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 Abstract 
 Humans have an outstanding ability to generalize from past experiences, which requires parsing 
 continuously experienced events into discrete, coherent units, and relating them to similar past 
 experiences. Time is a key element in this process; however, how temporal information is used 
 in generalization remains unclear. Latent-cause inference provides a Bayesian framework for 
 clustering experiences, by building a world model in which related experiences are generated by 
 a shared cause. Here we examine how temporal information is used in latent-cause inference, 
 using a novel task in which participants see ‘microbe’ stimuli and explicitly report the latent 
 cause (‘strain’) they infer for each microbe. We show that humans incorporate time in their 
 inference of latent causes, such that recently inferred latent causes are more likely to be 
 inferred again. In particular, a ‘persistent’ model, in which the latent cause inferred for one 
 observation has a fixed probability of continuing to cause the next observation, explains the data 
 significantly better than two other time-sensitive models, although extensive individual 
 differences exist. We show that our task and this model have good psychometric properties, 
 highlighting their potential use for quantifying individual differences in computational psychiatry 
 or in neuroimaging studies. 

 Introduction 
 The ability to generalize from relevant past experiences plays a crucial role in human learning 
 and memory. Rather than learning information  de novo  ,  individuals often leverage previously 
 learned knowledge in novel situations. The latent-cause inference framework provides a rational 
 basis for such generalization, while also accommodating situations that are completely new and 
 cannot build on past experience  (Anderson, 1991; Courville  et al., 2005; Gershman et al., 2010; 
 Radulescu et al., 2021)  . In this nonparametric Bayesian  framework, related experiences are 
 clustered together as they are believed to share a common cause, while dissimilar experiences 
 are segmented into distinct latent causes, with the overall number of latent causes unbounded 
 (Franklin et al., 2020; Shin & DuBrow, 2021)  . 

 Organizing and segmenting experiences into coherent units is useful in making adaptive 
 decisions that draw from past relevant experiences  (Shadlen & Shohamy, 2016)  and predictions 
 about what will come next  (Pettijohn & Radvansky, 2016; Rinck & Weber, 2003; Speer & Zacks, 
 2005; Zwaan, 1996)  . Work in the episodic memory literature has examined extensively how 
 temporally continuous streams of experiences are segmented into discrete units, a process 
 known as “event segmentation”  (Clewett et al., 2019)  . This literature, including Sarah DuBrow’s 
 early work, shows how detecting and transitioning between events influences the encoding and 
 retrieval of memories  (DuBrow & Davachi, 2013, 2014, 2016; Ezzyat & Davachi, 2011; Heusser 
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 et al., 2018; Radvansky & Zacks, 2011; Rouhani et al., 2020)  . Signaled temporal gaps (e.g., “a 
 moment” or “a while” within a text) predicts event boundaries (Ezzyat & Davachi, 2011), and 
 temporal information is better preserved within an event than across event boundaries (DuBrow 
 & Davachi, 2013, 2014, 2016). Neuroimaging studies show that event structure is represented 
 at different timescales along the cortical hierarchy, with the hippocampus responding to the 
 boundaries of events  (Baldassano et al., 2017; Ben-Yakov & Henson, 2018; Lee & Chen, 2022; 
 Ritchey et al., 2015)  . 

 In organizing experiences, a key element is time, which weaves experiences into a stable 
 continuum  (Howard & Kahana, 2002; Jayakumar et al.,  2023; Yu et al., 2021)  , and is a 
 ubiquitous generalization clue – unless an event transition has occurred, the current experience 
 is likely to be similar to the recent past. While the literature provides ample evidence for the 
 significance of time in memory, the mechanisms by which individuals use time and similarity to 
 recognize past events that are relevant to current experiences are less well understood. 

 Latent-cause inference offers a statistically principled (i.e., Bayesian) way to optimally 
 generalize from past experience by inferring shared latent (hidden) causes for similar 
 observations. By inferring the latent cause of the current observation, one can draw on 
 knowledge from previous events that were presumably generated by the same latent cause. 
 However, the standard Bayesian model of latent-cause inference, which relies on a Chinese 
 Restaurant Process (CRP) prior, does not use temporal information  (Aldous, 1985; Anderson, 
 1991)  . In this model, the prior probability of a latent  cause is determined by its previous 
 ‘popularity’ – the assumption is that a more prolific cause, i.e. one that has generated 
 observations more often, is more likely to cause the next experience. This form of prior belief 
 intentionally ignores the order of previous events (that is, the model is time-invariant by design), 
 as this makes the model computationally tractable. However, the time-invariance assumption 
 does not accord with causal structures in the world, which are most often temporally contiguous. 

 Recent studies have begun to investigate the role of temporal information in inferring latent 
 causes from an ongoing stream of information, incorporating the assumption that recently 
 encountered latent causes have a higher chance of generating the next observation  (Blei & 
 Frazier, 2011; Fox et al., 2011; Lloyd & Leslie, 2013)  .  Indeed, empirical evidence suggests that 
 learning behaviors in humans  (Éltető et al., 2022)  and rodents  (Lloyd & Leslie, 2013; Song et 
 al., 2022)  are best captured by models in which the  prior probability of a previously active latent 
 cause decays over time (  Blei & Frazier, 2011)  . A simpler  model, which gives an extra boost to 
 the most recently inferred latent cause (  Fox et al.,  2011)  , has been shown to account for stable 
 event perception  (Franklin et al., 2020; Gershman  et al., 2014)  . Similarly, a model that assumes 
 that temporal contexts persist over time captured learning behaviors in rodents  (Lloyd & Leslie, 
 2013)  . This previous work suggests that temporal information  is critical to latent cause 
 inference.However, the evidence is indirect, through learning tasks that do not specifically 
 examine latent-cause inference. 

 Here, we directly probe how temporal information contributes to generalization behavior in 
 humans, using a novel task developed by Sarah DuBrow and Yeon Soon Shin to study 
 latent-cause inference. In this “microbes task,” participants assign a stream of abstract visual 
 stimuli, presented as “microbes,” to underlying similarity groups (“strains”), thereby explicitly 
 probing the inference of latent causes from observations. Different from a categorization task, 
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 the number of strains is not determined in advance, and the temporal sequence of stimuli is 
 informative: consecutive stimuli tend to come from the same strain, though occasionally a 
 microbe from an old strain will appear in the sequence, and a new strain can emerge at any 
 moment. Using behavioral data from a large sample, we compare different latent-cause 
 inference models: the standard Chinese Restaurant Process prior that does not rely on temporal 
 information  (Aldous, 1985; Anderson, 1991)  , and the above-mentioned three models that 
 integrate temporal information in the inference process. We then test the reliability of model 
 parameters to further explore the possibility of utilizing the inference models to capture 
 individual differences that can map onto psychological constructs,  such as  mental health 
 conditions  . 

 Methods 
 Participants  . Participants (  N  = 1928) were recruited on Prolific Academic in five waves between 
 March 2021 and May 2022 for a larger study investigating how latent-cause inference 
 parameters map onto individual differences in mental-health symptoms.  This study was 
 approved by the Institutional Review Board of Princeton University (protocol #11968), and all 
 participants provided informed consent.  All participants were in the United States, with a mean 
 age of 35.0 years (  SD  = 13.3, range 18-84). 927 participants identified as women (56.4%), 668 
 identified as men (40.7%), and 48 identified as non-binary (2.9%). 285 participants did not 
 provide demographic information, whereas 3 participants were likely dishonest in their age 
 reports (reporting ages of 3, 7 and 332 years old, respectively).  Our larger experiment included 
 192 self-report items measuring psychiatric symptoms that were subject to exploratory factor 
 analysis to reduce dimensionality and multicollinearity. Based on previous work with a 
 similar-sized questionnaire battery  (Gillan et al., 2016)  , we estimated we needed high-quality 
 psychiatric data from at least 1400 participants. We continued recruitment in waves until this 
 criterion was met and slightly surpassed (total  N  who completed and passed attention checks 
 on questionnaires = 1637). 

 The experiment involved two sessions. Participants were excluded from the study if they did not 
 complete both sessions, or if they failed more than two out of 10 attention checks embedded in 
 the self-report symptom questionnaires in the first session (e.g., failing to answer ‘I disagree a 
 lot’ or ‘I disagree a little’ to the item ‘When something good happens, it makes me think about all 
 the times I traveled to the moon’). Participants were also excluded if they made more than 10 
 errors in total on any of the forced-choice training trials, or if they failed to respond on more than 
 4 trials in the training block, 5 trials in the practice block, or 10 trials on the 2 main blocks in 
 session 1 (see below for details). These values were determined based on the empirical 
 distribution of missed trials for each block. Excluded participants (  N  = 691) were not invited to 
 the second session, and their data were not analyzed further. The remaining participants (  N  = 
 1237) were invited back 1-2 days later, and recruitment was kept open for ~2 weeks with regular 
 reminders for those who did not respond right away (maximum delay between sessions = 18 
 days;  N  = 1073 returned for the second session). The  second session began with a series of 
 comprehension questions regarding the task instructions. If a participant responded incorrectly 
 to any of the questions, they were asked to try again. If they still had a mistake on their third try, 
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 their session was terminated and they were excluded from the experiment (these participants 
 were counted as “not returning for session 2”). In addition, participants who failed to complete all 
 portions of the microbes task in session 2 (  N =  91)  or who missed more than 5 trials in more 
 than one of the main blocks (  N  =10) were excluded  from further analysis. 

 Figure 1. Structure of the ‘microbes’ task.  A  .  Schematic of the trial structure. On each trial, 
 participants saw a microbe and had to type in a number indicating the strain they thought the 
 microbe belonged to. Each strain was denoted by a 3-letter label. The grayed out strain is the 
 one that has not been inferred yet (a “novel” strain).  B  .  Schematic of a temporal sequence of 
 trials.  C.  Schematic of the structure of a single block. Numbers are the same as in  B  , denoting 
 the sequence of trials and corresponding microbes. Axes denote the spike number and length of 
 each microbe in the sequence (in subjectively equidistant steps, based on a distance-norming 
 experiment not reported here). Four example microbes are shown linked with dotted black lines 
 to their corresponding number in the sequence. Each block consisted of four different 
 ground-truth latent causes (‘strains’). Microbes on most consecutive trials came from the same 
 latent cause, but there would occasionally be a jump to a new latent cause (green arrows and 
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 circles), or a jump back to a previous latent cause, called ‘revisits’ (purple arrows and circles). 
 Revisits could be 1-back (full arrow in the schematic), 2-back (not present in this block) or 
 3-back (dashed arrow), and there were always one or two revisits from each ground-truth latent 
 cause except the first one. The specific block shown corresponds to the second main block in 
 session 2. 

 This left a final  N =  972 participants (mean age 35.6 years (  SD  = 13.67; range 18-84); 553 
 women (56.9%), 390 men (40.1%), 28 non-binary people (2.9%); one participant did not provide 
 demographic information) whose data were analyzed and are reported here. 

 Experimental design  . The experiment was run in two  sessions. In the first session, participants 
 completed four blocks of the microbes task (a training block, a practice block, and two standard 
 blocks) alongside a 192-item battery designed to assess self-reported mental health symptoms 
 (which will not be reported or analyzed here) and a demographic questionnaire. The training 
 involved 10 forced-choice trials, each of which was repeated until the participant made the 
 correct response. The practice block involved 66 trials of the task, with feedback denoting the 
 correct response after each trial. The main blocks were similar in structure to the practice block 
 except that participants were not given any feedback. The second session began with a series 
 of comprehension checks about the task instructions. It then included the same training and 
 practice blocks, together with 6 standard blocks of the microbes task. At the end, participants 
 completed a visuo-spatial working memory task (the symmetry span task;  Kane et al., 2004  ). 

 The ‘microbes task.’  Participants completed a task  in which they assigned abstract visual stimuli 
 to either old or new latent causes (Figure 1). The stimuli, introduced in the cover story as 
 ‘microbes,’ had spikes coming out of a core. These spikes varied along two dimensions: the 
 number of spikes (dimension 1) and the length of the spikes (dimension 2). Participants were 
 asked to classify the microbes into ‘strains’ (latent causes) based on their perceptual similarity. 
 They were told that the stimuli were photos of microbes taken at consecutive time points and 
 that, at any given time, one microbe strain is dominant; however, microbes mutate sometimes to 
 generate a new strain, which quickly starts to dominate but does not take over completely, so 
 they could still sometimes see exemplars of old strains. 

 In both experimental sessions, the task started with a short 10-trial forced-choice training phase 
 in which microbes were presented with their correct strain, and a practice block where 
 participants received feedback (i.e. were told which strain was correct) after choosing as strain 
 for each of 66 microbes. Thereafter, in the main phase (2 blocks in session 1 and 6 blocks in 
 session 2), no feedback was provided. Only behavior in the main blocks was analyzed and used 
 for modeling. Each main block had between 67 and 75 trials with trial-unique microbes coming 
 from 4 ground-truth latent causes, corresponding to four corners of the 2-dimensional feature 
 space (Figure 1C). The exact arrangement of latent causes and stimulus sequence differed 
 between blocks. Microbes on successive trials generally belonged to the same cause, with the 
 exception of 3 new-cause jumps and 3-5 old-cause revisits per block (1-2 from each cause). 
 Revisit trials were generated so that, across blocks, revisits from each cause to all previously 
 dominant causes were observed. Each revisit trial could be followed by 1-2 additional trials in 
 the revisited cause, and was then necessarily followed by a ‘post-revisit’ trial back to the cause 
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 that the revisit was performed from. Notably, the microbes presented in the revisit trials were 
 novel, while sharing features with other microbes in the revisited cause. Participants were not 
 informed of this underlying structure, and could classify stimuli into as many causes per block as 
 they wished. Each strain was denoted by a randomly generated three-letter “label” (e.g., BAF); 
 to make these pronounceable by the participants, each label had a consonant-vowel-consonant 
 structure. Participants could choose, on each trial, any of the previously inferred strains or a 
 new strain by typing in the number associated with the label. All previous strains, their labels 
 and associated numbers were listed on the top part of the experiment screen. Participants had 
 5s to write their response; if no response was entered, the trial would end and the next one 
 would start. No feedback was given on their choices (participants received feedback on the 
 number of missed trials at the end of each block). 

 Computational models  . We modeled task behavior using  a Bayesian model of latent-cause 
 inference with a prior over latent causes and a likelihood for each latent cause. In all models, 
 the prior was a variation of the Chinese Restaurant Process (CRP; also called an infinite 
 capacity mixture model or a Dirichlet Process Mixture;  Li et al., 2019)  . In the simplest model, 
 which we termed ‘standard CRP’, the prior probability of the next observation coming from each 
 of the existing latent causes (corresponding to strains in the task) was proportional to the 
 number of observations already assigned to those causes (Equation 1). The probability of a new 
 latent cause was proportional to a concentration (or ‘new latent cause’) parameter  : α

 where  is the latent cause (strain) of the  observation on trial  ,  is the number of latent  causes  𝑐 
 𝑡 

 𝑡  𝐾 

 (strains) inferred by the participant so far (at most, one per previous observation; note that we 
 take the participants’ responses as proxies for inferred latent causes), and  is the number of  𝑁 

 𝑘 

 times latent cause  has previously been inferred.  As such, in this model, a more prolific latent  𝑘 
 cause (i.e. one that has generated more observations) is more likely  a priori  to cause the next 
 observation. 

 The second model, which we call the ‘decay model’  (Blei & Frazier, 2011)  , used the standard 
 CRP (Equation 1) with the modification that the counts  were decayed exponentially on each  𝑁 

 𝑘 

 trial, with the rate of decay governed by a parameter  : λ
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 In this model, therefore, a more  recently  prolific latent cause is more likely to cause the next 
 observation. The normalization factor in the denominator of the CRP was adjusted accordingly 
 so the probabilities of inferring each latent cause summed to 1. 

 In the third model, which we term the ‘sticky model’  (Fox et al., 2011)  , the observation count for 
 the most recently inferred latent cause (  ) was ‘boosted’ by a ‘sticky’ parameter  :  𝑐 

 𝑡 − 1 
β

 In the fourth and final model, which we call the ‘persistent model’ (very similar to  Lloyd & Leslie, 
 2013)  , the latent cause inferred on one trial had  a fixed ‘persistence probability’  of continuing η
 to cause the next trial, with the remainder of the probability mass distributed over all latent 
 causes according to the standard CRP: 

 The likelihood for the observation (microbe) to belong to each latent cause (strain) was 
 computed as a product of the likelihoods for each dimension (length and number of spikes), 
 assuming a Gaussian similarity function in each dimension. The mean of each Gaussian was 
 set to the average of previous observations the participant had assigned to that strain, with a 
 fixed variance (representing how variable/wide a strain is assumed to be) set as a ‘size 
 parameter’  : σ
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 where  is the stimulus on trial  with stimulus  values  and  along the two dimensions  (  𝑠 
 𝑡 

 𝑡  𝑠 
 𝑚 , 𝑡 

 𝑠 
 𝑛 , 𝑡 

 𝑚 

 = length of spikes,  = number of spikes), and  and  are the average of previous stimulus  𝑛 µ
 𝑚 , 𝑘 

µ
 𝑛 , 𝑘 

 values for latent cause  along each of the two  dimensions.  𝑘 

 Model fitting and analyses.  The models were fit to  the data with a Bayesian approach using the 
 Stan programming language  (Stan Development Team,  2021)  , compiled using the  cmdstanpy 
 package (version 1.0.0) in Python (version 3.9.7). Participant-level parameters were assumed to 
 be drawn from a either a beta distribution (the  parameter) or a gamma distribution (the η
 remaining parameters). Each model was first fit using a hierarchical (pooled) approach on a 
 random subset of 200 participants to derive the hyperparameters of these distributions for the 
 entire sample. The median of the posterior distribution was taken as the best fit parameter 
 value. These fit hyperparameters were then used to estimate individual parameters for each 
 participant using only that participant’s data. The log likelihood of each participants’ data was 
 then computed in Python using the best fit parameters and used to calculate the Bayesian 
 Information Criterion (BIC;  Neath & Cavanaugh, 2012)  for each model for each participant. 

 To ensure the fidelity of model fits at the individual level, the psychometric properties of the 
 winning model were assessed. Split-half reliability was computed as a measure of internal 
 consistency, by correlating parameters separately fit to data from the even blocks (blocks 2, 4, 
 6) and the odd blocks (blocks 1, 3, 5) of the task. Test-retest reliability was computed by 
 correlating parameters fit to data from the 2 blocks from the first session with parameters fit to 
 data from the first 2 blocks from the second session. Finally, parameter recovery was performed 
 by simulating task responses under the winning model. For each set of individual parameters 
 (corresponding to one participant), responses on a full run of the task were generated. The 
 simulated data were then fit per simulated participant with the same hierarchical 
 hyperparameters. These recovered parameter values were then correlated with the original 
 values used to generate the data (“ground truth”). 

 Statistical analyses  . All analyses were performed  in R (version 4.3.1) written in Jupyter 
 Notebook (version 6.4.12). In bar plots, data are shown as medians +/- the standard error of the 
 median (SE  Median  ). This was computed by multiplying  the standard error of the mean (standard 
 deviation divided by the square root of the sample size) by 1.2533 (  ), an analytically π /2 
 derived constant used to convert the standard error of the mean to the standard error of the 
 median  (Williams, 2001)  . Differences between medians  were tested using paired Wilcoxon 
 signed-rank tests, with rank-biserial correlations as measures of effect sizes. Relationships 
 between proportions of responses and the number of the ground-truth cause (Figure 2C,D) 
 were tested using linear mixed-effects models with random intercepts for participants. 
 Parameter reliability and recoverability were computed as Spearman’s rank correlation 
 coefficient. 
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 Results 
 Analysis of task behavior  . We divided participant  responses into three types, corresponding to 
 the three trial types in the task: ‘stay’ (assigning the observation the same latent cause (strain) 
 as on the previous trial, i.e. staying in the same cause), ‘revisit’ (inferring a jump back to an old 
 latent cause), and ‘new’ (starting a new latent cause). In general, participants behaved 
 congruently to the trial type (Figure 2A), staying in the same latent cause on stay trials (median 
 count 312.5/361,  SE  Median  = 2.2), revisiting an old  cause on revisit trials (median count 34/50, 
 SE  Median  = 0.42), and starting a new cause on new  trials (median count 12/18,  SE  Median  = 0.12). 
 This indicates that participants largely learned the task well and were sensitive to the features of 
 the particular stimulus on each trial, suggesting the likelihood component of our models is likely 
 to play an important role. 

 To assess whether the CRP prior is playing a role as well, we looked at predictions made by the 
 CRP prior. First, when choosing which latent cause to assign the microbe to, causes with more 
 previous observations (i.e. more prolific causes) should be more likely to be chosen. Indeed, on 
 average, when choosing existing causes (‘stay’ or ‘revisit’ responses), chosen causes had 
 significantly more prior observations than non-chosen causes (median of the per-participant 
 mean observation counts for chosen causes = 8.39; median of the per-participant mean 
 observation counts for other causes = 6.68;  p  < 0.001,  paired  Wilcoxon signed-rank test; 
 rank-biserial correlation (an effect size measure for this test)  r  = 0.94; Figure 2B). Second, the 
 CRP prior has a decreased tendency to start a new latent cause as the task progresses. This is 
 because as observation counts for existing causes increase, the denominator in equation 1 (the 
 normalization factor) increases, and the probability of a new latent cause becomes increasingly 
 small. Note that the ground truth generative model of microbes in the task did not have this 
 property – a new strain started every 12-22 trials. Nevertheless, the model predicts that the 
 probability of creating a new cause on true new-cause trials should decrease throughout a 
 block. As predicted, participants were progressively less likely to create a new cause between 
 the first and third new-cause trials in a block (median proportion new-cause responses = 0.83 in 
 ground-truth latent cause 1; 0.66 in cause 2; 0.50 in cause 3; linear mixed-effects model with 
 random intercepts:  = -0.16,  SE  = 0.0045,  p  < 0.001;  Figure 2C). β

 Finally, we were interested to see whether there was an effect of time on participant’s choices 
 (e.g., in alignment with the decay model). In our task, when the participant had been seeing the 
 fourth ground-truth cause (strain), a revisit trial could jump back 1, 2 or 3 latent causes to the 
 third, second, and first ground-truth cause, respectively. Importantly, the 1-back and 3-back 
 jumps are spatially matched, differing from the current cause only across one dimension (Figure 
 1). This design allows us to compare the choices between these two options. For this, we 
 computed the percentage of correct responses on revisit trials for the fourth latent cause (i.e. 
 percentage of 1-back responses on 1-back revisit trials etc.). As predicted by the decay model, 
 the percentage of correct responses decreased as the revisit was farther in time (mean 
 proportion matched responses = 0.26 for 1-back revisits; 0.18 for 2-back revisits; 0.14 for 3-back 
 revisits (the median proportion for 2-back and 3-back revisits was 0 so we chose to measure 
 and visualize means here); linear mixed-effects model with random intercepts:  = -0.063,  SE  = β
 0.0043,  p  < 0.001; Figure 2D). This suggests that latent causes that were active in the more 
 distant past were less likely to be reused. 
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 Figure 2.  Task behavior is consistent with a time-sensitive CRP model  .  A  .  Number of 
 responses of each type for each trial type. The three panels represent ground-truth trial types, 
 whereas the x-axis and color show the participant response types. Note the differences in Y axis 
 scaling.  B.  Previous observation count for chosen latent causes versus the mean of other 
 (previously inferred) latent causes. For each participant we averaged all counts to one statistic. 
 C.  Proportion of ‘new’ responses across first, second and third ground-truth new-cause trials in 
 a block.  D.  Proportion of responses to revisit trials in the fourth ground-truth cause that matched 
 the temporal distance of the trial. Temporal distance refers to how many causes back the old 
 cause is (i.e. 1 = 1-back). Plots show median values across participants and the error bars show 
 the standard error of the median, with the exception of  D,  which shows mean values and 
 standard errors of the mean. 
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 Model comparison.  Participants’ raw behavior showed effects consistent with a time-sensitive 
 CRP prior. To more formally test whether a time component improves the explanatory power of 
 the latent-cause inference model, we performed statistical model comparison. We tested four 
 different models - a ‘standard’ model with a standard CRP prior and three models with an added 
 time component. These had either an exponential decay with time on the observations counts 
 (‘decay’ model), an additive boost on the most recently inferred latent cause (‘sticky’ model), or 
 a fixed probability of staying in the same latent cause and a remainder probability of drawing 
 from the CRP (‘persistent’ model). For each participant, we computed the BIC score of each 
 model (reflecting the likelihood of the participants’ choices given the model, corrected for the 
 number of free parameters in the model) and compared the distributions of the BIC scores. 

 We found that all time-sensitive models provided significantly better fits to the data (i.e., had 
 lower BIC scores) compared to the standard model (median BIC for the standard model = 
 755.3; median BIC for the other models = 510.9-525.6; persistent vs. standard:  p  < 0.001, 
 paired  Wilcoxon signed-rank test (to account for heavy-tailed  distributions),  rank-biserial 
 correlation (an effect size measure for this test)  r  = -0.98; decay vs. standard:  p  < 0.001,  r  = 
 -0.98; sticky vs. standard:  p  < 0.001 ,  r  = -1; Figure  3A). Indeed, all participants but one were fit 
 best by a time-sensitive model (Figure 3B). When comparing the three time-sensitive models, 
 the persistent model fit the data better than both the sticky and the decay model, having 
 significantly lower BIC values (persistent vs. sticky:  p  < 0.001, paired  Wilcoxon signed-rank test  , 
 rank-biserial correlation  r  = -0.62; persistent vs.  decay:  p  < 0.001,  r  = -0.29; Figure 3A), although 
 the differences in the median BIC scores were small (persistent median BIC = 510.9,  SE  Median  = 
 13.2; sticky median BIC = 521.4,  SE  Median  = 11.9;  decay median BIC = 525.6,  SE  Median  = 12.5). In 
 fact, the persistent model was the winning model for only ~48% of the participants (465/972), 
 indicating extensive individual differences (Figure 3B). To unpack these individual differences, 
 we examined the difference in BIC scores between the persistent model and each of the decay 
 and sticky models. 

 The distribution of BIC differences between the persistent and decay models was slightly more 
 concentrated to the left of 0 but relatively wide (median difference = -25.5, SD = 135.6; Figure 
 3C), indicating that some participants were much better fit by the persistent model, whereas 
 others were better fit by the decay model. In comparison, the BIC differences between the 
 persistent and sticky models were smaller in magnitude and largely negative (median difference 
 = -8.47, SD = 131.8; Figure 3D), indicating that for most participants, the persistent model was 
 slightly better. This is not surprising given the similarity between the persistent and sticky 
 models - both assign an especially high probability (a “boost”) to the most recent latent cause. 
 For both comparisons, however, there was a large positive tail indicating several participants 
 with a much worse fit (higher BIC) for the persistent model. Finally, the BIC differences between 
 the sticky and decay models had a negative median (median difference = -20.5, SD = 97.71; 
 Figure 3E), suggesting more participants were fit better by the sticky model. However, a 
 substantial proportion of the participants (393, or 40.4%) were better fit by the decay model, 
 indicating large individual differences. 
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 Figure 3. Model comparison shows time-sensitive CRP models provide a better fit for the 
 data, with significant individual differences.  A.  Comparison of median BIC across 
 participants for the four different models. Error bars show the standard error of the median. 
 Lower BIC scores indicate a better fit of the data to the model predictions.  B.  Number of 
 participants best fit by each of the models. Only one participant was fit best by the simple model 
 that did not have a temporal component.  C.  Distribution of per-participant BIC differences 
 between the persistent and decay models.  D.  Distribution of per-participant BIC differences 
 between the persistent and sticky models.  E.  Distribution of per-participant BIC differences 
 between the sticky and decay models. Dotted line: a difference of 0, corresponding to equal fit of 
 both models. Density to the left of zero corresponds to the first model (persistent model in C and 
 D, decay model in E) showing a better fit (lower BIC, hence negative difference). The top-right 
 inset in  D  shows the full distribution (the main plot was truncated at a BIC difference of 100 for 
 visualization purposes). 
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 Reliability and recoverability of model parameters. 

 To verify the adequacy of using this task and the time-sensitive CRP models as 
 individual-difference measures of latent-cause inference, we computed the split-half and 
 test-retest reliability of each model’s parameters. We did this first for the ‘winning’ persistent 
 model. Split-half reliability was high, with Spearman coefficients equaling or exceeding 0.75 for 
 all parameters (  : Spearman’s  = 0.87,  : Spearman’s  = 0.81,  : Spearman’s  = 0.75; Figure α ρ η ρ σ ρ
 4A). Test-retest reliability was lower, which can be expected given that the model was fit to only 
 two blocks, and thus parameter fits were noisier. Nevertheless, reliability was larger than 0.5 for 
 all parameters (  : Spearman’s  = 0.66,  : Spearman’s  = 0.56,  : Spearman’s  = 0.55; Figure α ρ η ρ σ ρ
 4B). 

 To ensure that the parameter estimates were stable and recoverable, we additionally performed 
 a parameter recovery analysis. Here, we simulated task behavior with the parameter estimates 
 for each participant, and then fit the persistent CRP model again to the simulated behavior to 
 estimate the parameters and compare them to the known ‘ground truth’ parameters. The model 
 had excellent parameter recoverability, with coefficients > 0.95 for all parameters (alpha  = ρ
 0.97, eta  = 0.96, sigma  = 0.96; Figure 4C). ρ ρ

 We conducted similar reliability and recoverability analyses for the other two time-sensitive 
 models – the decay and sticky models – as these nevertheless best explained the behavior of a 
 minority of participants. We found that these two models had very similar split-half reliability, 
 test-retest reliability and parameter recoverability to the persistent model (Table 1). In summary, 
 all time-sensitive CRP models had adequate internal consistency, test-retest reliability, and 
 parameter recoverability. This supports the use of these models and their parameters as 
 individual-difference measures of the computational process of latent-cause inference. 

 Table 1. Reliability and recoverability of time-sensitive model parameters.  Each value is a 
 Spearman’s correlation coefficient  . ρ

 Model  Parameter  Split-half 
 reliability 

 Test-retest 
 reliability 

 Parameter 
 recoverability 

 Persistent 
 model 

 Concentration α  0.87  0.66  0.97 

 Persistence η  0.81  0.56  0.96 

 Cluster size σ  0.75  0.55  0.96 

 Decay model  Concentration α  0.84  0.62  0.95 

 Decay rate λ  0.88  0.63  0.98 
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 Cluster size σ  0.76  0.56  0.97 

 Sticky model  Concentration α  0.87  0.65  0.95 

 Sticky boost β  0.83  0.56  0.95 

 Cluster size σ  0.74  0.54  0.95 

 Discussion 
 Temporal information is crucial for forming stable representations of experiences. In this study, 
 we investigated whether time matters in human latent-cause inference, using a novel task 
 designed to quantitatively capture the inference process. Our findings show that humans are 
 sensitive to temporal information when making inferences about the hidden causes that have 
 generated individual experiences. Using non-parametric Bayesian models, we show that 
 participants’ inferences were best explained by models that incorporated time in estimating the 
 probability of latent causes. 

 More specifically, our results show three types of behavioral profiles. The most prominent type 
 persistently prioritizes the most recently inferred cause, while estimating the probabilities of 
 other causes based on factors outside of time (i.e., the persistent model). The persistent model 
 showed reliable estimates of model parameters across time and within sessions, suggesting 
 that the model parameters can capture meaningful individual differences that can map onto 
 psychological constructs (e.g., mental health symptoms). Additional behavioral patterns 
 emerged in a subset of individuals: decaying the probability of the causes as a function of 
 temporal recency (the decay model), and giving an advantage to the most recently inferred 
 cause with a diminishing effect of the boost as the number of stimuli increases (the sticky 
 model). 
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 Figure 4.  The persistent model, which best explained  participants’ choices, showed good 
 split-half reliability,  test-retest reliability, and parameter recovery.  A  .  Split-half reliability 
 analysis, showing correlations between parameters estimated separately from even and odd 
 blocks of the task.  B  .  Test-retest reliability analysis,  showing correlations between parameters 
 estimated on the two blocks in session 1 (‘day 1’) and parameters estimated on the first two 
 blocks from session 2 (‘day 2’).  C  .  Parameter recovery  analysis, showing correlations between 
 fitted parameter values (‘original’) and values recovered from simulating task behavior with the 
 fit parameters (‘recovered’). Each parameter is shown on a column and with a corresponding 
 color. 
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 Our results are consistent with previous models of event segmentation where a new experience 
 is monitored for its similarity to previous experiences on multiple dimensions, including time 
 (Event-Indexing Model;  (Zwaan et al., 1995)  Zwaan et al., 1995). Similar to the “situations” 
 inferred in event comprehension, our model infers the causal structure that generate 
 experiences. Our results are also consistent with previous findings in causal inference that show 
 temporal information plays a role in inferring causal structure  (Éltető et al., 2022; Song et al., 
 2022)  and forming memory traces accordingly  (Franklin et al., 2020; Gershman et al., 2014)  . 
 Building on these previous findings, we formally compared different ways by which temporal 
 information is utilized in inferring latent causes. Of special interest were cases in which the 
 likelihood for the most recently inferred cause is low (i.e., the observed stimulus is perceptually 
 dissimilar from other stimuli generated by the current cause) – in these cases, how does time 
 guide our inference of the latent cause? 

 One possibility is that the most recently inferred cause is prioritized in inference (higher prior 
 probability), which enhances the stability of causal inference in light of noisy observations. This 
 type of prioritization prevents frequent transitions between events – i.e., event boundaries, 
 (Speer & Zacks, 2005)  and “flushing” the memories from working memory  (Swallow et al., 
 2009)  . In episodic memory, drawing event boundaries decreases the recall of memories that 
 belong to previous events, even after re-visiting the same type of event  (Radvansky et al., 
 2011)  . Our modeling results align with evidence from the episodic memory literature that 
 demonstrates the importance of “staying” in the most recently inferred latent cause. Specifically, 
 the model that persistently prioritizes the most recently inferred cause (i.e., persistent CRP 
 prior) performed better than a model that diminished the recent-cause boost as the number of 
 experiences increased (the sticky model;  Fox et al., 2011)  . This suggests that the stability of 
 causal inference is prioritized throughout the inference process. 

 A second possibility is that rather than treating all of the non-recent latent causes as equally 
 “old”, the probability of each latent cause decreases with the number of observations since it 
 was last active. In this case, more recently encountered latent causes would be more 
 preferentially used to explain the current experience. Such a pattern would align with temporal 
 contiguity effects where the association between two items decays with temporal distance 
 (Boakes & Costa, 2014)  and the probability of recalling an item from memory decays with 
 temporal distance from the last item that was retrieved  (Howard & Kahana, 2002)  . Indeed, this 
 decay model provided the best explanation for approximately ⅓ of our participants. Notably, our 
 model suggests that temporal decay is at the level of latent causes. That is, even though the 
 “revisit” experiences were always perceptually novel, and thus there was no temporal recency 
 for the exact stimulus, the old latent cause that generated other experiences that share features 
 with the current stimulus was more likely to be used when the latent cause was more recently 
 encountered. Interestingly, reaction times on our task showed that when individuals erroneously 
 reported that a ‘revisit’ stimulus from an old cause comes from the current latent cause, they 
 were slower to “stay” when the stimulus was in fact generated from a more recently active old 
 cause.  Using reaction times as a more sensitive measure of the inference process in future 
 studies can perhaps help better differentiate individual differences in how people use past 
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 information in their inference process. However, this would entail extending the latent cause 
 models we used here to account for reaction times as a function of the inference process. 

 While our study investigates the significance of time in inference behavior, it is difficult to 
 determine how latent causes are recognized from the past given this study alone. 
 Neuroimaging studies can complement our modeling approach, addressing how the brain 
 supports the inference of previously-encountered latent causes, and how it creates completely 
 new latent causes when necessary. Sarah DuBrow originally developed the “microbes task” with 
 an aim to examine the underlying neural processes of recognizing an old latent cause versus 
 inferring a new one, going beyond detecting transitions and “event segmentation” and asking: 
 how do I classify the new event when it is detected? For this, in a companion fMRI study now 
 underway, we are using the task she originally designed, where “new” and “revisit” trials are 
 matched for perceptual differences, to allow resolving the neural mechanisms of inference in 
 these cases. In particular, Sarah DuBrow hypothesized that the orbito-frontal cortex (OFC), 
 which has been shown to represent the posterior distribution of latent causes  (Chan et al., 
 2016)  , might guide the hippocampus to either retrieve old latent causes or infer a new latent 
 cause, while the hippocampus would in turn trigger updating the event representation in the 
 OFC after an event concludes, similarly to what has been observed during learning in rodents 
 (Guise & Shapiro, 2017; Srinivasan et al., 2023)  . If the posterior probabilities of existing latent 
 causes are low at the onset of an event, akin to the prefrontal cortex triggering the hippocampal 
 pattern separation at the start of learning (Guise & Shapiro, 2017), the prefrontal cortex may 
 initiate the hippocampus to create a new memory trace, instead of updating an existing one. 
 This will complement the event offset patterns, observed in the hippocampus in 
 humans(  Ben-Yakov & Henson, 2018  ; Lee & Chen, 2022) and rats (Srinivasan et al., 2023), 
 which may update the posterior distribution over latent causes in the OFC. 

 We conceptualize latent cause inference as a process that is fundamental to generalization. 
 Since no two experiences are exactly alike, learning relies on generalization, and as such, is 
 intimately linked to memory processes as well. We thus hypothesize that alterations in latent 
 cause inference can potentially lie at the heart of some mental health concerns, e.g., 
 overgeneralization from past experiences in some anxiety disorders, and undergeneralization, 
 or otherwise incoherent latent cause inference in schizophrenia and other psychotic disorders 
 (Cisler et al., 2024)  .  The model that best aligned with participants’ behavior – with the 
 persistent CRP prior – had parameters that were internally consistent, reliable across days, and 
 almost perfectly recoverable. These psychometric properties of the persistent model show that 
 model parameters can reliably capture the process of inferring latent causes and suggest that 
 the model parameters can be used as individual difference measures, to be correlated to 
 different mental health symptoms. 

 In summary, the current findings suggest that the inference of latent causes relies on temporal 
 information, by prioritizing the most recently inferred cause to explain novel experiences and 
 decaying the probability of old causes over time. These results have implications for how 
 humans organize memories and make decisions drawing from relevant past experiences, 
 thereby providing fundamental insight into the ubiquitous impact of time information on learning 
 and memory processes. 
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