only valid in the high-magnetic-
field limit. In practice this means that the
Zeeman field B = o)/y must be much larger than
the local dipolar fields. Thus the procedure is not
valid for (o=^0 and the term with S(w) in eq.
(4.5) can be dropped.

Finally, we write the relaxation rate in eq.
(2.6) as

4. The unrestricted hopping model

4.1. General theory

So far, we have not specified a model for the
hopping process. In this paper we will investigate
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case for the more general situation where the
two spatial states correspond to different electro-
static potential energies [27,28]. Palmer has
shown that eq. (4.7) with N = 2 reduces to the
expression which these more general approaches
generate when the electrostatic energy between
the two spatial states is set to zero [26].

The case of N~3 is relevant because of the
importance of methyl group rotation in many
branches of physics and chemistry. The relaxa-
tion rate in eq. (4.7) reduces to the well-known
expressions for relaxation due to intramethyl
interactions when all three values of |r^| are set
equal. This is shown below as a special case of
reorientation on a regular polygon.

It is theoretically useful and physically infor-
mative to treat the case of general A' even
though we will only use A'' ^ 3 in this paper.

4.3. Reorientation on a regular polygon

In this case, the motion of a pair of spins is
such that the spin-spin vector r can assume A''
values distributed on a regular polygon, part of
which is shown in fig. 3. The two-dimensional
hopping motion takes place about an axis per-
pendicular to the plane of spin positions and the
vector r reorients on a regular polygon. All A'̂
values of r̂  have the same length. The angles
between neighboring r^ are a ^2TT/N as shown
in fig. 3. Since the vector r can jump to any other
place on the polygon, the allowed angles be-
tween vectors r are ip^^ = {m - n)(2TT/N) for
l^m,n^N,m9^n. This is the ^^^ shown in
fig. 2. For all the vectors \rj = r. The calculation
of the ^^^ in eq. (3.17) and A in eq. (4.8) is
straightforward, if somewhat tedious. R for the
unrestricted hopping model is given by eq. (4.7)

^ ^ l i Z ) '̂̂ '̂ ^̂ '̂  1)̂ P~'̂ (̂ ' ^^) (4.7)
with

N N
15

2A '̂
P^ E S -^^n * (4.8)

(4.9)

A -I

m~l n~l

N1 "

and

qi(o, NW) - JXO>, NW) + 4/(20), NW). (4.10)

The definitions of A and p are very useful.
Equation (4.7) retains the (famous) factor 1/5
whose origin is in the powder average in eq.
(3.13). The distance parameter p is just an ap-
propriate average over the distances since the
spin-spin separation enters the hamiltonian in
eq. (2.1) as r"^ and this is squared in R (i.e.
from perturbation theory). If the A'̂  values of
r = |r^| are equal then p = r. If the smallest value
of r„ = |r^| (call it r^-^) is much smaller than any
of the other A'"-! values then p — r^-^^. The
parameter A,0^ A^l, measures the effect of
the angles ^ff^„ between the spin-spin vectors.
Palmer has discussed the mathematics of the
parameters A and p in detail as well as the
physical insight they give into the use of the
general theory in compHcated but realistic
geometries [26].

4.2. Hopping models for N — 1, 2 and 3

If N-l there is only one spin-spin vector r^.
There is no motion, the spin-spin hamiltonian in
eq. (2.1) is not modulated and the relaxation
rate is zero. For A =̂=2 and 3 the unrestricted
hopping model developed here will always be
appropriate since every other available geomet-
ric state is a nearest neighbor. For A' > 3, a more
realistic model may be needed whereby the spin-
spin vector is restricted regarding to which of the
N positions it can hop.

Our model assumes that all Â  values for r^ are
equally likely. Others have studied the N-2

k+l

Fig. 3. Reorientation on a regular polygon. Three of the N
vectors r^ are shown. The angle between r̂ ^ and r^_, is a for
all 1 ^ ^ ^ iV.
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with p == r and ^ ^ 3/4. The geometric part of R
is found to be independent of N. Indeed, if an
A'-independent correlation time r is associated
with {NWy^ in eq. (4.6), the result is complete-
ly independent of N. The probability W or NW
needs to be modelled, though we do not address
this important problem here.

4.5. Reorientation on a right circular cone

This is a generalization of reorientation on a
polygon. In the reference frame of one of the
two spins, the other spin hops among the N
positions on a circle as shown in fig. 4 where the
angles <l>^^ and 5 are defined. This geometry
preserves the condition that |r| is constant and
finds very restricted use in practice. An example
would be the interaction between a methyl pro-
ton in the 1-methyi group and the proton in the
4-position in methylbenzene or l-methyl~
naphthalene (fig. 1). The r is sufficiently large in
this case that this interaction does not really
matter. However, as a theoretical development,
r reorients in three dimensions, and this case is
an important bridge between simpler cases like
hopping on a regular polygon where r reorients
in two dimensions as discussed above, and more
general models where r hops in three dimensions
and \r\ changes with time. The angles ip^^ are
given by cos ^^^ = coŝ S + (siii^S)(cos (^^n)- The
angle S is determined by the geometry of interest
and the angles (j>^^^{m~ n){2'nlN) for 1 ^
m,n^N as in the case of reorientation on a
regular polygon presented in section 4.3. R is
given by eq. (4.7) with p = r and A == |(sin*6 +
sin^25). Reorientation on a polygon is obtained
by setting 8 = 90° in which case A = 3/4 as de-
termined above. This expression for R can be
obtained from, and is in agreement with, previ-
ously derived analogous expressions for R for the
case of a methyl group undergoing various

4.4. The intramethyl relaxation rate

The above result is immediately applicable to
the determination of the relaxation rate due to
the intramethyl interactions in a methyl group.
The relaxation rate resulting from methyl group
reorientation about the threefold axis, consider-
ing only the intrametyl interaction between two
of the protons, is

R,^ S,q(o>,3W)

where 5o -= 1-9 x 10̂  s"^ is given by

^° 20 UTT/ ^ ' ^ A ^ ^ A ; ' -

(4.11)

(4.12)

with 7 = 1/2, 7-2.675xlO^kg ^sA and r =
0.180 nm, the proton-proton separation in a
methyl group.

The relaxation rate for an ensemble of isolated
methyl groups is obtained by using eq. (2.9) and
noting that there are six mutual interactions
among the three spins. Thus, R"'''^^^^ = (6I3)RQ,
a well-known expression for a relaxing methyl
group [4,5,29]. A typical to might be 2'n-x
(50 MHz) and when 3W is in this range, / in eq.
(4.6) is / - a > " ' and i?""̂ ^^ '̂= 17s^\ Finally, if
only intramethyl interactions are considered in a
molecule with m independent and noninteracting
methyl groups and M protons, the observed re-
laxation rate is given by i? = m{6IM)RQ = (3m/
^^^methyi j ^ ^ j ^ ^ ^ ^ ^ 3m/M is often referred to
as the ratio of 'relaxing' to 'nonrelaxing' protons
but this is a confusing terminology since the
origin of the factor 3 does not lie solely in the
fact that there are three protons in a methyl
group and the origin of the factor M is that all
the protons are relaxing!

VC

Fig. 4. Reorientation on a right circular cone. The spin-spin
vector r can be in any of N orientations equally spaced on a
right circular cone of half-angle 5. Shown are two such
orientations, r^ and r„, separated by an angle tp^^. The
azimuthal angle between the two vectors is 4>mn-
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ly correlated, ana it is immaterial whether the r̂
are depicted in the 'physical' picture as in the
methyl group in fig. 1 or in the reference frame
of one of the spins as in fig. 5 with d = 0. In both
cases the local time-independent molecular fixed
frame (MFF) is the same. On the other hand,
the interaction between two protons on different
methyl groups with arbitrary relative orientations
does not satisfy this condition. It is an important
restriction, then, that in the time-independent
molecular-fixed reference frame, the position of
the 'fixed' spin can be considered time inde-
pendent.

The origin of MFF is the center of the polygon
formed by the Â  positions of the 'mobile' spin.
The N positions lie in the x-y plane and the
'fixed' spin lies in the y-z plane. The N vectors
/)„ specify the N positions for the single mobile
spin and d specifies the position of the single
fixed spin. The spin-spin vectors /•„ are r^ =
/>„ - d. The angle a is the azimutha! angle
sp'ecifying the fixed spin in MFF. The angle (3 is
the angle in the x~y plane between the projec-
tion of d onto the x-y plane (which is the y axis)
and the nearest mobile spin position. Thus,
O^fB^-nlN. For a specific interaction in a par-
ticular molecule, the angle a and the distance d
are independent of the motion. The vectors d
and the D^ can be expressed in terms of d,D,a
and j8, where we note that D ̂  |D^| is in-
dependent of n. We present the example appro-
priate to the Â  = 3 situation which would charac-
terize the interaction between a methyl group
proton and a non-methyl group proton. In this
case,

r^^{D - d sin a cos j8)i

-d^in asm 13 y- dcosaz.

superimposed reorientations [9,30]. Many of
these previous calculations are cumbersome and
they only correspond to Â  = 3. Within the con-
fines of the limits of the present unrestricted
hopping model and the particular geometry, plus
the limits of applicability resulting from the as-
sumptions inherent in the whole approach, the
results presented here is valid for any N.

4.6. Reorientation on an oblique cone

We consider the geometry shown in fig. 5. One
spin hops in a plane and the other is 'fixed'
anywhere in space. The former can belong to a
methyl group for N = 3 and the latter can be a
non-methyl spin somewhere else in the molecule
or on a neighboring molecule.

All preceding cases can be considered as sub-
sets of this case so it is important to note that by
'fixed' we mean either that a spin is truly fixed in
space relative to the applied Zeeman field or that
it is possible to translate each r^{t) separately
such that the N vectors have a common origin.
This must be done in such a way that the N
values of r„(0 in a time-independent molecular-
fixed reference frame remain unchanged. For
example, if both spins are in a methyl group then
they are both moving but their motion is perfect-

MFF

d /

/

^ 1
1

/
//

1 _ _ _ ^

i
1

1

!

1

1

D,
D,

- ( - £ > + d sin a cos ISjx

+ ( ^ D - ^ sin a sin /3 j ^ - ^ cos a 2 ,

-[-D^dsmacos ^jx

- (— D -i- dsin a sin p)y ~ d cos a z .
V 2 / (4.13)

^ MFF

f^ —

'X
MFF

Fig. 5. The oblique cone geometry. The fixed spin is in the
y~z plane and its position is specified by d which makes an
angle a with the z-axis of the molecular-fixed frame (MFF).
The N positions of the mobile spin are specified by D„ in
MFF. The case Af = 3 is shown. The angle between the
projection of d onto the x-y plane (which will be the y axis)
and the nearest D^ is ̂ . As such, 0 ̂  ^ ^ TT/N.
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the angle a may now be specified for a particular
interaction. The length |/>J = £) = 0.1037 nm is
characteristic of a methyl group and so is com-
mon to all the cases considered here.

The angle ^ depends on the orientation of the
methyl group and we will treat this as a variable.
This will be especially valuable when the
theoretical results are compared with experimen-
tally determined parameters. The fixed spin is on
the y~z plane in the aromatic ring. It is im-
portant to remember that /3 specifies the methyl
proton position nearest the fixed spin. The fixed
spin will always be in the y-z plane. Thus, for
example, in fig. 1, all three protons in the methyl
group are characterized by /3 = 0 for the ortho
interaction and by jS = 60° for the peri inter-
action. So, even though /3 depends on the orien-
tation of the methyl group, it should not be used
to specify the orientation of a methyl group since
)8 will take on different values for different inter-
actions for the same methyl group orientation.

We determine a, then d, then the vectors
r^(/3) in eq. (4.13). The ratio w in eq. (4.14) is
determined as is the distance function p(jS) in
eq. (4.15). The angles tA«.« i" eq. (3.16) follow,
or at least the values of P2(cos (//^J. The si^^ in
eq. (3.17) are then determined. The parameter
A in eq. (4.8) is computed and the relaxation
rate in eq. (4.7) is expressed in algebraic, nu-
merical or graphical form using Mathematica. We
note that using Mathematica, exact algebraic ex-
pressions for the relaxation rate can be pro-
duced. However, these are usually very lengthy
and offer little insight. A plot and a subsequent
representation by a simple fitted function is usu-
ally much more informative.

The triad xyz specifies MFF. The r̂  = | r j are
then computed as in p in eq. (4.9). The ip^^ are
computed from eq. (3.16). A useful dimension-
less parameter is

d
(4.14)w

which, for TV == 3, allows p to be expressed as

p-6 ^ ld~\{\ - 2w sin a cos /3 + w^Y^

+ (1 -{- wsin a (cos f3-V3sin (B) + w )

+ {l + wsma (cos /3 + V3 sin {3) 4- w^y^]

(4.15)

We note that this expression is invariant for
a^'u- a and triply periodic in ^ in the range
0 ^ jS ^ 2iT since the numbering of the three
vectors does not matter.

Although we have used N - 3 as an example in
the above expressions, it is straightforward, if
somewhat time-consuming for most small com-
puters, to generate these expressions for higher
values of A'' using Mathematica,

5. Methyl-ring interactions

5.1. The general procedure

We now restrict ourselves to the case of A'" = 3
and develop the relaxation rate resulting from
the interaction between a single methyl group
proton and a single ring proton in methyl-substi-
tuted planar aromatic molecules using the geom-
etry of an oblique cone. In section 6, we will sum
the various contributions developed here to ob-
tain the total (observed) relaxation rates for real
molecules and then compare these results with
experimentally determined parameters where
possible. We assume an ideal geometry. Methyl
C-H, ring C-H, ring C-C and ring-methyl C-C
bond lengths are [31,32] 0.110 nm, 0.108 nm,
0.140 nm and 0.150 nm. All angles involving the
ring are 120° and all angles in the methyl group
are cos~H~'l/3) - 109.47°. The vectors d, D, and

5.2. The methyl-ortho interaction

The methyl-ortho interaction refers to the in-
teraction between a single methyl proton and a
neighboring proton on the same ring. For exam-
ple, the 2-proton in fig. 1 is an ortho proton.
Figure 1 shows ^ =̂  0 for this interaction but we
calculate i? as a function of )0. In this case we
determine that a = 46.7° and that d = 0.295 nm.
The ratio w is 0.351. The relaxation rate is
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will always be present unless two of the three
methyl protons are replaced by deuterons. The
primary reason that these ratios are so small is
that the ratio p'^/r^^ is very small.

5.3. Other methyl-single ring interactions

We have determined R for the methyl-ring
meta and methyl-ring para interactions. For the
meta interaction, a =25.5°, if = 0.499 nm and
w== 0.208. The relaxation rate is qualitatively
similar to fig. 6 with

«™e.. = S»=u(-S)?(<«,3W) (5.3)

and with

5.eu(j8)-(7.38xlO^s-^)

+ (2.75 X 10' s"') cos(3/3) (5.4)

being an excellent approximation. The maximum
value of S^^,^ is 0.0004 of SQ and can be neg-
lected for a fully protonated methyl group. This
is an important new result. This interaction
would only be important when two of the three
protons in a methyl group have been replaced by
deuterons.

For the para interaction, a = 0 and the relaxa-
tion rate is independent of j0. This is a special
case of an oblique-cone geometry which we have
previously discussed and called a right circular
cone geometry. For this case, d = 0.575 nm and
w = 0.180, p = /-! = 7-2 = 7-3 = 0.584 nm, ip^^=^
17.T for m # R and R = S^^^^q((o,3W) with
S_̂ ^ = 1.99xlO's"

(5.1)5o.hoO)«?(^'3W)R ortho

and 5o,ji,oO) versus j8 is shown as a solid line in
fig. 6. We can approximate the /3-dependence of
all the relaxation rates by a series expansion in
cos (3m/3), m = 0 , 1 , 2 , . . . . For S^^,^^, a two-
term fit is sufficient, giving

5onho( i3 ) - a09x lO^- ' )

+ (1.94 X 10'' s~ )̂ cos(3i3) (5.2)

which is shown as a dashed line in fig. 6. We
have chosen to make the approximation exact
for the maxima and the minima, that is, for )3 = 0
and for ^ = 60°. The error at 30° is about 3%. As
discussed above, 0 ^ ^ ^ 6 0 ° , and we present
0 ̂  )8 ^ 180° in fig. 6 to show the expected
periodicity. In real molecules, we expect to find
/3 = 0, 30° or 60° depending on what atom or
atomic group is attached to the ring on the other
side of the methyl group. Palmer has tabulated
the parameters r^, ^2, /-g, ip^2y "Pn^ fe' ^ ' '̂ ortho
and S^^^^JSQ for these three values of )S [26]. The
ratio S^,,JS^ = 0.046, 0.036 and 0.027 for i3 = 0,
30° and 60°. S^ is defined in eq. (4.12). These
ratios are relevant because relaxation due to
intramethyl interactions, characterized by S^,

para'
which makes R^^^^ com-

or
para

pletely negligible when compared with -R̂ ethyi
even with R'•orEho'

5.4. The methyl-peri interaction

The geometry for the methyl-peri interaction
is shown in fig. 1. In this case, a ==72.0", d =
0.255 nm and )v-0.407. The procedure is as
discussed above but the relaxation rate is much
larger here than for the ortho, meta or para
interactions. As before.

^ (degrees)

Fig. 6. ^or.ho vs ^ for the methyl-ring ortho interaction. The
solid line is the exact result and the dashed iine is an
approximation given by eq. (5.2). In practice, 0 < j8 ^ 60° but
0 ^ ^ ^ 180° is shown to display the symmetry. /3 = 0 corre-
sponds to a methyl position lying in the aromatic plane
adjacent to the ortho ring proton which is the case shown in
fie. 1.
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Table I
Parameter values for the methyl-ring peri interaction for
specific values of p.

r^ (nm)
r, (nm)

'•3 (nm)
p(nm)
Xn C)

X2. n
A

5pHRr(/3)/5pHR,(0)

{3=0

0.160
0.318
0.318
0.191

21.8
21.8
32.9
0.531
9.46 X 10^
1.00
0.50

^ ^ 3 0 °

0.179
0.275
0.345
0.212

40.0
15.9
31.1
0.513
4,79 X 10^
0.51
0.25

^ = 6 0 °

0.225
0.225
0.355
0.239

47.1
25.3
25.3
0.484
2.19 X 10^
0.23
0.12

180120 ISO

p (degrees)

Fig. 7. 5p,,iVS/3 for the methyl-ring peri interaction. The
solid line is the exact result and the dashed line is a two-term
approximation. A three-term approximation given by eq.
(5.6) is indistinguishable from the solid line. In practice,
0 « jS < 60° but 0 < ^ ^ 180° is shown to display the symme-
try. ;3 = 0 corresponds to a methy! proton position lying in
the aromatic plane adjacent to the peri ring proton. The case
of /3 ~ 60° is shown in fig. 1.

interactions that will always be present. How-
ever, since these interactions are contained in
the appropriate Mathematica Notebooks, they
can be automatically included in any computa-
tion of a whole-molecule relaxation rate.

(5.5)ôeH = 5oenOM<-'3W 6. The relaxation rate in real molecules

6.1. Experimental considerations

Experimental relaxation rates are usually pre-
sented as relaxation rate R versus temperature T
(or more precisely \nR versus T""̂ ) for one or
more frequencies <w. The hop rate NW in eq.
(4.6) is usually modelled via an Arrhenius rela-
tionship NW-=^ v^exp{-~E/kT) which introduces
an activation energy E and an infinite tempera-
ture hop rate v^. The data fitting procedures for
methyl rotation models are discussed extensively
elsewhere [19,29,30]. In some cases, it is very
difficult to compare the calculations presented
here with experimental results for methyl-substi-
tuted planar aromatic molecules. First, the bar-
rier E is often not unique due to either the
complexities of the crystal structure or to the
presence of a glassy state (or both). In this case,
the spectral density in eq. (4.6) is replaced by an
appropriate distribution of such spectral densities
[1] and the data can often still be meaningfully
fitted provided both the long (NW < <y) and the
short {NW>o)) correlation time limits, corre-
sponding to low and high temperature respec-

peri

with 5p,,iO) versus ^ given in fig. 7. A two-term
approximation to the exact curve is shown in fig.
7 as a dashed line but it is a poor representation.
We present a three-term approximation which is
indistinguishable from the exact curve at the
level of precision presented in fig. 7:

5oeri(/3)-(5.31xlO«s-^)

+ (3.63xl0^s"^)cos(3j3)

+ (5.17xlO's"^)cos(6i3). (5.6)

This is an important interaction for many mole-
cules and in table 1 we present the parameters
that enter the problem.

5.5. Other methyl-distant ring interactions

Palmer has considered many interactions be-
tween a methyl proton and the protons at vari-
ous positions on distant rings [26]. They present
interesting exercises in computation and im-
portant checks in software development but they
are completely negligible compared with other
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We assume that methyl reorientation is the only
motion on the nuclear magnetic resonance time
scale. For M protons in the molecule there will
be M{M ~ 1) terms in eq. (2.9). There are six
intramethyl interactions and 6(M ~ 3) methyl-
ring interactions. M - 3 is the number of ring
protons. The remaining ( M - 3 ) ( M - 4 ) ring-
ring interaction terms in eq. (2.9) are identically
zero since only the methyl group is moving.
That, is, the ring-ring interactions are not mod-
ulated.

R is written in the form

tively, are experimentally investigated. Second,
intermolecular spin-spin interactions can be im-
portant in some systems and we have not taken
these into account. As a result, the theoretical
results presented here can now help determine
more accurately how important these interac-
tions are. Third, the activation energy E can be
quite small for methyl reorientation and this
means that quantum mechanical tunnelling at
lower temperatures can play a role [33]. Fourth,
sometimes, there are other motions such as
whole-molecule rotation in the solid state, par-
ticularly for some of the smaller molecules. In
spite of these four problems, this is the simplest
class of molecules for which the theory presented
here can be meaningfully applied and some in-
teresting and useful results follow.

The experiments are analyzed using

(6.2)[65o + 5((^)]^(w,3W).R
M

SQ corresponds to a single intramethyl interaction
so 65o accounts for all six of them. 5(< )̂ corre-
sponds to all the methy!-ring interactions. The
6SQ ^ 1.14 X 10̂ ^ s~^ term usually dominates
6SQ + 5((/>) and the methyl-ring peri interaction
usually dominates S{(f>). The angle <l> specifies
the orientation of the methyl group defined such
that (f)^Q in fig. 1. Thus (^ -0 corresponds to
/3 = 0 for the methyl-ortho interaction and ^ =
60° for the methyl-peri interaction. Each of the
6 ( M - 3 ) methyl-ring terms in S(<f>) is then
characterized by a, jB and w. Since each methyl
proton can assume the same three positions and
since each proton pair contributes twice to the
sum, these terms naturally divide into M - 3 sets
with each set having six terms. A separate
Mathematica Notebook is produced for each of
the M - 3 sets since the specific geometries will
occur in many other molecules. After many in-
dividual contributions to 5(< )̂ have been coin-
puted they can be put together to generate the
final relaxation rate. The total relaxation rate is
then produced numerically or graphically as a
function of the angle ^. Although no algebraic
expression is actually outputted at this stage, we
emphasize that exact algebraic expressions are
resident in computer memory and exact numeri-
cal values can be determined for any angle <̂ .

For 1-methylnaphthalene (1-MN) shown in fig.
1, we write R = S^,^-^{<^)q('iW) with 'S^.UH =

(l/M)[65o + 5((/.)]. 5j.MN versus </» is shown in
fig. 8. For ^ = O', 5(0) = 0.19 x lO'' s"' which is

(6.1)R=^Aq{(D,?,W)

where q{o),3W) is given by eq. (4.10). The
values of A,E,v^ and, for more complicated
models [1], other parameters as well, are de-
termined from the experiment. We are only con-
cerned with the value of the experimentally de-
termined strength parameter A in this work.
Until now, A has been compared with theoreti-
cal values that consider intramethyl interactions
only; that is, with (ymSJM for m methyl groups,
M total protons and S^ - 1.9 x lO''' s ^ given by
eq. (4.12). Now A can be compared with a
theoretical value which considers all appropriate
intramolecular interactions and we do this at the
end of the next section. Our main goal here is to
present clearly the theoretical results in a man-
ner which can be used to interpret experimental
data, thus aiding in the determining of equilib-
rium geometries and in the development of dy-
namical models.

6.2. a-methyl substituted molecules

We present a calculation of the relaxation rate
in a-methyl systems like 1-methylnaphthalene
shown in fig. 1. For the present we consider only
single methyl-substituted molecules but we con-
sider all intramolecular spin-spin interactions.
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ply add to M, the total number of protons in the
molecule.

R versus T experiments have been performed
with 1,3-dimethyInaphthalene [34], 1,5-dimethyl-
naphthalene [34,35], 1,7-dimethylnaphthalene
[34], 1-methylanthracene [36], 9-methylphen-
anthrene [29], 1,9-dimethyIphenanthrene [37] and
3,9-dimethylphenanthrene [29]. Measurements
have also been performed with 1-methyl-naph-
thalene itself [34,38] but unfortunately these can-
not be interpreted because there is clearly an
additional motion at high temperatures which
renders the fitting procedure for methyl rotation
parameters suspect, at best. The 1-, 4- and 5-
positions in the methylnaphthalenes, the l-posi~
tion in l~methylanthracene and the 1~ and 9-
positions in the methylphenanthrenes are all a
methyls. Also, no two of the methyl groups in
these molecules are adjacent. As suggested
above, the methyl-methyl spin-spin interactions
in these molecules are negligible because the
spins are just too far apart. Thus we can consider
all the molecules presented above with suitable
changes to eq. (6.2). For consistency, we have
previously reanalyzed all the data not from our
laboratory [29]. The fitted values of A where A is
the experimentally determined value of the
strength parameter presented in section 6.1, is
traditionally compared with dSJM (or its equiva-
lent for more than one methyl group) and the
values AMI{6SQ) range from 0.9 to 1.2 in the
dimethyl-anthracenes [29] and they are all about
unity in 1-methylanthracene [29] and in the
methylphenanthrenes [29,37]. The experimental
uncertainties in these parameters are about
±10% in the phenanthrenes and about ±20% in
the naphthalenes and the single anthracene. If
these values AMI{6SQ) are replaced by AMI
(6SQ + S{<}})) then the new values show un-
equivocally that for the real molecules, 0 = 0 (or
nearly so), as expected. Since 5(60°)/(65'o) is
0.53 and S{0)/{6SQ) is only 0.17, the experimen-
tally determined values AM/(6SQ + S(4>)) would
be considerably less than unity if <̂  were near
60°. The fitted value of AM/(6SQ + S{<j>)) can be
larger than one since the denominator does not
consider intermolecular interactions but it cannot
be less than one (within the experimental uncer-

1 . 8 T

1.7'

1.6-

rX 1.5

1.4

Fig. 8. Relaxation strength ^^.^N versus methyl group orien-
tation 4>. The value (̂  = 0 corresponds to the orientation
shown in fig. 1.

17% of 65o and 14% of the total 6SQ + 5(0). This
is the orientation shown in fig. 1. As stated
above, this is dominated by the peri interaction.
The other interactions contribute less than 1% of
the total. For <f) = 60°, a methyl proton is very
near the peri proton and 5(60°) - 0.60 x 1O'° s '
which is 53% of 65o and 34% of the total
65o + 5(6O^).

To better than 1%, the results for 1-methyl-
phenanthrene, 9-methyIphenanthrene and 1-
methylanthracene are identical to the result for
1-methylnaphthalene. Only M changes. This is
not surprising in light of the fact that the methyl-
non-methyl interactions that differ among these
molecules contribute neghgibly to the relaxation.

We can easily extend these results to mole-
cules with more than one methyl group so long
as it is reasonable to neglect the interactions
between protons on different methyl groups.
Our current model does not deal with more than
one reorienting unit. This will be a good approxi-
mation as long as methyl groups are not adja-
cent. If m groups are chemically identical (which
is easily determined from the R versus T data)
then all the appropriate terms in the expression
are multiplied by m. If two or more methyl
groups are chemically inequivalent then the
'other' methyl groups have an NW very different
from the methyl group of interest and they sim-
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where with respect to the polygon. The algebraic
results are too complicated to express in closed
form but are contained in computer memory
using the computer algebra package Mathe-
matica. The results were presented graphically.
This geometry is appropriate for the interaction
between a methyl group proton and a non-
methyl group proton. Several examples of such
interactions were discussed and presented. The
interaction between each of the three methyl
protons and an adjacent peri proton is very
strong when the methyl group is oriented with
one proton in the plane of the ring next to the
peri proton. This new quantitative result can be
used with available experimental data to rule
that geometry out, in agreement with other spec-
troscopies and ab initio calculations. The inter-
action between each of the three methyl protons
and an adjacent ortho proton like in methylben-
zene is less important, but not negligible. With
all these ideas a procedure was presented which
allows for the calculation of /? in a variety of
methyl-substituted molecules and related kinds
of systems.

tainty and within the confines of the dynamical
model) since the interactions considered in the
denominator of this value are certainly present.
The result that <̂  ^ 0 or nearly so in these several
molecules (with 1-methylnaphthalene not being
among them) is in agreement with both ab initio
calculations [39] and recent laser jet spectros-
copy experiments for 1-methylnaphthalene [40].
Thus, it can now be said, for the first time, that
solid state proton spin relaxation experiments
have shown that </> == 0 (or nearly so) in these
molecules. Laser jet spectroscopy experiments
are very difficult on large molecules and this new
clear statement that <̂  =̂  0 for the anthracenes
and the phenanthrenes is the only clear determi-
nation of the orientation of the methyl group in
these systems.

7. Summary

We have investigated the nuclear spin-lattice
relaxation process in the case where the lengths
of the spin-spin vectors r change with time. We
began with a general expression for the relaxa-
tion rate R, reviewing carefully the assumptions
going into the derivation, particularly those
which resulted in exponential relaxation. From
there, we developed a stochastic model for mo-
lecular reorientation in polycrystalline or glassy
samples. We assumed an unrestricted hopping
model where r could hop among its N equally
likely possible values without constraint.

We developed some general results for R for
some simple geometries including the reorienta-
tion of /• on a regular polygon and the reorienta-
tion of r on a right circular cone. Simple closed-
form expressions for R were presented and one
interesting result was that the geometric parts of
R are independent of A'. The important problem
concerning the manner in which the hopping
probabilities (or, equivalently, the correlation
times for the hopping process) might depend on
N is not addressed here.

We then developed a procedure for determin-
ing R resulting from the interaction between a
mobile spin free to hop among N sites on a
regular polygon and a fixed spin positioned any-
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