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Abstract:

We investigate the properties of ten spectral densities relevant for nuclear spin relaxation studies in solids. This is preceded by a brief review of
nugelear spin relaxation in solids which includes a discussion of the appropriate spin-dependent interactions and the various relaxation rates which
can be measured. Also, the link between nuclear spin relaxation and dielectric relaxation is discussed. Where possible and/or appropriate each of
the spectzal densities is expressed as a continuous distribution of Bloembergen-Purcell-Pound (or Debye) spectral densities 2£/(1 + £ for
nuciear Larmor angular frequency » and correlation time £. The spectral densities are named after their originators or the shape of the distributions
of correlation times or both and are (1) Bloembergen—Purcell-Pound or 8-function, (2) Havriliak-Negami, (3) Cole-Cole, {4) Davidson-Cele, (5)
Fang, (6) Fuoss-Kirkwaod, (7) Bryn Mawr, (8) Wagner or log-Gaussian, (9) log-Lorentzian, and {19) Frohlich or energy box. The Havriliak-
Negami spectral density is related to the Dissado-Hill theory for dielectric relaxation. The spectral densities are expressed in a way which makes
them easy to compare with each other and with experimental data. Many plots of the distributions of corzelation times and of the spectzal densities
vs. various correlation times characterizing the distributions are given.
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1. Introduction

Nuclear spin relaxation (NSR) experiments in condensed matter provide information concerning
dynamical processes. The technique is direct and inevasive because the “tagged” nuclei are usually
naturally occurring (e.g., 'H, F) or can be substituted (e.g., “H, “C) for naturally occurring ones
without changing the dynamical processes in an appreciable manner. In general, one can study
translational and rotational motions in a variety of condensed phases. For condensed phases whose
“lattice points” are extended molecules, the internal motions of subgroups can be studied. The
frequency domain available to the experimentalist is very large, running from very slow motions
(~10Hz) to relatively fast motions (~10" Hz or less) depending on the type of relaxation rate
measured. These matters have been extensively dealt with in a series of texts and review articles [1-21].
Dynamical information is also available from nuclear magnetic resonance lineshape studies [1, 7, 11-13,
22-26]. We do not discuss this latter topic in this review.

In liquids, NSR experiments can be very difficult to interpret because the effects of translational,
rotational and intramolecular motions are usually very difficult to separate [27, 28]. In oriented liquids,
the situation is also very complicated although simple models can be formulated and tested |29, 30].
Even in the solid state, if whole molecule and intramolecular motions are superimposed, they can be
very difficult to separate [31]. The situation in polymers is particularly complicated [7, 32, 33]. In many
solids, however, the experimentalist generally has a greater degree of selectivity as far as which
molecular and intramolecular motions can be studied because systems, temperature ranges and other
experimental parameters can be chosen to permit observation of specific motions. Also, there are
several different kinds of NSR rates which can be measured, each one probing a different timescale
[34]. In the simplest case of a single, one-dimensional motion, like the reorientation of a subgroup
about an axis fixed to a molecule which, in turn, is immobile on the frequency scale selected, detailed
realistic theoretical models can be formulated and NSR experiments can test these models. For methyl
reorientation, for example, one can sort out the difference between quantum mechanical hopping
processes at lower temperatures and thermally activated reorientation at higher temperatures [35, 36],
one can investigate the consequences of nuclear spin symmetry [35], one can investigate the nature of
correlation functions for molecular reorientation [37] and one can investigate details of the local
electrostatic potentials {38]. Finally, NSR processes can be used to investigate the role of symmetry in
spin—heat-bath interactions and the relationship between the symmetry and Berry’s phase [39].

In general, a NSR rate R can be expressed as a sum of spectral densities £ [9,21]: R =L, #{w,) with
the ¢, evaluated at specific frequencies w;. We review this briefly below. These spectral densities #, are
the Fourier transforms of the time correlation functions 9.(¢) [9, 19, 21]. The number of terms in the
above sum and the frequencies o, depend on the details of the motion, the interactions that are being
modulated and the specific relaxation rate being measured. Determining the form of the spectral
density is an important problem. It depends on the details of the dynamical process and the fact that the
observations are being made on an ensemble of potentially interacting molecules or molecular subunits.
This is a many-body problem. Determining the form of the spectral density from a relaxation
experiment is the dynamical equivalent of determining a line shape from a spectroscopy experiment.

Before presenting and discussing the spectral densities used in solid state NSR in considerable detail
in section 6, we review the relevant nuclear spin interactions in section 2, the observable spin-lattice
relaxation rates in section 3, the link between NSR and dielectric relaxation in section 4 and the reason
why simple motional models are not adequate in solids (even though the fundamental processes may be
random) in section 5. The matters discussed in sections 1-5 have been well attended to elsewhere and
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the only purpose of our brief review of these topics is to link the physical interactions involved with the
spectral density problem in solid state NSR.

2. Nuclear spin interactions in solids
2.1. Introduction

Very general approaches are given in the classic texts of Abragam [21] and Slichter [9]. The
Hamiltonian for a nuclear spin system can be written ‘

fff: %0 + gg]ocai(t) ¥ (1)
where the Zeeman term,
#,=-p-B,=—yhl-By=—yhB,I,, (2)

characterizes the interaction of the spins of magnetic moment p = y#I and nuclear spin operator I with
an applied time-independent magnetic field of magnetic field strength [40, p. 36] B, = By£. v is the
magnetogyric ratio of the nucleus. There is no time dependence in this Hamiltonian. Its eigenvalues are
the Zeeman levels, :

E, =-myhB, —ﬂ.—mﬁwL (3)

which defines the Larmor angular frequency, o, . In a classical picture, the spins precess about B, at the
frequency w,/(27).

In eq. (1), %,..(¢) represents the local spin-independent interactions. It is broken into time-
dependent and time-independent terms via

‘%)local(t) = (%ocall(r))z + (%oeal(t) - (%00310)):)
= Hpo + (1) . : (4)

The time-independent Hamiltonian %, has eigenvalues which are usually small compared with those of
the Zeeman term and its major effect in solids is to broaden the resonance line (spectrum). (The
quadrupolar interaction can be stronger than the Zeeman interaction, even at fairly high fields [3] and
the dipolar interaction can be stronger than the Zeeman interaction at Jow or zero field [41, 42] but we
do not include these cases in this general discussion.) The term #,(f) in eq. (4) causes transitions
between the spin states. If a spin system has been perturbed, #,(r) will result in relaxation to an
equilibrium distribution of populations, the latter being determined by the temperature of the lattice or
heat bath. It follows from eq. (3) that tramsitions involving |Am|=1 yield the quantum condition
AE=teo,.

We briefly review the four major spin-dependent electromagnetic interactions which can cause
relaxation in solids: spin—rotation, chemical shielding, dipolar, and quadrupolar. More detailed forms
for the Hamiltonians, relevant for NSR experiments, are given elsewhere [1, 3, 5, 10-12]. We give a
brief physical basis for the interaction and we present the Hamiltonian in a form which allows us to link
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it to the spectral density. The interactions are divided into two types, those which are linear in the
nuclear spin operators (rank one) and those which are quadratic in the nuclear spin operators (rank
two). _ '

2.2. Rank-one spin interactions

2.2.1. The spin—rotation interaction

The fundamental physical basis of the spin-rotation interaction is discussed in detail by Ramsey [43].
The electrons in the atoms of a molecule or an intramolecular subunit give rise to a molecular magnetic
moment and the molecular rotation makes this magnetic moment time dependent. This rotating
moment produces a magnetic field B, = C- £ at the site of the nucleus where C is the spin—rotation
tensor and # is the molecular angular momentum operator. The Hamiltonian is

H, =—yhl-C- §. (5)

If the molecule or molecular subunit reorients due to some dynamiéal process, B, is time-dependent,
the interaction is modulated and NSR can occur. In solids, the spin-rotation interaction can be
important for spin-3 nuclei like Be but, because of the small moment of inertia, not for "H.

2.2.2. The chemical shielding interaction (chemical shift anisotropy interaction)

The fundamental physical basis of the chemical shielding interaction is also discussed in detail by
Ramsey [43]. Others [3, 5, 9] give a detailed account more relevant to NSR studies. The applied field B,
induces atomic currents which gives rise to a magnetic field B, = — o - B, at the site of the nucleus. The
Hamiltonian is

H.=vyhl o+ §. (6)

The magnitude and direction of the field B, depends on the relative orientation of the principal axis
of the chemical shift tensor ¢ and the applied magnetic field B,. In a solid, o can be highly anisotropic
because of the time-independent anisotropic distribution of electrons (i.e., bonding). Molecular motion
makes o time-dependent and the interaction is modulated. Both the chemical shielding and spin-
rotation interactions involve atomic currents and can be related [43]. The chemical shielding interaction
is important for spin-1 nuclei like >'P where the magnetic shielding of electrons is significant and it can
play a non-negligible role for °C in liquids [44]. It usually plays little role in practice for "H in solids
although it can be important in polymers.

2.3. Rank-two spin interactions

2.3.1. The dipolar interaction

The spin—rotation and chemical shielding interactions are complicated because they involve the
dynamical details of the electrons and quantum mechanical calculations are technically difficult. The
dipolar interaction, on the other hand, involves the interaction between two magnetic dipoles and
follows from classical electromagnetic theory [40, 45]. .
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A magnetic dipole p produces a dipolar magnetic field at r given by [40, 45]

Bd=——%+3££—;5’£. | (7)

With magnetic dipole moment p = y#I, the Hamiltonian for the interaction between like spins 1 and 2
is

Hy=p "By = —p." By

_ ?th(ll -312 _3 (I, -.rzgl2 r)) - ‘ (8)

¥

The vector r is the vector from spin 1 to spin 2 (or vice-versa) and it is time dependent as a result of
molecular motion. Thus, the interaction is modulated and NSR occurs. The dipolar interaction is
usually the dominant NSR mechanism in solids for [= 1 and it is usually the only mechanism of
importance for 'H relaxation. In isotropic liquids, this interaction is essentially averaged to zero by the
isotropic motion. We discuss the dipolar interaction further after discussing the quadrupolar interaction
so both can be cast in the same mathematical form.

2.3.2. The quadrupolar interaction ‘

The fundamental physics of the quadrupolar interaction is discussed by Ramsey [43]. Abragam [21]
and Slichter [9] discuss it in relation to NSR. There is an interaction between the electric quadrupole
moment of the nucleus and an electric field gradient V& at the site of the nucleus. Only nuclei with
I>1, like 2H and "N (both with I=1), possess a non-zero electric quadrupole moment so the
interaction plays no role for spin-3 nuclei such as 'H, "F and “C. Although it is basically an electric
interaction, it depends on the quantum state of the nucleus but the electric states and the magnetic
(spin) states of the nucleus are symmetry related. Since the nuclear spin state projection quantum
number m, is specified with respect to the applied magnetic field B,, the interaction depends on the
relative orientation of B, and V&. V¥ arises from the local electron distribution and for some cases
(e.g., a C-*H bond), V& will be nearly axially symmetric with the principal axis along the bond
direction. If molecular motion modulates V& by reorienting the bond, the interaction is modulated and
the nucleus can change nuclear spin states. In this manner, a perturbed distribution of the nuclear spin
states will relax to its equilibrium configuration.

The quadrupolar Hamiltonian takes on many mathematical forms depending on the system of units,
the definition of the electric field gradient tensor ¥, the reference frame chosen and the local symmetry
in ¥. For simplicity, we assume an axial environment (cylindrical symmetry) like that nearly en-
countered in a C—"H bond. In this case, ¥'= ¥, = — 9% /dz where &, is the component of the electric
field along the bond direction. The radial components ¥, =¥, = —d%,/dp do not enter into the
problem. A more general form for lower symmetry environments can be found in Ramsey {43] and
Abragam [21]. In Cartesian form, a generic, if not very useful form for the quadrupolar interaction,
given the symmetry discussed above, is

Q)Y
%q_W4I(2I_1) 3 - II+1)], | (9)
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where eQ is the nuclear electric quadrupole moment. The nuclear spin operator I, in eq. (9) refers to
the local frame, the frame in which the electric field gradient is diagonal. It must be transformed into
the applied magnetic field frame before matrix elements can be calculated and the angles involved in
this transformation will be time-dependent as the relevant bond in a molecule or molecular sub-unit
moves. Thus, the interaction is modulated and NSR can occur.

2.3.3. The dipolar and quadrupolar interactions in spherical tensor form

To calculate NSR, it is convenient to put the spin-dependent interactions into spherical tensor form.
In this way, it is straightforward to change from molecular to laboratory frames. It also allows for a
separation of spatial and spin variables in most cases of practical interest and this, in turn, allows for a
clear distinction between the time-independent spin matrix elements and the time-dependent spatial
matrix elements. The time dependence of the spatial matrix elements can be treated classically via
correlation functions without effecting the precise quantum mechanical treatment of the spin system
[46]. This has the consequence that the strength of NSR rates can often be calculated quite accurately
which leaves motional parameters as the only unknowns to be determined from experiments.

The dipolar and quadrupolar interactions are bilinear in the nuclear spin operators and have the
same form and symmetry when cast in spherical tensor form. The Hamiltonian is

+2
H = 2 (——1)“FZ,,¢ T‘Z,—p, ’ (10)

p==2

where F, is a spherical tensor of rank two [47, 48] specifying the spatial part of the interaction. T, is a
spherical tensor of rank two and can be formed from the contraction of the spherical vector operators
I and 1) [47};

+1 ‘
T,,= 2 C(1,1,2n p— )P (11)

lp=—v 2
p=—]

where C(I,, [,, I, m;, M — m,) is a Clebsch~Gordan coefficient [47]. The components of the spherical
tensor operators of rank one (spherical vector operators) are related to components of the Cartesian
vector operators by [47],

=1 ad L,=%(})"(L=il). (12)

For the dipolar interaction between like spins, IV and I refer to different but identical spins and eq.
(11) can be interpreted physically in terms of the addition of the components of two angular momentum
vectors. For the quadrupolar interaction, eq. (11) may be useful for mathematical convenience but / W
and I'® refer to the same nucleus and the fundamental nuclear property is the second rank tensor T,.
Either way, the labels (1) and (2) can be dropped. The labels must be kept for the dipolar interaction
between unlike spins because in this case there are different Larmor frequencies involved and the
relaxation equations are slightly different [21]. We do not treat this case in this brief introductory review
but the extension to this case is straightforward and the main discussion concerning the spectral
densities in section 6 is the same.

The chemical shielding and spin-rotation interactions can also be cast in the form of eq. (10) but

they are linear in the nuclear spin operators so T, , becomes T , which is just /; ,, F, , is replaced by
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F, ,and p=-1,0and +1. The spherical tensor form of these interactions can be found elsewhere [11,
12, 49]. '

For the dipolar interaction, we assume that the distance r is independent of time. Thus, the vector
r(f) = r(r, 8(¢), $(1)) and the only time dependence is in the angles 2 = 6, ¢ which specify the spin—spin
vectors relative to the applied magnetic field B,. This is the case in those areas of solid state NSR
research where useful information is being learned about the spectral density because otherwise the
distance r(f) appears in the spectral density and not in a time-independent constant. Two examples are
" the 'H-'H interaction in a methyl group (an equilateral triangle of protons) and the *C-"H interaction
in a CH bond. (Again, in this introductory section of this review, we are not considering the latter case
which involves the dipolar interaction between unlike spins.) For the quadrupolar interaction, we
assume that ¥ is constant. In practice, this is a good approximation for a large class of systems.

With these simplifying assumptions, F, for the dipolar and quadrupolar interactions is given by

F, (6, )= —(6) "B(4m/5)"*Y, (6, 6, (13)
where B is
%=y HYr (14)

for the dipolar interaction and
B=3(Q)V (15)

for the quadrupolar interaction.

In eq. (13), Y, is a second order spherical harmonic [47]. Equation (13) can also be expressed in
terms of Wigner Rotation Matrices of rank two, D? whose normalization is sometimes preferable [471.
In this case, the right-hand side of eq. (13) is ——(6)”2%’Di”5(¢, 6, 0) using Rose’s definition for the D
matrices {47]. The spherical angles 8(f), ¢(1) specify the orientation of r with respect to B, for the
dipolar interaction and they specify VE with respect to B, for the quadrupolar interaction.

3. Nuclear spin relaxation
3.1. General theory

3.1.1. The correlation function

A detailed account of the theory of NSR can be found in Abragam [21] and Slichter [9}. Our purpose
here is to relate the Hamiltonian for the relevant interaction to the NSR rate via the spectral density.
We assume the interaction has been cast into spherical tensor form as in eq. (10). We have done this for
the rank-two interactions and it is done for the rank-one interactions elsewhere [11,12, 49].

NSR is caused by the time dependence in the spatial part of the spin-dependent interaction. Thus,
the tensor F, ,{£2(t)} with Q) = 0(t), ¢(t) in eq. (10) is time dependent and the interaction is
modulated. The Hamiltonian in eq. (10) is treated as a perturbation. To see, the connection between the
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Hamiltonian and the relaxation rate, we define an autocorrelation function %(r) by [21]

9,,00= | | 2@)P@, 0, DIF, ,(@)F, ()] 40, d0,. (16)
&

For the dipolar and quadrupolar interactions, £ =2 and for the chemical shielding and spin-rotation
interactions, £ =1. P({2,) is the probability that the angles {2 take on the values £, at =0 and
P(£,, £,) is the conditional probability that £ = (2, at time ¢ if =), at t=0. For the chemical
shielding and spin-rotation interactions, (2 is replaced by appropriate components of & and C,
respectively, but with appropriate symmetry based simplifications, these variables can again be written
in terms of angles whose time dependence characterizes the motion.

Confining ourselves to the rank two interactions, we define the reduced correlation function G, (¢) by

G (1) = (A7I)BG, (1), (17)

from which it follows that

G,u,(t) = J J @(‘QI)P(‘QE? 1, t){Yz,ﬁ(QJY:,u(Qz)] df, dfl, . (18)
R

Since £=2, we suppress ¢ in G,,. In essence, eq. (18) contains the conveniently normalized
time-dependent parts of the spatial matrix elements of the Hamiltonian in eq. (10).

If the motion is random and if one is dealing with an ensemble of equivalent dynamical units, then
P(0,) = 1/(47) and P(Q,, O,, 1) is taken as a solution of the diffusion equation. In this case [21],

Gy=e, (19)

where the correlation time 7 is independent of the component p so we drop the subscripts for
convenience. In solids, this form for G(¢) is often not successful. The normalization in eq. (17) is chosen
to give the normalization in eq. (19).

In general, G, (¢) depends on the component u in two ways. First, as a result of doing first order
perturbation theory, there are constant factors coming from the time-dependent parts of the spin and
spatial matrix elements. They can be dealt with via other factors discussed below. Second, there are
dynamic parameters such as allowing 7 to be 7, in relationships like eq. (19). In this review, we assume
that 7 or other parameters describing the motion are independent of u. This is, in general, a very good
approximation in solids, particularly in powders. As mentioned below, this is not a good approximation
for certain kinds of correlated motions in oriented liquids.

3.1.2. The spectrat density
A nuclear spin relaxation rate R is of the form

R({wj}3 {x.})= &44({“’;’}’ {x.}). (20)

A simple physical interpretation of eq. (20) is obtained from Fermi’s Golden Rule #2 [50, 51]: R is an
appropriately normalized product of the factor & (<% contained in eq. (17) apd given by egs. (14) or




94 ‘ P.A. Beckmann, Spectral densities and nuclear spin relaxation in solids

(15)) which is the square of the time-independent parts of the matrix elements (spin as well as space)
and a factor g which is a linear combination of spectral densities, or, equivalently, densities of states or
the power spectra of the local magnetic fields. _

For the dipolar interaction, the factor & is chosen to be

1
A

ZpiN2 :
=1 Ku&ﬁ“f). (21)
5 r

The factor B2 (with % given by eq. (14)) enters and the factor I(f + 1) comes from the (square of)
nuclear spin matrix elements that appear in the perturbation calculation. It should be mentioned that
NSR due to dipolar interactions is not always an exponential process in which case R is not uniquely
defined via eq. (20). A dipolar coupled spin system can lead to the case where the NSR process i a sum
of exponentials but this is unusual. More common is that correlated motions can lead to nonexponential
relaxation. The best example here is a fixed triangle of spin-3 protons (a methyl group) [52-54]. We do
not deal with the general case of non-exponential relaxation in this review but often a physically
meaningful relaxation rate can be determined from the initial decay in the relaxation process [52]. In
this case, this class of phenomena can be included in the present discussion.

In general, NSR due to quadrupolar interactions is not an exponential process for I>1[21, 55, 56}
and the simplifying assumptions we have been making break down. However, for the very important
case of I= 1, this procedure is valid, the relaxation is exponential, and the parameter 4 is given by

(8

Again, the factor %* in eq. (15) enters and since /=1, there are no other physical constants.
The function g in eq. (20) can be written '

g({w}, (x})= § nd(o, {x}) . (23)

The set of frequencies {w; j=1,2,3,.. .} usually contains the nuclear Larmor frequency o; = w, =
yB, but other frequencies may be relevant as discussed below in a few examples. The parameter set
{x,;i=1,2,3,...}, characterizes the dynamical process or processes involved and much will be said of
such matters later. In the simple example given in eq. (19), x; = 7 is the only parameter. The factors n,
in eq. (23) are appropriately normalized ratios of squares of time-independent parts of matrix elements
and some examples are given below. They are chosen to renormalize G, such that it is independent of
the component . Their values are partially determined by the definition of &/,

The spectral density J(w, {x,}) may depend on many molecular variables {x,} but each J depends on
only one frequency. (For the dipolar interaction between untike spins, this single frequency may be a
sum or difference frequency.) J(e) is the Fourier transform of the correlation function G(¢) in eq. (18);

o, (x)= | Gl (e ar | @)
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With the normalization adopted for G(¢),

f](w) do=17. (25)

For the random motion case with G given by eq. (19), the spectral density is
Jopp(@, ) =271(1+ 0°7%) . (26)

As stated above, only the single parameter x, = 7, the correlation time, is required to characterize the
motion. This approach was first used in relaxation NMR by Bloembergen, Purcell and Pound (BPP) in
their classic paper [S7} which, with the classic paper of Bloch [58], started this field. The work of Kubo
and Tomita [59] put this spectral density on a more solid theoretical foundation.

3.2. Relaxation rates for the dipolar and quadrupolar interactions

As an example of specific forms for the relaxation rate expressed in egs. (20)-(23), we investigate
the dipolar interaction for like spins where r is time-independent as discussed previously and the
quadrupolar interaction for I = 1 where the electric field gradient is axially symmetric and constant in its
local frame. The dipolar interaction is usually only relevant for spin- since the quadrupolar interaction
usually dominates for spin >%. The four relaxation rates discussed here are all spin-lattice relaxation
rates and involve the interaction between the nuclear spin system and the thermal heat bath which is
assumed to have infinite heat capacity. This is always true in practice given the extremely small
magnitude of nuclear spin energies.

3.2.1. Zeeman relaxation

The degree of Zeeman order is determined by the difference in populations between adjacent
Zeeman levels. At equilibrium, this difference is characterized by the temperature of the heat bath
(lattice) via the Boltzmann factor. The temperature of the bath is one of the non-spin parameters
contained directly or indirectly in the parameter set {x,}. This is discussed further below. The Zeeman
relaxation rate characterizes the rate at which a perturbed spin system comes to equilibrium with the
environment. Since the dipolar and quadrupolar interactions are bilinear in the spin operators,; both
single and double quantum transitions occur. (For the dipolar interaction, a double quantum transition
means two single quantum transitions.) R, is given by

R, = d[J(w,) +4JQ2w,)] , | | (27)

which means that in eq. (23), n, =1, n, =4, @, = @, and @, = 2w, . For an ensemble of dipolar coupled
spin pairs where each pair is isolated from all other pairs but is in contact with the heat bath, the factor
o is given by eq. (21). More generally, o is of this order of magnitude for a range of nuclear spin
geometries. (See, for example, R, for the three protons in a methyl group [60] or for the nine protons
in a t-butyl group [37, 61, 62].) For the quadrupolar interaction, eq. (22) is always valid (given the
symmetries and assumptions discussed earlier) since #, is a local interaction only.
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3.2.2. Dipolar order relaxation

If the spins are strongly interacting then the time-independent part of the dipolar interaction (see eq.
(4)) is large and there is a significant distribution in static local dipolar fields. In frequency units, this
distribution is usually Gaussian with a width in the range of 1-100 kHz for "H depending on the degree
of motion (which reduces the static component). This is to be compared with Zeeman levels which are
in the 5-100 MHz range for most "H NSR experiments (excluding zero-field NMR [41, 42]). Thus the
Zeeman levels are broadened into bands with a population distribution given, at equilibrium, by the
Boltzmann factor. Experimentally, this distribution can be perturbed and its return to equilibrium
monitored as first shown and explained beautifully by Jeener and Broekert [63]. There is no general
theory which covers all motional time-scales. The dipolar angular frequency wg, is defined by
04, = YBy, Where By, is an appropriately defined time-independent average local dipolar field.
w4,/ (2) is of the order of a few kHz for 'H. If the motion is characterized by a correlation time 7 and
is very slow (wg, 7> 1) then {15, 64} '

Ry, = (2/1)(1~p), | (29)

where p <1 depends on the details of the relaxation process and the factor 2 has its origin in the fact
that the dipolar interaction is a pairwise interaction. This case usually arises from diffusional processes
[65,66] and in this case, there is no information about the spectral density. However, for molecular
solids where internal reorientation is the dominant motion, wy,7 <1 often occurs and

Ryp= cst [ Hwy,) + 20 (wy) + 272wy . (29)

For many cases of practical interest where the spectral density is being measured in the 5-100 MHz
range, o, may be taken to be zero. The factor multiplying the linear combination of spectral densities
depends on the system under study in a not completely understood way since this is a strongly coupled
many body problem. This places limitations on the use of R, experiments. We write this factor ¢4
where o is that used in the expression for R, in eq. (27) because most theoretical models and
experimental results indicate that c is of the order of unity [67-70]. Used in conjunction with Zeeman
relaxation rate experiments, R, can be very helpful, particularly if there are slow motions which will
show up in the J(w,,) term. Slow here means w;’ <7< @5

3.2.3. Rotating frame relaxation

Experimentally, a static field can be set up in the frame rotating at the nuclear spin precession
(Larmor) frequency w, (the so-called rotating frame). The strength of this field is characterized by B, ,
which defines the angular frequency ., = vB,.,. The expression for the NSR rate R_,, depends on the
strength of B,,, and the time-scale of the motion. In general, many expressions for R, have been given
and most are for particular geometries or systems [8, 9, 64, 71-76]. If w731 and B, ~ By, then 8,
64, 72]

2

2 By
Ro=>0=p) gr—gm (30)

dip rot

Equation (28) for R, is the special case of R,,,, namely when B..=0.1{ B > By, and o, ter<
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w_: (@w;};) then one can measure the relaxation rate [71, 73-76],
s 3 3
R = d[}(20,,) + () + J(2a,)]. (31)

R_., experiments are most useful for dipolar coupled systems and «f is again given by eq. (21) with the
qualifying remarks discussed in section 3.2.1. The experimenter has control over the frequency w,,,
which is in the 27(50 kHz)-27(500 kHz) range. :

3.2.4. Quadrupolar order relaxation in oriented liquids

We mention this relaxation rate for completeness. Quadrupolar order is produced for I > 4 nuclei in
the same way dipolar order is produced for all spin systems, only the effects are much greater. The
symmetry must also be non-cubic for quadrupolar relaxation to occur. The spread within each Zeeman
level can be in the 1-100 kHz range for *H [25] and *Na [26] and in the MHz range for '*N [77,78]. In
normal solids there are no experiments that are able to perturb this order and measure its return to
equilibrium. In oriented liquids, however, like liquid crystals, there is a shift [30] as well as a
broadening of the Zeeman levels and there is a variety of pulse techniques for perturbing this order and
measuring its return to equilibrium [79, 80]. The expression for the observed rate depends on the
experiment. This is outside the scope of this review and the reader is referred to other reviews which
specifically discuss “H relaxation in oriented liquids [29, 81].

4. The relationship between dielectric relaxation and nuclear spin relaxation

Many of the spectral densities used in NSR studies have their origin in dielectric relaxation (DR)
experiments. In a DR experiment, electric dipoles in a molecule or a molecular subunit are perturbed
from an equilibrium configuration by an external electric field produced by a time-dependent voltage
applied to a capacitor. In the simplest idealized version of the experiments, the field is removed and the
recovery to equilibrium, characterized by the electric susceptibility, is monitored. The rate at which the
electric dipoles relax depends on the extent to which the local electric dipole-dependent transitions are
modulated by the molecular motion. For the simple case where the motion is described by Poisson
statistics, the molecular motion is characterized by a peak loss frequency w, which can be varied via the
temperature. Very crudely, the experiment is a measure of the mean number of dipoles reorienting at
the measuring frequency. A more detailed discussion of DR is given elsewhere [82-86].

NSR experiments monitor nuclear spins rather than electric dipoles and there are many different
kinds of experiments, As discussed above, nuclear Zeeman order is determined by an external magnetic
field B,, dipolar order is determined by the distribution of populations within the dipolar broadened
Zeeman levels, rotating frame Zeeman order is determined by the populations of the Zeeman levels in
the rotating frame created by an applied rotating field, and quadrupolar order is determined by the
degree of anisotropy in an oriented liquid. For all these cases, NSR experiments are performed by
perturbing the nuclear spin system from the equilibrium distribution among whatever discrete or
effectively continuous (dipolar order) levels are appropriate. This is done by an external oscillating
magnetic field produced by an oscillating current in an inductor. The field is removed and the recovery
to equilibrium is observed via the voltage induced in the same inductor by a changing nuclear
magnetization (Faraday’s law). There are many tricks of the trade and details of the pulse experiments
can be found elsewhere [1, 87]. As discussed previously, the rate at which the nuclear spin system
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returns to equilibrium depends on the extent to which the local spin-dependent interactions are
modulated by the molecular and intramolecular motion. For the simple case where the motion can be
characterized by Poisson statistics, a mean reorientation rate or correlation time 7 is the only molecular
parameter and it can be varied via the temperature. Very crudely, the experiment is an indirect measure
of the average number of mobile units at various frequencies.

There are important differences between NSR and DR. First, different motions might be involved
since the two techniques are sensitive to the motions of different vectors. Whereas a DR experiment
monitors electric dipole vectors, NSR experiments monitor quite different vectors and/or angles
characterizing the spin system as discussed in sections 2.3 and 3.2. This is not a serious problem insofar
as using DR spectral densities in NSR work is concerned so long as DR and NSR results in the same
material are compared cautiously. Second [7], DR relaxation involves the modulation of rank-one
interactions whereas dipole—dipole and quadrupolar NSR involves the modulation of rank-two interac-
tions. Thus the statistics could be fundamentally different. Third [7], there is no analog of spin diffusion -
in DR. When there are many motions, such as in polymers, the details of the statistical description of
the motion may be effected by the degree of spin diffusion [7] but this is not a problem in simple solids
with one or a very few identifiable motions. In fact, very strong dipole—dipole couplings in simple
systems leads to spin diffusion relaxation rates (R, =T, "y in the (10 us)”* range which means that all
protons, regardless of whether or not they are involved in the motion, relax with the same rate
(R=T;") which is rarely larger than (1 ms)”". That is, T,> T, and the entire spin system is
characterized by a spin temperature throughout the spin-lattice relaxation process.

For the DR case, the complex dielectric susceptibility is

X(©) = x'(0) - ix"(0) = X (0 H(w), (32)

where H(w) is the (complex) spectral density. It is essentially a normalized complex dielectric
susceptibility. With normalization given by eq. (25), if the DR peak loss frequency o, is identified with
the inverse of the NSR correlation time r, then

J() = (2/w) Im[H(w)], (33)

where Im means the imaginary part. The correspondence &, = ™! is not necessarily appropriate for any
particular motion; we simply make the equality in order to relate the spectral densities used in the two
kinds of studies. Thus, if Poisson statistics apply,

H(w)=[1+i(o/w,)]’ (34)

and the NSR spectral density J is given by eq. (26). Equation (34) is referred to as the Debye speciral
density [83, 84].

5. Debye and non-Debye nuclear spin relaxation
5.1. Random motion and Debye relaxation
The simplest J(w) is that resulting from a single random motion characterized by a single correlation

time . The NSR rate is given by eq. (26). This Jypp follows in a straightforward way from the
assumption that the motion obeys Poisson statistics (i.e., is random) [16, 21%.
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5.2. Non-Debye relaxation

In solids, eq. (26) is often not realized in practice and it is not always clear how a thermaily activated
process can result in what is, or what appears to be, a non-Poisson (i.e., non-random) process. There
are a variety of spectral densities used to fit experimental data and the main purpose of this paper is to
review many of them and to put them into a common format for use in NSR experiments. There are
two basic reasons why the observed spectral density may not be of the form in eq. (26). First, the
motion may be inherently non-random which might be the case if motions are correlated. (This is
different from the reason discussed in section 3.1.2 where a single motion (random or not) of a rigid
group leads to correlated motions of the vectors whose modulation is responsible for the relaxation.)
An example here is the spectral density due to order director fluctuations in oriented liquids where
many molecules undergo cooperative motions [88]. Second, within an ensemble of reorienting units
(i.e., the whole sample), there may be sub-ensembles, each of which involves units undergoing random
motion and each of which is characterized by a BPP spectral density Jypp(w, 7), but, where each
sub-ensemble is characterized by a different correlation time 7. This might be the case in a molecular
solid where different internal rotors in the molecule see different electrostatic environments. It also
might be the case in an amorphous solid where there is a distribution of environments. The sum of
spectral densities each of which is given by eq. (26) is no longer of a form given by eq. (26) in the same
way that the resulting correlation function is no longer exponential since a linear combination of
exponential correlation functions (eq. (19)) results in a non-exponential correlation function. The need
to use a distribution of correlation times or a non-exponential correlation function in NSR experiments
has been known for many years [89] and the details of the microscopic physical origins of [90-93], and
the statistical mechanics of [94-96] the departure from Debye behaviour have been and are now being
studied.

5.3. Distributions of correlation times

From a formal point of view, the case of a distribution of correlation times, each characterizing an
exponential correlation function, and the case of a non-exponential correlation function are indistin-
guishable [97] and one can write

2¢

J(a),xl,xz,...)=JA(f,xl,xz,...)mdg, (35)
0

where A(£, x,, x,,...) is the distribution of correlation times ¢ and {x,} is a parameter set which
characterizes the distribution of £ From a practical point of view, one of the clearest constraints on A is
that it cannot depend on o; it is a property of the molecular system under study, not of the measuring
apparatus. ‘

A is normalized to unity;

JA(E,xI,xz,...)d§=1. (36)
0

Since the Fourier transform is a linear operation, A also gives the reduced correlation function as a
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distribution of exponential correlation functions;

gty X, %y, . )= J A(E x,, %y, .. )e e dg . (37)
; |

In the discussion which follows, we shall present several distributions A and their associated spectral
densities in a consistent and logical manner which is appropriate for the analysis of NSR experiments.
Not all the spectral densities have a distribution of correlation times associated with them, however.
Some are simply phenomenological in nature. Putting these spectral densities on a more formal footing,
or interpreting them as special cases of more general theories, is an important avenue of research.

Tn all cases where the various A(#) are presented, they satisfy eq. (36) and the resulting spectral
densities J(w) satisfy eq. (25). Most of the distributions A(£) have a particular correlation time (i.e.,
x, =7) which characterizes the distribution. This can be a cutoff ¢, or a mean ¢ or some similar
parametrization of the distribution A(§). In this case the dimensionless parameter y = £/7is useful as is
the distribution A(y) defined by

Ay)dy = A(E)dE,  A(y)=A[E()]. (38)

Although we do not give A(y) for the distributions used in this paper, it is useful as an intermediate
mathematical step in the handling of several of the spectral densities.

5.4. Correlation time and activation energy

In practice, the correlation time ¢ must be theoretically linked to an experimental observable like
temperature T or pressure P and this link is an important area of study. The relationship between ¢ and
T is usually, though not necessarily, assumed to be an Arrhenius relationship,

E=¢ exp(L/kT). (39)

Equation (39) has its origins in the theory of thermally activated processes [98} and whether or not
conditions in most solids are consistent with such a simple assumption has been discussed continuously
for most of this century [85, 99-108]. The parameter £, has been discussed elsewhere [101-106, 108]
and it is either temperature independent or only weakly dependent on temperature for most cases of
interest (see [104] for an excellent discussion). The parameter { is an “apparent” or “effective”
activation energy and can often be related to physically relevant activation energies or hindering
potentials [103, 105]. Equation (39) is also true for the characteristic £ = 7 and if £, = 7,, is constant for
a given motion, then a plot of In J vs. In 7 has the same general shape as In R vs. T~" which is why the
latter is the way in which experimental results are usually presented. In this case, the parameter
z=1In(£/7)=1In y is useful, as is the distribution function 6(z) defined by

0(z)dz = A(£)d¢,  0(z)=7"A[¢(2)]. (40)

It is important to note that with the single exception of the Frohlich or energy box spectral density
discussed in section 6.11, eq. (39) need not be assumed since we deal with correlation times and not
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temperature as the independent variable for. most of this review. Equation (39) is only presented as the
basis for introducing 6(z) in eq. {40) as a convenient representation of the distribution of ¢orrelation
times. Of course eq. (39) or some other model-dependent link between the correlation time £ and an
experimental observable (temperature, pressure [109, 110}, etc.) must be used to interpret experimental
results.

6. The spectral densities
6.1. Introduction

With these introductory remarks and definitions, we proceed with a discussion of ten spectral
densities. Some of these spectral densities have been presented before in one form or another, some by
Conner [111] and/or Noack and Preissing [112]. The main purpose in the present paper is to add to
those given by these authors, to present them in a consistent and convenient way for use in interpreting
NSR experiments, to link them theoretlcally where possibie, to discuss their properties in a much more
detailed mannes than has previously been done and to compare them with each other in detail. Finally,
some papers confuse the distribution functions A(£) defined by egs. (35) and (36) and 6(z) defined by
eq. (40).

A word is in order concerning the format of the plots we present for J vs. 7. (See J vs. 7 for J5p in
eq. (26) in fig. 1.) All the J vs. 7 plots will be presented on exactly the same scale. Thus, there are 22
figures for In J vs. In 7 like fig. 1 and they all have the same scale and span the same ranges in J and 7.

1 A
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Fig. 1. Log-log plot of aJ, (@, 7} vs. unique correlation time 7 at Larmor frequencies of w/(2w) =8 (top), 40 (middle), and 200 MHz (bottom}.
The Bloembergen—Purcell-Pound or 3-function (BPP) spectral density Jg,, results from Poisson statistics which implies  single vorrelation time.
The normalization ¢ = w} ' ={(2+) 8 MHz] ™ such that Jypp ... =1 at 8 MHz.
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This will allow direct comparisons between the different spectral densities. This format does not rely on
a specific relationship between the correlation time and other parameters such as temperature or
pressure. At the same time, however, if an Arthenius relationship for 7 is assumed (see ahead to eq.
(45)), In7 becomes a reduced inverse temperature scale, normalized by the effective activation
temperature E/k. Figure 1 shows the frequency dependence of Jypp vs. 7 by plotting In J vs. In 7 at three
angular frequencies, o, = 27(8 MHz), w, = 27(40 MHz) and w, = 2r(200 MHz). For plotting purposes,
we have chosen a normalization « for all the spectral densities such that aJppp o, = 1 for @,. It follows
from eq. (26) that the parameter a (where aJ rather than J is plotted) is a = w]". The other two
frequencies are w, =S, and w; =5, = 25w,. These three frequencies are convenient for displaying
the frequency dependence of all the spectral densities but the range also corresponds to convenient and
practical choices for the experimentalist. Frequencies above 200 MHz for solid state NSR studies are
available but the instruments for work with solids are expensive to purchase and they tend to be
expensive and time consuming to run (only in practice, not in principle). A more important aspect is
that for most motions studied by solid state NSR, observed relaxation rates become very small at high
frequencies, thus the experiments are intrinsically very time consuming and there is often little to be
gained since J_, for Zeeman relaxation rates will usually occur at too high a temperature (i.e., too
small a 7, see fig. 1). At low frequencies, signal-to-noise becomes a problem as does the recovery of the
amplifier-detection system. (See [87] for a complete discussion of the art of doing pulsed nuclear
magnetic resonance experiments.) For solid state NMR, these problems are very serious below about
4MHz. Although measurements of Zeeman relaxation rates are the best and most direct way of
learning about the spectral density, they do have these frequency limitations. Motions of much lower
frequencies are studied either by field cycling techniques [113] or by measuring dipolar order or rotating
frame relaxation rates as discussed in section 3.2. However, in the analysis of experimental data,
separating the zero (dipolar) or low frequency (rotating frame) components from the o, (and usually
2w,) component can be difficult. In fitting experimental Zeeman relaxation data, it is very important to
observe at least three frequencies and to observe both the long and short correlation time regimes
(wr>1 and o7 <1 respectively) in order to characterize the spectral density. As will be seen, a
frequency-independent short correlation time limit such as that displayed in fig. 1, is common to several
spectral densities and only by measuring at several frequencies can certain spectral densities be
distinguished from one another. Also, in a plot of In J vs. In 7, several spectral densities have equal and
opposite (constant) slopes for small and large 7 and, again, only by observing at several frequencies can
the spectral densities be distinguished from one another.

6.2. Bloembergen—Purcell-Pound or 8-function (BPP)

The distribution A(£) is

Agee( &, 1) = 8(€—7), | (1)

where 8(x) is a Dirac 8-function. Equation (35) then gives eq. (26) for Jgpp [57, 59]. Lt Jgpp vs. In 7 for
the three frequencies is plotted in fig. 1; it has the limiting values

Joep(w, 1) =27, w07 <1; (42)

and

Iplo, =270, er>1; | _ (43)
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and the maximum value

-1

Jopp max =@ > @T=1. (44)

The small and large 7 regimes (i.e., o7 <1 and wr>1) of InJ vs. Inrin fig. 1 are characterized by
slopes of +1 (eq. 42) and —1 (eq. 43), respectively. Experimentally this corresponds to the high and
low temperature regimes, respectively, and if an Arrhenius relationship.

7= 7, exp(E/kT) (45)

is assumed and if 7~ rather than In 7 is plotted on the horizontal axis, the slopes are +Elk and — E/k.

6.3. Havriliak—Negami (HN)

Dissado and Hill (DH) have developed a very general dielectric relaxation (DR) spectral density {90,
91] which successfully interprets very many sets of DR data [114]. It has also been used to interpret
mechanical relaxation data [115]. The dynamical model {90, 91, 116] on which the DH spectral density
is based assumes both distributions of motional barriers and the presence of correlated motions. There
is an asymmetric anisotropic potential and the many-body problem is introduced via a distribution of
well depths. This distribution is characterized by a parameter # where 0 < n < 1. The value of n depends
on the details of the averaging procedure and is material-dependent. A value of n = 0 corresponds to a
unique barrier height and a value of n =1 corresponds to the greatest allowed distribution of barrier
heights. Correlated motions among the dipoles will effect the relaxation and this is characterized by a
parameter m, 0<m <1 where m = 1 corresponds to no correlated motions and m =0 corresponds to
perfectly correlated motions.

The DH spectral density H(w) for this model [90, 91] requires numerical evaluation of confluent
hypergeometric functions. It is often preferable and more convenient to deal with simpler algebraic
functions if possible and we note, as previously pointed out [117], that the phenomenological spectral
density due to Havriliak and Negami (HN) [118] has many properties in common with the DH spectral
density although it is different in appreciable ways [119]. The HN DR spectral density is

Hy (@) =[1+ (i0/0,)"] ", (46)

where 0< 8 <1 and £< 8" This reduces to the Debye spectral density in eq. (34) when e =8 =1.
Although there is no fundamental theoretical relationship between the microscopic fundamental
parameter pair #z, 7 in the DH model and the phenomenological parameter pair 8, ¢ in the HN model,
they can be related by fitting the same relaxation data. The relationship is = & and n =1~ d¢. Thus, &
is a measure of the correlations and the product 8¢ is a measure of a spread in barriers. The NSR J(a))
is obtained from eq. (33) and is

(or)’ sin(87r/2) H

Janlow, 7,8, 8) = 2 sin[e arctan{
HNAT? & @ 1+ (wr)® cos(87/2)

X [+ 2(wr)’ cos(dm/2) + ()] "2, \ (47)
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where we set = o_ . That is, we associate a characteristic NSR correlation time 7 with the inverse of
the peak loss frequency ,. To tie this in with the more general framework discussed previously, x; =7,

= ¢ and x; =40 in eq. (35) Ln Jyy vs. In7 for w/(27) =38, 40 and 200 MHz is shown in fig. 2 for
s =0.5 and 6 =0.5. Ln J, vs. In 7 for § = 0.5 and several values of ¢ is shown in fig. 3 and In Jy vs.
In 7 for & = 0.2 and several values of & is shown in fig. 4. As in all cases where the dependence of Jon a
particular parameter other than e is being shown, we choose the middle frequency, o, = (2m)40 MHz.
This allows for direct comparison between the manner in which various spectral densities depend on
their parameters. Note that the ¢ = & = 0.5 plot is common to figs. 2 and 3 and that the £ = 0.2, § =0.5
plot is common to figs. 3 and 4. Since we are really showing two dimensional projections of
multi-dimensional spaces, it is convenient to make these kinds of comparisons. This can be done
throughout this paper. :

At high temperatures where 7 is sufficiently small that or <1, J reduces to

Ton(w, 7, £, 8) = 2¢[sin(87/2)]7°0 ™" (48)
and at low temperatures where w7 > 1,
Jol@, 7, €, 8) =2[sin(edm/2)]7 %0 ™1 (49)

The HN spectral density reduces to the Cole—Cole spectral density (section 6.4) if £ =1 and to the
Davidson—Cole spectral density (section 6.5) if 8 = 1.
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Fig. 2. Log-log plot of aly,(w, 1, &, §) vs. characteristic correlation
time 7 for e =0.5 and 8 ={.5 at Larmor frequencies of w/(2#)=38

(top), 40 (middle} and 200 MHz {bottom). Jy, is the Havriliak~.

Negami spectral density. The normalization a= wl“! =[(27)
8 MHz} ™ such that J 1at8MHz,

BPP, max =

Fig. 3. Log~log plot of aJy(w, 7, &, §) vs. characteristic correlation
time 7 at the Larmor frequency w/(27)=40MHz and §=0.5 for
several values of & as shown. Jy, is the Havriliak—Negami spectral
density, The normalization a =" =[(27} 8MHz ' such that
Jopr max = 1 at 8MHz,
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Fig. 4. Log-log plot of aJy,(w, 7, &, 8) vs. characteristic correlation.time  at the Larmor frequency w/(2or) = 40 MHz and £ = 0.2 for three values
of 8 as shown, Ji, is the Havriliak—Negami spectrat density. The normalization 4 = w;' =[(27) 8 MHz] " such that Jy,, . =1 at 8MHz,

The HN spectral density fits DR data [120] in a way which, in some cases, mimics the spectral density
obtained from using, in eq. (24), the non-exponential correlation function G(f) = exp{—(t/m)"}
introduced by Kohlrausch [121] and first used by Williams and Watts in DR studies [122]. This KWW
correlation function has been discussed extensively [123~128].

6.4. Cole-Cole (CC)

The Cole~Cole (CC) DR spectral spectral density can be arrived at from a distribution of Debye
spectral densities [129]. The distribution 8.-(z, &) defined in eq. (40) is

I
boc(z, 8) = 27 sm(ﬁw)[ cosh(&z)i cos(ém) ] ’ (50)

with 0< & <1, and it is plotted in fig. 5 for & = 0.5 (the larger of the two plots at z=0) and 8 =0.2.
The parameter & characterizes the width of the distribution. The independent variable z used in fig. 5 is,
again, introduced via eq. (40) and is z =In(£/7) where 7 is the correlation time corresponding to the
maximum of 8. or Aqc.

The NSR spectral density is given by eq. (33) with H{w) given by CC [129]. Equivalently, it is
obtained from the HN spectral density in eq. (47) with ¢ = 1. Finally, it is also obtained by substituting
the distribution in eq. (50) into eq. (35) via eq. (40). In the context of the microscopic DH model (with
¢=1) the parameter § =m =1—n is a measure of the degree of correlated motion as well as the
distribution of correlation times (activation energies). =1 implies a unique activation energy and no
correlated motion whereas § =0 implies the maximum distribution of activation energies and a
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Fig. 5. 6.0(z,8) vs. z for § = 0.5 (top) and 0.2 (bottom). The Cole-Cole (CC) distribution Acc{£, 7, 8) of correlation times ¢ is characterized by
foclz, &) with z = In{£/r) for characteristic correlation time 7 and width parameter 8,

considerable degree of correlated motion. The spectral density is
o

Jocle, 7, 8)= E% Siﬂ(T)[ 1+ (@n)® + {(zw ZSZ(aw/z)}(wf)a} '

(51)

Ln Jee vs. In 7 for the three frequencies is shown in fig. 6 for § =0.5 and In J. vs. In 7 for various
values of 8 at w/(2r) = 40 MHz is shown in fig. 7. In fig. 7, the case of § = 1 for J. vs. 7 is identical to
the middle plot of fig. 1 for Jy,p vs. 7 (since Joe— Jppp as §—1) and the case of 6 =0.5 in fig. 7 is
identical to the middle plot of fig. 6. The wr <1 and > 1 limits are

Jeclw, 7, 8) = 2[Sin(8w/2)]%sw T8 ar<d; (52)
and
Jeew, 7, 8) = 2[sin(87/2)}r %0~ | wre1; (53)

and the slopes of In J vs. In 7 in the two regimes are +5 and ~§. The maximum value of J ... depends
on both @ and & and is given by

1 [ sin(8m/2)

L1+ cos(&vr/fl)} , or=1. | (54)

]CC, max =

The CC spectral density has been used extensively in DR studies [85, 129] and has found limited use in
NSR studies [{130]. .
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Fig. 6. Log~log plot of aJ..(w,, &) vs. characteristic correlation
time 7 for width parameter §=0.5 at Larmor frequencies of w/
(27)=8 (top}, 40 (middle) and 200MHz (bottom). The spectral
density Jo. results from a Cole~Cole distribution of correlation times
or, equivalently, it follows from the Havriliak-Negami spectral den-
sity with & = 1. The value of & used here is the same as that used to
generate the top distribution in fig. 5. The normalization a= w;' =
[(2r) 8MHz] ™" such that Jopp .. = 1 at 8MHz.

Fig. 7. Log-log plot of al..(w, v 8) vs. characteristic correlation
time T at the Larmor frequency w/(2m} =40 MHz for several width
parameters & as shown. The spectral density Jo. results from a
Cole~Cole distributien of correlation times or, equivatently, it follows
from the Havriliak-Negami spectral density with £=1, Two of the § -
values (0.5 and 0.2) used here are the same as those used to generate
the two distributions in fig. 5. The normalization a= e/ P=[(2m)
8 MHz] ™ such that Jypp .., = 1 at §MHz.

6.5. Davidson—Cole (DC)

The spectral density due to Davidson and Cole [131] is one of the most successful spectral densities
used to interpret nuclear spin relaxation experiments in solids [37, 60, 132-137]. it follows from the HN
spectral density in eq. (47) by setting 8 =1 and, as such, the DC spectral density can mimic the KWW
spectral density under certain conditions (see section 6.3). Equivalently, it comes from a distribution of
correlation parameters z given by;

bz, )= D (L) <o

=0, 220, (55)

with 0<e=1. This distribution function follows if the DR spectral density H(w) is taken as
1/(1 +iw7)® with 0<e=1 rather than the Debye case of £=1 (which leads to the BPP spectral
density). The distribution function F(y) with y = £/7 used by DC in their original work [131] is related -
to the forms used here by F(y) d[ln(y)] = A(y) dy = A(§) dé = 6(z) dz so F(y) in DC is different from
the A(y) in eq. (38). The cutoff value of z = 0 corresponds to the correlation time = 7. For the DC
distribution, the characteristic correlation time 7 is called the upper cutoff correlation time.




108 P.A. Beckmann, Spectral densities and nuclear spin relaxation in solids

boc(2, €) vs. z is shown in fig. 8 for £=0.5, 0.2 and 0.1. (Note that all six 6 vs. z plots in this paper
have the same scale.) 8(z)—> » as z— 0 or, equivalently, A(£)— © as §— 1. Also, A(&)—>d(r— £) or
8(z)— 8(0) as e—1. The case of z =0 (¢ =r) might correspond to the correlation time for a unit
(whole molecular or intramolecular rotor) in the perfect crystalline structure. If there are crystal
imperfections, the result might be to create a variety of environments for the unit, all of which lead to
smaller barriers and therefore to shorter £ values.

Within the framework of the DH DR theory, 8=m =1, ¢ =1~ n# 1 implies no correlated motions
but a distribution of activation energies and therefore a distribution of correlation times. Thus, the
original phenomenological development of the DC spectral density is consistent with the more recent
microscopic theory of DH. Also, whereas many DR studies involve very large molecules (polymers)
where correlated motions are expected to be important, many NSR studies involve simpler systems
where one might not expect correlated motions. Thus it is understandable and encouraging that the DC
spectral density has extensive applications in NSR studies of simple molecules.

The DC spectral density is

sin[ ¢ arctan(wr)) } (56)

2
JDC(wa 7, £) = » { (1+ szz)efz

Ln J,. vs. In 7 for the three frequencies is shown in figs. 9 and 10 for £¢=0.5 and 0.1 respectively.
Ln J,c vs. In 7 for various values of ¢ is shown in fig. 11. For wr <1 and @7 > 1, Jyo is

Joclw, 7, e)=2er, wT<l; (57)
and

Jocl@, 7, 8)=2[sin(en/2)]7 0 0* | wr>1. (58)

0.25

0.20
®)(z)

0.5

0.0

0.05

Fig. 8. (2, £) vs. z for £ =0.5, 0.2 and 0.1 as shown. The Davidson-Cole (DC) distribution A;,c(£, 7, £) of correlation times £ is characterized by
foclz, £) with z = In(£/7) for upper cutoff correlation time r and width parameter 2.

“
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Fig. 9. Log-log plot of aJyc{w, 7, €) vs. upper cutoff correlation time
+ for width parameter &= 0.5 at Larmor frequencies of o/(27) =8
(top), 40 {middle) and 200 MHz (bottom). The vertical dashed lines
indicate the values 7= ", The spectral density Jp results from a
Davidson—Cole distribution of correlation times or, equivalently, it
follows from the Havriliak-Negami spectral density with § =1, The
value of & used here is the same as that used to generate the narrowest
of the three distributions in fig. 8. The normalization a = w; " = [(27)
8 MHz] ™" such that J, . =1 at $MHz.
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Fig. 10. Log~log piot of af,.(w; 1, £} vs. upper cutoff correlation
time r for width parameter =01 at Larmor frequencies of w/
{2m)=8 (top), 40 {middle) and 200 Mz {bottom), The vertical
dashed lines indicate the values r=w ™" The spectral density J,c
resufts from a Pavidson—-Cole distribution of correlation times or,
equivalently, it foflows from the Havriliak~Negami spectral density
with 8 =1. The value of ¢ used here is the same as that used to
generate the widest of the three distributions in fig. 8. The normaliza-
tion a=w; = [(2a) § MHz] ™" such that Jypp .. = 1 at §MHz.

The wr <1 slope of In J, vs. In 7is 1 and the w7 > 1 slope is ~&. Unlike the Fuoss—Kirkwood spectral
density Jo, (section 6.7) and J. (section 6.4) but like Jy,p (section 6.2}, the o7 <1 regime is frequency
independent and NSR experiments at high temperatures could not distinguish between Jgpp and Jp,c. At
low temperatures (w73 1), Jpc < @™ (with £ =1 giving the Jppp % @ result). The maximum value
of J,. satisfies the condition

(wr) tan[ e arctan(w7)} = 1. (59)

T, mex fOr several values of & can be seen in fig. 11. As & goes from 1 to 0, the value wr at which
Joc, mey OCCUTS goes from 1 to «. As a benchmark, the value of r= "' is indicated by the vertical
dashed lines in figs. 9 and 10. In fig. 11 where all plots correspond to the same frequency, thisr=w"
occurs at the position of the peak for the e =1 curve.

The DC spectral density is discussed further in sections 6.6 and 6.8.

6.6. Fang (FAN)

The FAN spectral density [138] comes from a distribution function 6y,(z) which is the mirror image
(about z = 0) of ,(z) shown in fig. 8 so we use the same symbol ¢ for the distribution parameter. Like
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Fig, 11. Log-log plot of al,.(w, 7, €) vs. upper cutoff correlation time 7 at the Larmor frequency w/(2ar) = 40 MHz for several width parameters ¢
as shown. The spectral density Jo. results from a Davidson—Cole distribution of correlation times or, equivalently, it follows from the
Havriliak-Negami spectral density with § =1. The values of £ =0.5, 0.2 and 0.1 used here are the same as those used to generate the three
distributions in fig. 8 and the plot corresponding to the value of & = 1 is identical to the middle Jy, plot in fig. 1. The normalization ¢ = w; 't ={(2m)
8 MHz)"" such that Jypp, o, = 1 2t 8 MHz.

the DC case, £ = 7 (now called the lower cutoff correlation time) might again correspond to the perfect
crystalline environment, only now all imperfections lead to more hindered environments and therefore
larger correlation times. f;,(2) arises from assuming that the normalized complex dielectric suscep-
tibility is of the form H(w) = (iwr)*/(1+ier)® [138] and is given by

GFAN(Z,£)=Sm(W)( 1 )E’ 220

r e’ —1
=0, ° z=0; (60)

with 0< e=1. The NSR spectral density is

Awr)° {Sin[s arccot{wr)] }
(15 )"

(61)

Tean(®; 7, €)=
Ln Jgsy vs. In 7 for the three frequencies is shown in fig. 12 for ¢ =0.1. The low and high 7 limits are
Teanl@, 7, €) = 2[sin(em/2)](1 — &) ", wr<l; (62)
Tean(@,7, 8) =267 @ - wr>1. (63)

The In Jg,y vs. In7 slope is & for wr<1 and —1 for wr>1. This is just the opposite from Jy.
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Fig. 12. Log-tog plot of aly, ({®, 7, &) vs. lower cutoff correlation time 7 for width parameter £ = 0.1 at Larmor frequencies of w/(27) =8 (top), 40
{middle) and 200 MHz (bottom). The vertical dashed lines indicate the values v = ", The spectral density J;,,, results from a Fang distribution of
correlation times. This value of £ corresponds to a distribution of correlation times given by the mirror image of the & = 0.1 curve about the vertical
dotted line in fig. 8. The normalization a = w; "' = [(2ar) 8 MHz] ™" such that Jypp ., =1 at 8 MHz.

Joe = &Jypp for o1 <1 whereas Jz, = eJgp, for wr > 1. At asingle frequency, Jc and Jg i are mirror
images with the mirror at 7 = ™ . Thus, the plots at each frequency in figs. 10 and 12 are mirror images
about the indicated vertical lines, yet the frequency dependence of the two spectral densities is quite
different. We note that a spectral density with the high temperature (small 7) slope less than the low
temperature (large ) slope occurs for a rotor with different well depths [139~142] but the frequency
dependence is quite different from that presented here. It is imperative in any relaxation experiment to
do a frequency study. The maximum value of J., satisfies the condition

(w7) cot] £ arccot(wn)] = (07)* — 01 + 1. (64)

As ¢ goes from 1 to 0, the value of wr at which J;,y ., 0ccurs goes from 1 to 0 as opposed to from 1 to
o as in the DC case.

Some interesting general features of the DC and FAN spectral densities, including their relationship,
have been discussed elsewhere [143]. To our knowledge, J;, has not been used to interpret NSR
experiments but because 8, is the mirror image of 6., and both are physically reasonable, it merits
investigation,

6.7. Fuoss—Kirkwood (FK)
The distribution of correlation times due to FK [144] again has its origin in the interpretation of DR

rates [85, 144]. It has also been used in an incoherent neutron scattering study [145] but to our
knowledge it has not been used successfully to interpret NSR data. The distribution of correlation
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parameters z is given by

B cos( Bm/2) } [ cosh( 82) } |

bex(z, B) = [ p sinh®( B2) + cos™( Bw/2)

(65)

with 0 < B = 1. Here, 7 is the characteristic correlation time (namely the value of £ at which both the
asymmetric distribution Apc(&, 7, B) and the symmetric distribution 6.(z, 8) have their maximum
values) and g characterizes the width of Ay and 6. The (symmetric) distribution 6. (z) is shown in
fig. 13 for B = 0.5 (the narrower of the two) and 0.2 (the wider of the two). As g—1, 6(z)— 8(0) or,
equivalently, A(¢)—» 8(& — 7) as required. Thus as 8— 1, Jyx — Jgpp. The spectral density is obtained
using egs. (40) and (65) in eq. (35). The somewhat involved mathematics is done thoroughly by FK
[144]. J(®) corresponds to (2/w) times the imaginary part of the “reduced polarization” used by FK
(144] (the DR normalized spectral density H{w) in eq. (32)). The NSR spectral density is given by

Jexlo, 7, B) = 2 [

w

(w1

T+ (o) .

Ln J, vs. In 7 for the three frequencies is shown in fig. 14 for §=0.5 and In Jg¢ vs. In 7 for several
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Fig. 13. 8, (z, B) vs. z for $=0.5 (top) and 0.2 (bottom}. The Fig. 14. Log-log plot of al.(w, 7, &) vs. characteristic correlation
Fuoss-Kirkwood (FK) distribution Ap (£, 7, B) of correlation times £ time r for width parameter B =0.5 at Larmor frequencies of a/
is characterized by 8, (z, B} with z = In(£/7) for characteristic corre- (2m)=38 {top), 40 (middle) and 200 MHz (bottom). The spectral
lation time 7 and width parameter 8. density J;, results from a Fuoss-Kiskwood distribution of corzelation

times. The value of 8 used here is the same as that used to generate
the top curve in fig. 13. The normalization a = @ = [(27) 8 MHz] ™
such that Jopp ., = 1 at § MHz

N
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values of B is shown in fig. 15. The short and long correlation time limits are
Jo(w, 7, B)= 287%07 VP wr<l; (67)
and
Jexlw, 7, B) = 287 PR wrm 1 (68)

and the value of J,, is

-1

JFK, max = ﬁw y WT= L. (69)
The ratio
‘IFK,_max/JBPP, max B : . (70)

The frequency dependence of Jy, in the wr <1 and w73 1 limits is ©'~* and &' ** and the low and high
w7 slopes of In J, vs. In 7 are +B and —B. In terms of experimental results, this would be +BE/k and
~BE/k if eq. (45) with constant 7, were used for 7 and if T replaced In 7 on the horizontal axis.

Since the large and small 7 limiting slopes of J vs. 7 are the same for the BPP, FK. and CC spectral
densitics, if data is taken at only one fréquency and the value of R, is not known a priori from
theoretical considerations, then these three spectral densities appear very similar. Thus, some of the

0 1078 1074

/8

Fig. 15. Log-log plot of afe (@, 7, B) vs. characteristic correlation time 1 at the Larmor frequency w/(27) =40MHz and for several width
parameters 8 as shown. The spectral density Jg, results from a Fuoss-Kirkwood distribution of correlation times. The middle two values of § used
here are the same as those used to generate the two distributions in fig. 13. The normalization 2 = @) =[(27) 8MHz] " such that Jyp . =1 at
8MHz.

ke
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many single frequency NSR data presented in the literature and fitted with a BPP spectral density may

be better fitted by a FK or CC spectral density. Comparisons between 6 (2, B) (fig. 13) and 6..(z, 8)
~ (fig. 5) show that for a given & = B, the distribution of correlation times is broader for CC than for FK.
Such comparisons help to determine the relationship between & (CC) and 8 (FK) for the different
spectral densities. For both ot <1 and wr > 1, the ratio Jg/Joo— 1 as B and 5 — 1 and —2/7 as B and
8-> 0. For a given substance, or at least a given sample with a specific thermal history [146, 147}, 8 or B
will usually be constant in which case it is not possible to distinguish between Jeg and J.. in a NSR
Zeeman study unless the frequency dependence is observed.

6.8. Bryn Mawr (BM)

The DC spectral density (section 6.5) fits R vs. T data in many molecular solids. It often fits both the
7 (o1, experimentally, the temperature) and the w-dependence of the w7 <1 (high T) and or> 1 (low
T) regions of the observed relaxation rate very well. However, it sometimes fails in the vicinity of R_,,
and the BM spectral density was invented to rectify this. In terms of the short and long correlation time
limits, the following restrictive properties séem quite general in a wide variety of molecular solids: (a) J
is independent of w for @r <1, (b) J« w' ¢ with 0 < & =1 for w7 > 1; (c) the ratio of the magnitudes of
the > 1 to wr <1 slopes for In J vs. In7is e =<1, the same ¢ as in condition (b). The DC spectral
density satisfies these criteria. For the DC spectral density, fitting the experimental data at any
frequency with the high and low temperature data (wr <1 and w7> 1, respectively) completely
determines all the parameters (i.e., ¢, or, also using eq. (45), ¢, 7., and E) and R vs. T (or J vs. 7)
near wr~1 can be predicted with no adjustable parameters. Also, R vs. T~' at any other o is
completely determined. Alternatively, the frequency and temperature dependence over a small
temperature range in the o7 > 1 regime also completely determines all the parameters. This could be
important if the sample melts before the wr <1 regime is reached. In any event, measuring R in all 7
regions at several frequencies tends to over-determine the J resulting from simple models and since Ji,
is so successful for wr <1 and wr> 1, it suggests that the distribution 6,.(z) in eq. (55) is close to a
more universal distribution of correlation times, or, equivalently, close to the Fourier transform of a
correlation function G{f) that is, in some fundamental sense, even more universal for dynamical
processes in solids than is the exponential correlation function that results from the assumption of
Poisson statistics. The HN (or DH) spectral density discussed in section 6.3 is not a candidate because it
does not, in general, satisfy condition (a) discussed above. This is clear from fig. 2.

The BM spectral density originates from a theoretical exercise designed to find the most general J
which satisfies the @r <1 and wr> 1 properties discussed above [148]. There are many forms for J
which satisfy the three criteria stated above. The simplest forms will contain one more parameter than
Joc and this parameter n will primarily effect J in the vicinity of wr ~1. We investigate one of the
simplest of this set of spectral densities [148];

2T
1+ 0%t

]BM(“)’ T, & Tf) = f(‘g’ ”7) (1 + w"”'n)(l—s)ln ; (?1)

with 0< ¢ <1, and 0 < 7 < 0. The distribution Ag\( £, 7, &, ) can, in principle, be obtained numerical-
ly from egs. (35) and (71) by doing an inverse Fourier transform and the procedure for doing so is
outlined by Fuoss and Kirkwood [144].
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The normalization f(e, ) must be determined by integrating eq. (71) numerically using eq. (25). It is
convenient to define '

f*(e,m) = fle, ) If(e, ) (72)
because f(z, ) can be determined in closed form;
fle, ) =4+ 1(e)]', (73)
with
< 1
Ie)= Sll’l(&"lT/Z) 2 { 8/2] ' (74)

The function f(g, %) varies smoothly from f(1,®)=1 to f(0,»)=0. The sum in eq. (74) converges
slowly and 10,000 terms give an accuracy of 0.01%.
For wr <1 and wr > 1,

JBM(G)$ T, €, 7’) = f(sa 7?)27 , WT < 1 ; (75)

and

JB (ms T, &7 w:f(g, n 27'“8‘0—(“5) : (76
M .

In fig. 16, In J,,, vs. In 7 is shown for the three frequencies for £ = 0.1 and n = 0.2. This shows that
when both & and 7 are small the linear o7 > 1 regime (eq. 76) is not reached until 7 becomes very large
(i.e., off-scale on fig. 16). For fixed small ¢, this high  curvature vanishes above 5 ~ 0.5 as shown in fig.
17 which shows In Jy,, vs. In+ for ¢ =0.1 and for several values of . Values of 7 above ~10 are
indistinguishable from » = . Likewise, for fixed small 7, the high 7 curvature vanishes above & ~ 0.5 as
shown in fig. 18 which shows In Jg,, vs. In7 for =0.2 and for several values of ¢. For ¢ and 7
simultaneously larger, the curvature disappears altogether. Finally, the case n— (i.e., > 10) is very
similar to the DC case, even for small £, and the two would be indistinguishable in an experxment This
is shown in fig. 19 which compares JBM (p—>) and J,c both with £=0.2. (For mathematical
completeness, we note that Jy,, for n— e is continuous at o7 = 1 but it is not differentiable. ) As can be
seen from figs. 17 and 18, the value of 7 for which J, is 2 maximum does not vary from o ' very much.

6.9. Wagner or log—Gaussian (WAG)

It is natural to investigate a Gaussian distribution of activation energies [85]. The Wagner
distribution [149] of correlation parameters 6, (z, @) is given by

1/2

) exp(—a’2) ; | (77)

with 0< @ <o, This leads to a log-Gaussian distribution Ay, (¢, 7, @) of correlation times ¢ since

Buyaclz, o) = (alm
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Fig. 16, Log-log plot of aly, (e, 7, £,7) vs. characteristic correlation
time 7 for width parameters ¢ = 0.1 and =02 at Larmor frequencies
of w/(27)=8 (top}, 40 (middle) and 200 MHz (bottom). The nor-
malization a = o]’ = [(27) 8§ MHz]™" such that J,p ., = 1 at § MHz.
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Fig. 18. Log-log plot of alyy(w, 7, &, 1) vs. characteristic correlation
time r at the Larmor frequency w/(2)=40MHz and 7=0.2 for
several values of ¢ as shown. The normakization = w; ! = [(27)
8MHz] ™" such that Jypp ., = 1 at 8MHz.
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Fig. 17. Log-log plot of alg (@, 7, &, 1) vs. characteristic correlation
time  at the Larmor frequency w/{27) =40MHz and e=0.1 for
several values of 7 as shown. The normalization ¢ = ;" =[(27)
8MHz] ™" such that Jypp .. =1 at 8MHz.
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Fig. 19. Log-log plot comparing afy,.(w, 7, £) vs. upper cutoff corre-
lation time 7 with aJy,(w, 7, €, 1) vs. characteristic correlation time 7
at the Larmor frequency w/(2w)=40MHz with width parameters
£=0.2 (both DC and BM} and n—o (BM). The normalization
a=w, " ={(2r) § MHz]"’ such that Jgpp .., = 1 at 8MHz.
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z=In(£/7). The parameter 7 is a characteristic correlation time and the parameter « is a width
parameter.

If eq. (39) is used for £ and eq. (45) is used for = with fixed £,=17,, a Gaussian distribution of
activation energies { results. In this case, the correlation parameter z is also given by z =[E(¢) -
E(m)]/kT and is a reduced, inverse temperature, normalized by a difference activation temperature
[E(&)— E()]/k. Although these assumptions are inherent in the phenomenological development of
fsc and this is the origin of the distribution 6y, [149], we emphasize that they need not be made
here. The characteristic correlation time 7 is the independent variable in the spectral density for this
study. _

The symmetric distribution &, ;(z) of correlation parameters z is shown in fig. 20 for & = 0.4 (the
narrower of the two) and o = 0.1. These values are chosen to have 6, approximate 8. in fig. 5 and
6 in fig. 13. The spectral density Jy,o{w, 7, @) is expressed as an integral using egs. (35), (40) and
(77) and is

0

a 2] 27 e’
JWAG(&), T, a) = J [W [+ ][m} dz. (78)

-5

This ‘spectral density has been used in a variety of NSR studies in liquids [150, 151} and solids 152,
153]. Equation (78) must be integrated numerically and although tables are available [154, 155] it is
faster to use a microcomputer. Ln Jy, vs. In 7 for the three frequencies is shown in fig. 21 for « =0.4
and In Jy,, ; vs. In 7 for three values of « is shown in fig. 22. As @ = ® (210), Jy,— Jppp @5 expected.
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Fig. 20. f,5(z. a} vs. z for @ =0.4 (top) and 0.1 (bottom). The Wagner or log-Gaussian distribution Ay, (¢, 7, ) of correlation times ¢ is
characterized by 6, (z, ) with z = In{#/r} for characteristic correlation time = and width parameter .
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Fig. 21. Log-log plot of aly, (@, 7, @} vs. characteristic correlation
time + for width parameter o =0.4 at Larmor frequencies of e/
(27)=8 (top), 40 (middle) and 200MHz (bottom). The spectral
density Jya g Tesults from a Gaussian distribution of activation ener-
gies or a log-Gaussian distribution of correlation times. The value of
o used here is the same as that used to generate the top curve in fig.
20. The normalization 2 = &;" ={(27) 8 MHz} ™" such that Jypp . =
1 at 8 MHz.

Fig. 22. Log-log plot of aly,.q(w, 7, a) vs. characteristic correlation
time 7 at the Larmor frequency w/{2ar) = 40 MHz for width parame-
ters o as shown. The spectral density Jy, ¢ results from a Gaussian
distribution of activation energies or a log-Gaussian distribution of
correlation times. The values & =0.4 and 0.1 are the same as those
used to generate the two distributions in fig. 20. The normalization
a=w;" =[(27) 8 MHz] " such that Jy,, .., =1 at 8MHz.

Ln Jy, vs. In7 is always symmetric about wr =1 and the limiting values are

Juaclo, 7 @)= [exp(zi‘i)]% , wr<l;

and

Jyaclo, 7, a) = [exp(ﬁi—(l;g)]%"lw"z ,

wr® 1.

(79)

(80)

The wr <1 frequency independent limit is only just reached in fig. 21 and the w7 > 1 limit is only really
evident for the lowest frequency plot (highest curve) in fig. 21. Ln Jy,q vs. In 7 is wider in the wings
and lower at the maximum than is In J,p vs. In 7 but J, occurs at the same 7= o~

6.10. Log-Lorentzian (LL)

The procedure here is the same as for the Wagner spectral density instead a Lorentzian distribution
of correlation parameters is assumed. 8, () is given by

1

o
b, (z, o) = p 1+ ais? )

(81)
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with 0< a <, and A, (&, 7, @) is a Lorentzian in In(£/7) as the name implies. The parameter 7 is a
characteristic correlation time and the parameter a is a width parameter. Figure 23 shows 6, (z) for
a =0.71 (the narrower of the two) and 0.16. These values were chosen to approximately replicate the
maximum values of 8,,,(z) in fig. 20. The spectral density is expressed as an integral using egs. (35),
(40) and (81),

R T B I e L &)

7 ll+ 2?1+ 0% e

-

Ln J,, vs. In 7 for the three frequencies is shown in fig. 24 for @ = 0.71. At w7 <1 and >1 the curvature
is of the opposite sign than for Jy,; (fig. 21) but like Jy, ¢, J;, is symmetric (in In 7) about Ji; ...
Ln J;; vs. In 7 for several values of o is shown in fig. 25. As a-> (=10%), J,, — Jgpp as expected. As
suggested by fig. 24, J;, does not approach J« 7° for wr <1 or Jec 777 for or>1 (for some positive
constants p and ¢) like most other spectral densities. This is a familiar property of a Lorentzian
function. Like Jy, ¢ and Jypp, Ji1 e © o~ when wr=1.

We note that J,, mimics the sum of a BPP spectral density plus a constant spectral density which we
only mention because the latter sometimes occurs experimentally when oxygen is present in the solid.
Oxygen gives rise to a relaxation rate which is complicated but approximately independent of
temperature (i.e., of 7). This usually only occurs if the material is a liquid at room (or at the stored)
temperature. One can distinguish between the two cases by removing any dissolved oxygen.

0.25 I I T T I T T ! i I I H t [ T i H 1 T

17ANN
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107
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Fig. 23. 8,,(z, @) vs. z for & =0.71 (top} and 0.16 (bottom). The Fig. 24. Log-log plot of aJ,,{w, 7, &) vs. characteristic correlation
log-Lorentzian distribution A, (&, 7, a) of corrclation times £ is time ¢ for width parameter a =90.71 at Larmor frequencies of wof
characterized by 6, (z, ) with z =In(£/7) for characteristic correla- (2m) =8 (top), 40 (middle} and 200MHz (bottom). The spectral
tion time 7 and width parameter a. density J,, results from a Lorentzian distribution of activation ener-

gies or a log-Lorentzian distribution of correfation times. The value
of o used here is the same as that used to generate the top curve in
fig. 23. The normalization e=w]'=[(27) 8MHz]™' such that
Jore, max = 1 at 8MHz.
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Fig. 25. Log-log plot of aJ;, {w, 7, o) vs. characteristic correlation time r at the Larmor frequency w/(2w) =40 MHz for width parameters o as
shown. The spectral density J;, results from a Lorentzian distribution of activation energies or a log~Lorentzian distribution of correlation times.
The values o =0.71 and 0.16 are the same as those used to penerate the two distributions in fig. 23. The normalization a2 = w ' = [(2#) § MHz] ™
such that Jyp, . =1 at §MHz.

6.11. Frohlich or energy box (FRO)

The Frohlich spectral density [84] has been used to interpret NSR data in solids [156, 157]. It is very
useful because it is convenient to handle mathematically and any arbitrary spectral density can be
conveniently expressed as a sum of Frohlich spectral densities [156]. Thus, it can be used to investigate
the characteristics of all other spectral densities.

The most convenient starting point is to define a distribution I'({) of activation energies { by

FFRO(‘.;;» E, A)= 1/(221), E—A<-£<E+A :
=0, otherwise ; (&)

with A< E. Thus, Ty, is a box of height (24)”" and width 24 centered around { = E. It has unit area.
This distribution of activation energies { is related to the distribution of correlation times ¢ or
correlation parameters z by

Tipo( ) d¢ = Appo(£) A€ = frgo(2) dz (84)

and one can compute Appo and fepo from ILg, and vice versa if () is known. If an Arrhenius
equation ¢ = 7, exp({/kT), where £, = r,, is taken to be constant, is assumed then & (z) is also a box.
We make this assumption. The correlation time corresponding to the center of the energy box (i.e.,
{=E) is ¢ = 7 with 7 given by 7= 7, exp(E/kT) (eq. (45)). The parameter 7 becomes a characteristic
correlation time. The distribution functions 6px(z) and Apg(£) are straightforward to obtain but care
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must be taken in relating the parameters which characterize their cutoff values. The distribution fp(z)
is given by ' '

boro(z, Z2)=1/22), ~Z<z<Z,
=0, otherwise ; | (85)

where

Z=(A/E)In(r/7,) ., T < T,
or, equivalently,

Z=A4/kT), A<E;

where egs. (39) and (45) are used with £, =1, The distribution Ag is given by

Awrol€, 2, 7) = [LIQZ))(11E), e ?<g<re’;
=0, otherwise . (36)
The upper and lower cutoffs for Apg, can be written in other useful ways as discussed below. The

function 6,z (2, Z) is shown in fig. 26 for Z =3.0 (narrowest), 5.3 and 7.6. These values are chosen to
give 6qp(2) widths comparable with the other distributions investigated.
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Fig. 26. Oppof2, Z) vs. z for three values of Z as shown. The Frohlich distribution Asio(€, 7 Z) of correlation times £ is characterized by
8onolz, Z) with z =1In{ £/7) for characteristic correlation time 7 and width parameter Zr

.
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Two independent constants in addition to w and 7 are needed to specify Jggo. It is convenient to
choose them to be &= A/E <1 and 7, where 7, is the infinite temperature correlation time (or the
pre-exponential factor) in eq. (45). Thus 7., is common to all correlation times in the distribution since
£, =17, Jepo becomes

Jero(@, 7, 7., €) = S {arctan[m(—f-)j - arctan[m(i)“e” (87)

gw In(r/7, T, T,
If we were studying the properties of the Frohlich spectral density independently of the others being
reported here, the three parameters o, 7/7, and & would suffice. However, we want to keep 7 separate
as the independent variable for the spectral density in order to compare Jyy(, With the other spectral
densities presented in this paper.

Ln Jppo vs. In 7 for the three frequencies is shown in fig. 27 for £ =0.5 and 7, = 107" 5. The value
7,=10""s is typical for many dynamical processes involving 'H in solids. The parameter wr, =
2.51 x 10" (where ® =2m (40 MHz) is our “standard” angular Larmor frequency) is perhaps more
relevant than just r,. With these choices for ¢ and 7., the three distributions 6q5,(z, Z) in fig. 26
correspond to the 7 values 4 X 107" s (Z=3.0),4x 107" s (Z=5.3) and 4 X 10775 (Z =17.6) in fig. 27.
Ln Jepg vs. In7 at @ =2 (40 MHz) and for several values of & is shown in fig. 28. As e—0 (40,
Jero™ Japp and as e—1 (4= E), Jepo tends to mimic Jye for small & and 7.

Investigating the limiting regimes of Jizo is somewhat less straightforward than most of the other
spectral densities because o7 must be compared with wr, as well as with unity. For this and other

aJ

Lol ] \
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10712 1078 1074
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Fig. 27. Log-log plot of afepo{®, 7, 7., £) vs. characteristic correlation time r for width parameter ¢ =0.5 and infinite temperature correlation time
7, =107 5 at Larmor frequencies of w/(2m)=8 (top), 40 (middle) and 200 MHz (bottom). The spectral density /g, results from a Frohlich or
energy box distribution of activation energies §. The width of the box is 24 and the center of the box is E. The parameter ¢ is defined by ¢ = 4/E.
The three distributions in fig. 26 correspond to the = values 4 X 1075 (Z=3.0), 4x 1075 (Z=5.3) and 4 x 10”5 (Z =7.6) in this figure. The
width of the box in z in fig. 26 depends on 7 and 7, in addition to ¢. The normalization 2 = ;" ={(27) 8 MHz] ™' such that Jypp o, =1 at 8MHz.
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Fig. 28. Log-log plot of algpo(w, 7,7, 8) vs. characteristic correlation time 7 at the frequency w/(27)=40MHz for infinite temperature
correlation time 7, = 107" s and for several values of £ as shown. The spectral density J,p, results from a Frohlich or energy box distribution of

activation energies {. The parameter ¢ is defined by ¢ = A/E. The width of the box is 24 and the center of the box is E. The normalization
a=w;" =[(27) §MHz] ™" such that Jypp .. = T at 8MHz.

practical reasons related to the analysis of experiments, it is convenient to define the limits 7, and , for
Apro(€s Z, 7) in eq. (86) by

ro= (el =, e T = e (83)

and

(E+AM)KT _ _ Z (89)

n=1rlr,) =1,¢ Te,

in which case,

1

1
AFRO(& Ty 72) In(Tlel) 'é n<E<T,,

={, otherwise , (90)

and the spectral density in eq. (87) takes on the form

2
Jerol®, 7, 1y) = oTn(rir) [arctan(wr,) ~ arctan(wr,)] (91}

i
|
:

The plotting parameter = (the same as previously used) is just the géometric mean of the cutoff 7
values;

\
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o 172
r=(nm)"”. )
The condition 7, <7, <7<, is always true. In the limit o1, <or, <1,

2Ar, —7)
Jerol®, 71, 7y) = Eé‘/;ll—) | (93)

which is frequency independent and can be seen in fig. 27 at small 7 values. Equation (93) reduces to
Jspp = 27 in the limit 1=17, > 7,. In the limit 1 <€ o7, < w7, _

2 1 1
JFRO(w? Tl? TZ) = w?. }H(T /T ) (_ - ——) ) ' (94)
201

This region is observable for several of the curves characterized by small ¢ in fig. 28 and it is only just
observable at large 7 for the largest w in fig. 27 (bottom curve). I 7,-> r, =7 then Jip, in eq. (94)
becomes Jpp = 2/(w’r). If 7, and 7, are sufficiently different and the condition w7, <1< o, is satisfied,

(s

Jerol@, 71, 7,) = R

(95)

This is the case in the intermediate regions in fig, 27.
The parameters 7, and 7, can be labelled with an additional subscript i and any distribution of
correlation times can be expressed as

N
ACE, Ty, Togs o o5 Tons 72N) = 2 @ Apro( € T T (96)

with the width 7, — 7,,, independent of i, being some monotonically decreasing function of N (in the
same way numerical integration is performed) and,

N _
2 a=1. (97)
i=1

A very general spectral density is then

N
o, 7, s i o) = 21 T ero(®; Ty, o) - ‘ (98)

This procedure is very useful for investigating the properties of the various spectral densities and for
numerically fitting data. It can be determined a priori how many boxes are needed to reproduce the
desired spectral density (i.e., the value of N) and no difficult numerical integration need be done.
Alternatively, one can fit the data with as few boxes as possible and then see which distribution of
correlation times the sum of boxes best mimics. In order for this exercise to be useful, the NSR rates
must encompass both long and short correlation time limits and the experiments must be done at
several Larmor frequencies.

N
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7. Summary

Following a brief introduction to solid state nuclear spin relaxation (NSR), we have investigated ten
spectral densities which are or could be used to interpret NSR rates in solids. We have discussed their
mathematical properties in some detail in a manner which allows direct comparisons between them and
in a manner which should aid in the interpretation of experiments. Many of the spectral densities
investigated have been assumed to arise from a distribution of simple Bloembergen-Purcell-Pound or
Debye spectral densities which, in turn, have their origin in random motion of the appropriate
molecular or intramolecular geometric parameters. It is the modulation of these vectors and/or angles
by the motion which is responsible for NSR. Alternatively, the various spectral densities can be taken
as the Fourier transforms of single non-exponential correlation functions which describe non-random
motion of the appropriate vectors.
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