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‭Abstract‬
‭Humans have an outstanding ability to generalize from past experiences, which requires parsing‬
‭continuously experienced events into discrete, coherent units, and relating them to similar past‬
‭experiences. Time is a key element in this process; however, how temporal information is used‬
‭in generalization remains unclear. Latent-cause inference provides a Bayesian framework for‬
‭clustering experiences, by building a world model in which related experiences are generated by‬
‭a shared cause. Here we examine how temporal information is used in latent-cause inference,‬
‭using a novel task in which participants see ‘microbe’ stimuli and explicitly report the latent‬
‭cause (‘strain’) they infer for each microbe. We show that humans incorporate time in their‬
‭inference of latent causes, such that recently inferred latent causes are more likely to be‬
‭inferred again. In particular, a ‘persistent’ model, in which the latent cause inferred for one‬
‭observation has a fixed probability of continuing to cause the next observation, explains the data‬
‭significantly better than two other time-sensitive models, although extensive individual‬
‭differences exist. We show that our task and this model have good psychometric properties,‬
‭highlighting their potential use for quantifying individual differences in computational psychiatry‬
‭or in neuroimaging studies.‬

‭Introduction‬
‭The ability to generalize from relevant past experiences plays a crucial role in human learning‬
‭and memory. Rather than learning information‬‭de novo‬‭,‬‭individuals often leverage previously‬
‭learned knowledge in novel situations. The latent-cause inference framework provides a rational‬
‭basis for such generalization, while also accommodating situations that are completely new and‬
‭cannot build on past experience‬‭(Anderson, 1991; Courville‬‭et al., 2005; Gershman et al., 2010;‬
‭Radulescu et al., 2021)‬‭. In this nonparametric Bayesian‬‭framework, related experiences are‬
‭clustered together as they are believed to share a common cause, while dissimilar experiences‬
‭are segmented into distinct latent causes, with the overall number of latent causes unbounded‬
‭(Franklin et al., 2020; Shin & DuBrow, 2021)‬‭.‬

‭Organizing and segmenting experiences into coherent units is useful in making adaptive‬
‭decisions that draw from past relevant experiences‬‭(Shadlen & Shohamy, 2016)‬‭and predictions‬
‭about what will come next‬‭(Pettijohn & Radvansky, 2016; Rinck & Weber, 2003; Speer & Zacks,‬
‭2005; Zwaan, 1996)‬‭. Work in the episodic memory literature has examined extensively how‬
‭temporally continuous streams of experiences are segmented into discrete units, a process‬
‭known as “event segmentation”‬‭(Clewett et al., 2019)‬‭. This literature, including Sarah DuBrow’s‬
‭early work, shows how detecting and transitioning between events influences the encoding and‬
‭retrieval of memories‬‭(DuBrow & Davachi, 2013, 2014, 2016; Ezzyat & Davachi, 2011; Heusser‬
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‭et al., 2018; Radvansky & Zacks, 2011; Rouhani et al., 2020)‬‭. Signaled temporal gaps (e.g., “a‬
‭moment” or “a while” within a text) predicts event boundaries (Ezzyat & Davachi, 2011), and‬
‭temporal information is better preserved within an event than across event boundaries (DuBrow‬
‭& Davachi, 2013, 2014, 2016). Neuroimaging studies show that event structure is represented‬
‭at different timescales along the cortical hierarchy, with the hippocampus responding to the‬
‭boundaries of events‬‭(Baldassano et al., 2017; Ben-Yakov & Henson, 2018; Lee & Chen, 2022;‬
‭Ritchey et al., 2015)‬‭.‬

‭In organizing experiences, a key element is time, which weaves experiences into a stable‬
‭continuum‬‭(Howard & Kahana, 2002; Jayakumar et al.,‬‭2023; Yu et al., 2021)‬‭, and is a‬
‭ubiquitous generalization clue – unless an event transition has occurred, the current experience‬
‭is likely to be similar to the recent past. While the literature provides ample evidence for the‬
‭significance of time in memory, the mechanisms by which individuals use time and similarity to‬
‭recognize past events that are relevant to current experiences are less well understood.‬

‭Latent-cause inference offers a statistically principled (i.e., Bayesian) way to optimally‬
‭generalize from past experience by inferring shared latent (hidden) causes for similar‬
‭observations. By inferring the latent cause of the current observation, one can draw on‬
‭knowledge from previous events that were presumably generated by the same latent cause.‬
‭However, the standard Bayesian model of latent-cause inference, which relies on a Chinese‬
‭Restaurant Process (CRP) prior, does not use temporal information‬‭(Aldous, 1985; Anderson,‬
‭1991)‬‭. In this model, the prior probability of a latent‬‭cause is determined by its previous‬
‭‘popularity’ – the assumption is that a more prolific cause, i.e. one that has generated‬
‭observations more often, is more likely to cause the next experience. This form of prior belief‬
‭intentionally ignores the order of previous events (that is, the model is time-invariant by design),‬
‭as this makes the model computationally tractable. However, the time-invariance assumption‬
‭does not accord with causal structures in the world, which are most often temporally contiguous.‬

‭Recent studies have begun to investigate the role of temporal information in inferring latent‬
‭causes from an ongoing stream of information, incorporating the assumption that recently‬
‭encountered latent causes have a higher chance of generating the next observation‬‭(Blei &‬
‭Frazier, 2011; Fox et al., 2011; Lloyd & Leslie, 2013)‬‭.‬‭Indeed, empirical evidence suggests that‬
‭learning behaviors in humans‬‭(Éltető et al., 2022)‬‭and rodents‬‭(Lloyd & Leslie, 2013; Song et‬
‭al., 2022)‬‭are best captured by models in which the‬‭prior probability of a previously active latent‬
‭cause decays over time (‬‭Blei & Frazier, 2011)‬‭. A simpler‬‭model, which gives an extra boost to‬
‭the most recently inferred latent cause (‬‭Fox et al.,‬‭2011)‬‭, has been shown to account for stable‬
‭event perception‬‭(Franklin et al., 2020; Gershman‬‭et al., 2014)‬‭. Similarly, a model that assumes‬
‭that temporal contexts persist over time captured learning behaviors in rodents‬‭(Lloyd & Leslie,‬
‭2013)‬‭. This previous work suggests that temporal information‬‭is critical to latent cause‬
‭inference.However, the evidence is indirect, through learning tasks that do not specifically‬
‭examine latent-cause inference.‬

‭Here, we directly probe how temporal information contributes to generalization behavior in‬
‭humans, using a novel task developed by Sarah DuBrow and Yeon Soon Shin to study‬
‭latent-cause inference. In this “microbes task,” participants assign a stream of abstract visual‬
‭stimuli, presented as “microbes,” to underlying similarity groups (“strains”), thereby explicitly‬
‭probing the inference of latent causes from observations. Different from a categorization task,‬
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‭the number of strains is not determined in advance, and the temporal sequence of stimuli is‬
‭informative: consecutive stimuli tend to come from the same strain, though occasionally a‬
‭microbe from an old strain will appear in the sequence, and a new strain can emerge at any‬
‭moment. Using behavioral data from a large sample, we compare different latent-cause‬
‭inference models: the standard Chinese Restaurant Process prior that does not rely on temporal‬
‭information‬‭(Aldous, 1985; Anderson, 1991)‬‭, and the above-mentioned three models that‬
‭integrate temporal information in the inference process. We then test the reliability of model‬
‭parameters to further explore the possibility of utilizing the inference models to capture‬
‭individual differences that can map onto psychological constructs,‬‭such as‬‭mental health‬
‭conditions‬‭.‬

‭Methods‬
‭Participants‬‭. Participants (‬‭N‬‭= 1928) were recruited on Prolific Academic in five waves between‬
‭March 2021 and May 2022 for a larger study investigating how latent-cause inference‬
‭parameters map onto individual differences in mental-health symptoms.‬‭This study was‬
‭approved by the Institutional Review Board of Princeton University (protocol #11968), and all‬
‭participants provided informed consent.‬‭All participants were in the United States, with a mean‬
‭age of 35.0 years (‬‭SD‬‭= 13.3, range 18-84). 927 participants identified as women (56.4%), 668‬
‭identified as men (40.7%), and 48 identified as non-binary (2.9%). 285 participants did not‬
‭provide demographic information, whereas 3 participants were likely dishonest in their age‬
‭reports (reporting ages of 3, 7 and 332 years old, respectively).‬‭Our larger experiment included‬
‭192 self-report items measuring psychiatric symptoms that were subject to exploratory factor‬
‭analysis to reduce dimensionality and multicollinearity. Based on previous work with a‬
‭similar-sized questionnaire battery‬‭(Gillan et al., 2016)‬‭, we estimated we needed high-quality‬
‭psychiatric data from at least 1400 participants. We continued recruitment in waves until this‬
‭criterion was met and slightly surpassed (total‬‭N‬‭who completed and passed attention checks‬
‭on questionnaires = 1637).‬

‭The experiment involved two sessions. Participants were excluded from the study if they did not‬
‭complete both sessions, or if they failed more than two out of 10 attention checks embedded in‬
‭the self-report symptom questionnaires in the first session (e.g., failing to answer ‘I disagree a‬
‭lot’ or ‘I disagree a little’ to the item ‘When something good happens, it makes me think about all‬
‭the times I traveled to the moon’). Participants were also excluded if they made more than 10‬
‭errors in total on any of the forced-choice training trials, or if they failed to respond on more than‬
‭4 trials in the training block, 5 trials in the practice block, or 10 trials on the 2 main blocks in‬
‭session 1 (see below for details). These values were determined based on the empirical‬
‭distribution of missed trials for each block. Excluded participants (‬‭N‬‭= 691) were not invited to‬
‭the second session, and their data were not analyzed further. The remaining participants (‬‭N‬‭=‬
‭1237) were invited back 1-2 days later, and recruitment was kept open for ~2 weeks with regular‬
‭reminders for those who did not respond right away (maximum delay between sessions = 18‬
‭days;‬‭N‬‭= 1073 returned for the second session). The‬‭second session began with a series of‬
‭comprehension questions regarding the task instructions. If a participant responded incorrectly‬
‭to any of the questions, they were asked to try again. If they still had a mistake on their third try,‬
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‭their session was terminated and they were excluded from the experiment (these participants‬
‭were counted as “not returning for session 2”). In addition, participants who failed to complete all‬
‭portions of the microbes task in session 2 (‬‭N =‬‭91)‬‭or who missed more than 5 trials in more‬
‭than one of the main blocks (‬‭N‬‭=10) were excluded‬‭from further analysis.‬

‭Figure 1. Structure of the ‘microbes’ task.‬‭A‬‭.‬‭Schematic of the trial structure. On each trial,‬
‭participants saw a microbe and had to type in a number indicating the strain they thought the‬
‭microbe belonged to. Each strain was denoted by a 3-letter label. The grayed out strain is the‬
‭one that has not been inferred yet (a “novel” strain).‬‭B‬‭.‬‭Schematic of a temporal sequence of‬
‭trials.‬‭C.‬‭Schematic of the structure of a single block. Numbers are the same as in‬‭B‬‭, denoting‬
‭the sequence of trials and corresponding microbes. Axes denote the spike number and length of‬
‭each microbe in the sequence (in subjectively equidistant steps, based on a distance-norming‬
‭experiment not reported here). Four example microbes are shown linked with dotted black lines‬
‭to their corresponding number in the sequence. Each block consisted of four different‬
‭ground-truth latent causes (‘strains’). Microbes on most consecutive trials came from the same‬
‭latent cause, but there would occasionally be a jump to a new latent cause (green arrows and‬
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‭circles), or a jump back to a previous latent cause, called ‘revisits’ (purple arrows and circles).‬
‭Revisits could be 1-back (full arrow in the schematic), 2-back (not present in this block) or‬
‭3-back (dashed arrow), and there were always one or two revisits from each ground-truth latent‬
‭cause except the first one. The specific block shown corresponds to the second main block in‬
‭session 2.‬

‭This left a final‬‭N =‬‭972 participants (mean age 35.6 years (‬‭SD‬‭= 13.67; range 18-84); 553‬
‭women (56.9%), 390 men (40.1%), 28 non-binary people (2.9%); one participant did not provide‬
‭demographic information) whose data were analyzed and are reported here.‬

‭Experimental design‬‭. The experiment was run in two‬‭sessions. In the first session, participants‬
‭completed four blocks of the microbes task (a training block, a practice block, and two standard‬
‭blocks) alongside a 192-item battery designed to assess self-reported mental health symptoms‬
‭(which will not be reported or analyzed here) and a demographic questionnaire. The training‬
‭involved 10 forced-choice trials, each of which was repeated until the participant made the‬
‭correct response. The practice block involved 66 trials of the task, with feedback denoting the‬
‭correct response after each trial. The main blocks were similar in structure to the practice block‬
‭except that participants were not given any feedback. The second session began with a series‬
‭of comprehension checks about the task instructions. It then included the same training and‬
‭practice blocks, together with 6 standard blocks of the microbes task. At the end, participants‬
‭completed a visuo-spatial working memory task (the symmetry span task;‬‭Kane et al., 2004‬‭).‬

‭The ‘microbes task.’‬‭Participants completed a task‬‭in which they assigned abstract visual stimuli‬
‭to either old or new latent causes (Figure 1). The stimuli, introduced in the cover story as‬
‭‘microbes,’ had spikes coming out of a core. These spikes varied along two dimensions: the‬
‭number of spikes (dimension 1) and the length of the spikes (dimension 2). Participants were‬
‭asked to classify the microbes into ‘strains’ (latent causes) based on their perceptual similarity.‬
‭They were told that the stimuli were photos of microbes taken at consecutive time points and‬
‭that, at any given time, one microbe strain is dominant; however, microbes mutate sometimes to‬
‭generate a new strain, which quickly starts to dominate but does not take over completely, so‬
‭they could still sometimes see exemplars of old strains.‬

‭In both experimental sessions, the task started with a short 10-trial forced-choice training phase‬
‭in which microbes were presented with their correct strain, and a practice block where‬
‭participants received feedback (i.e. were told which strain was correct) after choosing as strain‬
‭for each of 66 microbes. Thereafter, in the main phase (2 blocks in session 1 and 6 blocks in‬
‭session 2), no feedback was provided. Only behavior in the main blocks was analyzed and used‬
‭for modeling. Each main block had between 67 and 75 trials with trial-unique microbes coming‬
‭from 4 ground-truth latent causes, corresponding to four corners of the 2-dimensional feature‬
‭space (Figure 1C). The exact arrangement of latent causes and stimulus sequence differed‬
‭between blocks. Microbes on successive trials generally belonged to the same cause, with the‬
‭exception of 3 new-cause jumps and 3-5 old-cause revisits per block (1-2 from each cause).‬
‭Revisit trials were generated so that, across blocks, revisits from each cause to all previously‬
‭dominant causes were observed. Each revisit trial could be followed by 1-2 additional trials in‬
‭the revisited cause, and was then necessarily followed by a ‘post-revisit’ trial back to the cause‬
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‭that the revisit was performed from. Notably, the microbes presented in the revisit trials were‬
‭novel, while sharing features with other microbes in the revisited cause. Participants were not‬
‭informed of this underlying structure, and could classify stimuli into as many causes per block as‬
‭they wished. Each strain was denoted by a randomly generated three-letter “label” (e.g., BAF);‬
‭to make these pronounceable by the participants, each label had a consonant-vowel-consonant‬
‭structure. Participants could choose, on each trial, any of the previously inferred strains or a‬
‭new strain by typing in the number associated with the label. All previous strains, their labels‬
‭and associated numbers were listed on the top part of the experiment screen. Participants had‬
‭5s to write their response; if no response was entered, the trial would end and the next one‬
‭would start. No feedback was given on their choices (participants received feedback on the‬
‭number of missed trials at the end of each block).‬

‭Computational models‬‭. We modeled task behavior using‬‭a Bayesian model of latent-cause‬
‭inference with a prior over latent causes and a likelihood for each latent cause. In all models,‬
‭the prior was a variation of the Chinese Restaurant Process (CRP; also called an infinite‬
‭capacity mixture model or a Dirichlet Process Mixture;‬‭Li et al., 2019)‬‭. In the simplest model,‬
‭which we termed ‘standard CRP’, the prior probability of the next observation coming from each‬
‭of the existing latent causes (corresponding to strains in the task) was proportional to the‬
‭number of observations already assigned to those causes (Equation 1). The probability of a new‬
‭latent cause was proportional to a concentration (or ‘new latent cause’) parameter‬ ‭:‬α

‭where‬ ‭is the latent cause (strain) of the‬‭observation on trial‬ ‭,‬ ‭is the number of latent‬‭causes‬‭𝑐‬
‭𝑡‬

‭𝑡‬ ‭𝐾‬

‭(strains) inferred by the participant so far (at most, one per previous observation; note that we‬
‭take the participants’ responses as proxies for inferred latent causes), and‬ ‭is the number of‬‭𝑁‬

‭𝑘‬

‭times latent cause‬ ‭has previously been inferred.‬‭As such, in this model, a more prolific latent‬‭𝑘‬
‭cause (i.e. one that has generated more observations) is more likely‬‭a priori‬‭to cause the next‬
‭observation.‬

‭The second model, which we call the ‘decay model’‬‭(Blei & Frazier, 2011)‬‭, used the standard‬
‭CRP (Equation 1) with the modification that the counts‬ ‭were decayed exponentially on each‬‭𝑁‬

‭𝑘‬

‭trial, with the rate of decay governed by a parameter‬ ‭:‬λ
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‭In this model, therefore, a more‬‭recently‬‭prolific latent cause is more likely to cause the next‬
‭observation. The normalization factor in the denominator of the CRP was adjusted accordingly‬
‭so the probabilities of inferring each latent cause summed to 1.‬

‭In the third model, which we term the ‘sticky model’‬‭(Fox et al., 2011)‬‭, the observation count for‬
‭the most recently inferred latent cause (‬ ‭) was ‘boosted’ by a ‘sticky’ parameter‬ ‭:‬‭𝑐‬

‭𝑡‬−‭1‬
β

‭In the fourth and final model, which we call the ‘persistent model’ (very similar to‬‭Lloyd & Leslie,‬
‭2013)‬‭, the latent cause inferred on one trial had‬‭a fixed ‘persistence probability’‬ ‭of continuing‬η
‭to cause the next trial, with the remainder of the probability mass distributed over all latent‬
‭causes according to the standard CRP:‬

‭The likelihood for the observation (microbe) to belong to each latent cause (strain) was‬
‭computed as a product of the likelihoods for each dimension (length and number of spikes),‬
‭assuming a Gaussian similarity function in each dimension. The mean of each Gaussian was‬
‭set to the average of previous observations the participant had assigned to that strain, with a‬
‭fixed variance (representing how variable/wide a strain is assumed to be) set as a ‘size‬
‭parameter’‬ ‭:‬σ
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‭where‬ ‭is the stimulus on trial‬ ‭with stimulus‬‭values‬ ‭and‬ ‭along the two dimensions‬‭(‬‭𝑠‬
‭𝑡‬

‭𝑡‬ ‭𝑠‬
‭𝑚‬,‭𝑡‬

‭𝑠‬
‭𝑛‬,‭𝑡‬

‭𝑚‬

‭= length of spikes,‬ ‭= number of spikes), and‬ ‭and‬ ‭are the average of previous stimulus‬‭𝑛‬ µ
‭𝑚‬,‭𝑘‬

µ
‭𝑛‬,‭𝑘‬

‭values for latent cause‬ ‭along each of the two‬‭dimensions.‬‭𝑘‬

‭Model fitting and analyses.‬‭The models were fit to‬‭the data with a Bayesian approach using the‬
‭Stan programming language‬‭(Stan Development Team,‬‭2021)‬‭, compiled using the‬‭cmdstanpy‬
‭package (version 1.0.0) in Python (version 3.9.7). Participant-level parameters were assumed to‬
‭be drawn from a either a beta distribution (the‬ ‭parameter) or a gamma distribution (the‬η
‭remaining parameters). Each model was first fit using a hierarchical (pooled) approach on a‬
‭random subset of 200 participants to derive the hyperparameters of these distributions for the‬
‭entire sample. The median of the posterior distribution was taken as the best fit parameter‬
‭value. These fit hyperparameters were then used to estimate individual parameters for each‬
‭participant using only that participant’s data. The log likelihood of each participants’ data was‬
‭then computed in Python using the best fit parameters and used to calculate the Bayesian‬
‭Information Criterion (BIC;‬‭Neath & Cavanaugh, 2012)‬‭for each model for each participant.‬

‭To ensure the fidelity of model fits at the individual level, the psychometric properties of the‬
‭winning model were assessed. Split-half reliability was computed as a measure of internal‬
‭consistency, by correlating parameters separately fit to data from the even blocks (blocks 2, 4,‬
‭6) and the odd blocks (blocks 1, 3, 5) of the task. Test-retest reliability was computed by‬
‭correlating parameters fit to data from the 2 blocks from the first session with parameters fit to‬
‭data from the first 2 blocks from the second session. Finally, parameter recovery was performed‬
‭by simulating task responses under the winning model. For each set of individual parameters‬
‭(corresponding to one participant), responses on a full run of the task were generated. The‬
‭simulated data were then fit per simulated participant with the same hierarchical‬
‭hyperparameters. These recovered parameter values were then correlated with the original‬
‭values used to generate the data (“ground truth”).‬

‭Statistical analyses‬‭. All analyses were performed‬‭in R (version 4.3.1) written in Jupyter‬
‭Notebook (version 6.4.12). In bar plots, data are shown as medians +/- the standard error of the‬
‭median (SE‬‭Median‬‭). This was computed by multiplying‬‭the standard error of the mean (standard‬
‭deviation divided by the square root of the sample size) by 1.2533 (‬ ‭), an analytically‬π‭/2‬
‭derived constant used to convert the standard error of the mean to the standard error of the‬
‭median‬‭(Williams, 2001)‬‭. Differences between medians‬‭were tested using paired Wilcoxon‬
‭signed-rank tests, with rank-biserial correlations as measures of effect sizes. Relationships‬
‭between proportions of responses and the number of the ground-truth cause (Figure 2C,D)‬
‭were tested using linear mixed-effects models with random intercepts for participants.‬
‭Parameter reliability and recoverability were computed as Spearman’s rank correlation‬
‭coefficient.‬
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‭Results‬
‭Analysis of task behavior‬‭. We divided participant‬‭responses into three types, corresponding to‬
‭the three trial types in the task: ‘stay’ (assigning the observation the same latent cause (strain)‬
‭as on the previous trial, i.e. staying in the same cause), ‘revisit’ (inferring a jump back to an old‬
‭latent cause), and ‘new’ (starting a new latent cause). In general, participants behaved‬
‭congruently to the trial type (Figure 2A), staying in the same latent cause on stay trials (median‬
‭count 312.5/361,‬‭SE‬‭Median‬‭= 2.2), revisiting an old‬‭cause on revisit trials (median count 34/50,‬
‭SE‬‭Median‬‭= 0.42), and starting a new cause on new‬‭trials (median count 12/18,‬‭SE‬‭Median‬‭= 0.12).‬
‭This indicates that participants largely learned the task well and were sensitive to the features of‬
‭the particular stimulus on each trial, suggesting the likelihood component of our models is likely‬
‭to play an important role.‬

‭To assess whether the CRP prior is playing a role as well, we looked at predictions made by the‬
‭CRP prior. First, when choosing which latent cause to assign the microbe to, causes with more‬
‭previous observations (i.e. more prolific causes) should be more likely to be chosen. Indeed, on‬
‭average, when choosing existing causes (‘stay’ or ‘revisit’ responses), chosen causes had‬
‭significantly more prior observations than non-chosen causes (median of the per-participant‬
‭mean observation counts for chosen causes = 8.39; median of the per-participant mean‬
‭observation counts for other causes = 6.68;‬‭p‬‭< 0.001,‬‭paired‬‭Wilcoxon signed-rank test;‬
‭rank-biserial correlation (an effect size measure for this test)‬‭r‬‭= 0.94; Figure 2B). Second, the‬
‭CRP prior has a decreased tendency to start a new latent cause as the task progresses. This is‬
‭because as observation counts for existing causes increase, the denominator in equation 1 (the‬
‭normalization factor) increases, and the probability of a new latent cause becomes increasingly‬
‭small. Note that the ground truth generative model of microbes in the task did not have this‬
‭property – a new strain started every 12-22 trials. Nevertheless, the model predicts that the‬
‭probability of creating a new cause on true new-cause trials should decrease throughout a‬
‭block. As predicted, participants were progressively less likely to create a new cause between‬
‭the first and third new-cause trials in a block (median proportion new-cause responses = 0.83 in‬
‭ground-truth latent cause 1; 0.66 in cause 2; 0.50 in cause 3; linear mixed-effects model with‬
‭random intercepts:‬ ‭= -0.16,‬‭SE‬‭= 0.0045,‬‭p‬‭< 0.001;‬‭Figure 2C).‬β

‭Finally, we were interested to see whether there was an effect of time on participant’s choices‬
‭(e.g., in alignment with the decay model). In our task, when the participant had been seeing the‬
‭fourth ground-truth cause (strain), a revisit trial could jump back 1, 2 or 3 latent causes to the‬
‭third, second, and first ground-truth cause, respectively. Importantly, the 1-back and 3-back‬
‭jumps are spatially matched, differing from the current cause only across one dimension (Figure‬
‭1). This design allows us to compare the choices between these two options. For this, we‬
‭computed the percentage of correct responses on revisit trials for the fourth latent cause (i.e.‬
‭percentage of 1-back responses on 1-back revisit trials etc.). As predicted by the decay model,‬
‭the percentage of correct responses decreased as the revisit was farther in time (mean‬
‭proportion matched responses = 0.26 for 1-back revisits; 0.18 for 2-back revisits; 0.14 for 3-back‬
‭revisits (the median proportion for 2-back and 3-back revisits was 0 so we chose to measure‬
‭and visualize means here); linear mixed-effects model with random intercepts:‬ ‭= -0.063,‬‭SE‬‭=‬β
‭0.0043,‬‭p‬‭< 0.001; Figure 2D). This suggests that latent causes that were active in the more‬
‭distant past were less likely to be reused.‬
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‭Figure 2.‬‭Task behavior is consistent with a time-sensitive CRP model‬‭.‬‭A‬‭.‬‭Number of‬
‭responses of each type for each trial type. The three panels represent ground-truth trial types,‬
‭whereas the x-axis and color show the participant response types. Note the differences in Y axis‬
‭scaling.‬‭B.‬‭Previous observation count for chosen latent causes versus the mean of other‬
‭(previously inferred) latent causes. For each participant we averaged all counts to one statistic.‬
‭C.‬‭Proportion of ‘new’ responses across first, second and third ground-truth new-cause trials in‬
‭a block.‬‭D.‬‭Proportion of responses to revisit trials in the fourth ground-truth cause that matched‬
‭the temporal distance of the trial. Temporal distance refers to how many causes back the old‬
‭cause is (i.e. 1 = 1-back). Plots show median values across participants and the error bars show‬
‭the standard error of the median, with the exception of‬‭D,‬‭which shows mean values and‬
‭standard errors of the mean.‬
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‭Model comparison.‬‭Participants’ raw behavior showed effects consistent with a time-sensitive‬
‭CRP prior. To more formally test whether a time component improves the explanatory power of‬
‭the latent-cause inference model, we performed statistical model comparison. We tested four‬
‭different models - a ‘standard’ model with a standard CRP prior and three models with an added‬
‭time component. These had either an exponential decay with time on the observations counts‬
‭(‘decay’ model), an additive boost on the most recently inferred latent cause (‘sticky’ model), or‬
‭a fixed probability of staying in the same latent cause and a remainder probability of drawing‬
‭from the CRP (‘persistent’ model). For each participant, we computed the BIC score of each‬
‭model (reflecting the likelihood of the participants’ choices given the model, corrected for the‬
‭number of free parameters in the model) and compared the distributions of the BIC scores.‬

‭We found that all time-sensitive models provided significantly better fits to the data (i.e., had‬
‭lower BIC scores) compared to the standard model (median BIC for the standard model =‬
‭755.3; median BIC for the other models = 510.9-525.6; persistent vs. standard:‬‭p‬‭< 0.001,‬
‭paired‬‭Wilcoxon signed-rank test (to account for heavy-tailed‬‭distributions),‬‭rank-biserial‬
‭correlation (an effect size measure for this test)‬‭r‬‭= -0.98; decay vs. standard:‬‭p‬‭< 0.001,‬‭r‬‭=‬
‭-0.98; sticky vs. standard:‬‭p‬‭< 0.001 ,‬‭r‬‭= -1; Figure‬‭3A). Indeed, all participants but one were fit‬
‭best by a time-sensitive model (Figure 3B). When comparing the three time-sensitive models,‬
‭the persistent model fit the data better than both the sticky and the decay model, having‬
‭significantly lower BIC values (persistent vs. sticky:‬‭p‬‭< 0.001, paired‬‭Wilcoxon signed-rank test‬‭,‬
‭rank-biserial correlation‬‭r‬‭= -0.62; persistent vs.‬‭decay:‬‭p‬‭< 0.001,‬‭r‬‭= -0.29; Figure 3A), although‬
‭the differences in the median BIC scores were small (persistent median BIC = 510.9,‬‭SE‬‭Median‬ ‭=‬
‭13.2; sticky median BIC = 521.4,‬‭SE‬‭Median‬ ‭= 11.9;‬‭decay median BIC = 525.6,‬‭SE‬‭Median‬ ‭= 12.5). In‬
‭fact, the persistent model was the winning model for only ~48% of the participants (465/972),‬
‭indicating extensive individual differences (Figure 3B). To unpack these individual differences,‬
‭we examined the difference in BIC scores between the persistent model and each of the decay‬
‭and sticky models.‬

‭The distribution of BIC differences between the persistent and decay models was slightly more‬
‭concentrated to the left of 0 but relatively wide (median difference = -25.5, SD = 135.6; Figure‬
‭3C), indicating that some participants were much better fit by the persistent model, whereas‬
‭others were better fit by the decay model. In comparison, the BIC differences between the‬
‭persistent and sticky models were smaller in magnitude and largely negative (median difference‬
‭= -8.47, SD = 131.8; Figure 3D), indicating that for most participants, the persistent model was‬
‭slightly better. This is not surprising given the similarity between the persistent and sticky‬
‭models - both assign an especially high probability (a “boost”) to the most recent latent cause.‬
‭For both comparisons, however, there was a large positive tail indicating several participants‬
‭with a much worse fit (higher BIC) for the persistent model. Finally, the BIC differences between‬
‭the sticky and decay models had a negative median (median difference = -20.5, SD = 97.71;‬
‭Figure 3E), suggesting more participants were fit better by the sticky model. However, a‬
‭substantial proportion of the participants (393, or 40.4%) were better fit by the decay model,‬
‭indicating large individual differences.‬
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‭Figure 3. Model comparison shows time-sensitive CRP models provide a better fit for the‬
‭data, with significant individual differences.‬‭A.‬‭Comparison of median BIC across‬
‭participants for the four different models. Error bars show the standard error of the median.‬
‭Lower BIC scores indicate a better fit of the data to the model predictions.‬‭B.‬‭Number of‬
‭participants best fit by each of the models. Only one participant was fit best by the simple model‬
‭that did not have a temporal component.‬‭C.‬‭Distribution of per-participant BIC differences‬
‭between the persistent and decay models.‬‭D.‬‭Distribution of per-participant BIC differences‬
‭between the persistent and sticky models.‬‭E.‬‭Distribution of per-participant BIC differences‬
‭between the sticky and decay models. Dotted line: a difference of 0, corresponding to equal fit of‬
‭both models. Density to the left of zero corresponds to the first model (persistent model in C and‬
‭D, decay model in E) showing a better fit (lower BIC, hence negative difference). The top-right‬
‭inset in‬‭D‬‭shows the full distribution (the main plot was truncated at a BIC difference of 100 for‬
‭visualization purposes).‬
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‭Reliability and recoverability of model parameters.‬

‭To verify the adequacy of using this task and the time-sensitive CRP models as‬
‭individual-difference measures of latent-cause inference, we computed the split-half and‬
‭test-retest reliability of each model’s parameters. We did this first for the ‘winning’ persistent‬
‭model. Split-half reliability was high, with Spearman coefficients equaling or exceeding 0.75 for‬
‭all parameters (‬ ‭: Spearman’s‬ ‭= 0.87,‬ ‭: Spearman’s‬ ‭= 0.81,‬ ‭: Spearman’s‬ ‭= 0.75; Figure‬α ρ η ρ σ ρ
‭4A). Test-retest reliability was lower, which can be expected given that the model was fit to only‬
‭two blocks, and thus parameter fits were noisier. Nevertheless, reliability was larger than 0.5 for‬
‭all parameters (‬ ‭: Spearman’s‬ ‭= 0.66,‬ ‭: Spearman’s‬ ‭= 0.56,‬ ‭: Spearman’s‬ ‭= 0.55; Figure‬α ρ η ρ σ ρ
‭4B).‬

‭To ensure that the parameter estimates were stable and recoverable, we additionally performed‬
‭a parameter recovery analysis. Here, we simulated task behavior with the parameter estimates‬
‭for each participant, and then fit the persistent CRP model again to the simulated behavior to‬
‭estimate the parameters and compare them to the known ‘ground truth’ parameters. The model‬
‭had excellent parameter recoverability, with coefficients > 0.95 for all parameters (alpha‬ ‭=‬ρ
‭0.97, eta‬ ‭= 0.96, sigma‬ ‭= 0.96; Figure 4C).‬ρ ρ

‭We conducted similar reliability and recoverability analyses for the other two time-sensitive‬
‭models – the decay and sticky models – as these nevertheless best explained the behavior of a‬
‭minority of participants. We found that these two models had very similar split-half reliability,‬
‭test-retest reliability and parameter recoverability to the persistent model (Table 1). In summary,‬
‭all time-sensitive CRP models had adequate internal consistency, test-retest reliability, and‬
‭parameter recoverability. This supports the use of these models and their parameters as‬
‭individual-difference measures of the computational process of latent-cause inference.‬

‭Table 1. Reliability and recoverability of time-sensitive model parameters.‬‭Each value is a‬
‭Spearman’s correlation coefficient‬ ‭.‬ρ

‭Model‬ ‭Parameter‬ ‭Split-half‬
‭reliability‬

‭Test-retest‬
‭reliability‬

‭Parameter‬
‭recoverability‬

‭Persistent‬
‭model‬

‭Concentration‬α ‭0.87‬ ‭0.66‬ ‭0.97‬

‭Persistence‬η ‭0.81‬ ‭0.56‬ ‭0.96‬

‭Cluster size‬σ ‭0.75‬ ‭0.55‬ ‭0.96‬

‭Decay model‬ ‭Concentration‬α ‭0.84‬ ‭0.62‬ ‭0.95‬

‭Decay rate‬λ ‭0.88‬ ‭0.63‬ ‭0.98‬
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‭Cluster size‬σ ‭0.76‬ ‭0.56‬ ‭0.97‬

‭Sticky model‬ ‭Concentration‬α ‭0.87‬ ‭0.65‬ ‭0.95‬

‭Sticky boost‬β ‭0.83‬ ‭0.56‬ ‭0.95‬

‭Cluster size‬σ ‭0.74‬ ‭0.54‬ ‭0.95‬

‭Discussion‬
‭Temporal information is crucial for forming stable representations of experiences. In this study,‬
‭we investigated whether time matters in human latent-cause inference, using a novel task‬
‭designed to quantitatively capture the inference process. Our findings show that humans are‬
‭sensitive to temporal information when making inferences about the hidden causes that have‬
‭generated individual experiences. Using non-parametric Bayesian models, we show that‬
‭participants’ inferences were best explained by models that incorporated time in estimating the‬
‭probability of latent causes.‬

‭More specifically, our results show three types of behavioral profiles. The most prominent type‬
‭persistently prioritizes the most recently inferred cause, while estimating the probabilities of‬
‭other causes based on factors outside of time (i.e., the persistent model). The persistent model‬
‭showed reliable estimates of model parameters across time and within sessions, suggesting‬
‭that the model parameters can capture meaningful individual differences that can map onto‬
‭psychological constructs (e.g., mental health symptoms). Additional behavioral patterns‬
‭emerged in a subset of individuals: decaying the probability of the causes as a function of‬
‭temporal recency (the decay model), and giving an advantage to the most recently inferred‬
‭cause with a diminishing effect of the boost as the number of stimuli increases (the sticky‬
‭model).‬
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‭Figure 4.‬‭The persistent model, which best explained‬‭participants’ choices, showed good‬
‭split-half reliability,  test-retest reliability, and parameter recovery.‬‭A‬‭.‬‭Split-half reliability‬
‭analysis, showing correlations between parameters estimated separately from even and odd‬
‭blocks of the task.‬‭B‬‭.‬‭Test-retest reliability analysis,‬‭showing correlations between parameters‬
‭estimated on the two blocks in session 1 (‘day 1’) and parameters estimated on the first two‬
‭blocks from session 2 (‘day 2’).‬‭C‬‭.‬‭Parameter recovery‬‭analysis, showing correlations between‬
‭fitted parameter values (‘original’) and values recovered from simulating task behavior with the‬
‭fit parameters (‘recovered’). Each parameter is shown on a column and with a corresponding‬
‭color.‬
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‭Our results are consistent with previous models of event segmentation where a new experience‬
‭is monitored for its similarity to previous experiences on multiple dimensions, including time‬
‭(Event-Indexing Model;‬‭(Zwaan et al., 1995)‬‭Zwaan et al., 1995). Similar to the “situations”‬
‭inferred in event comprehension, our model infers the causal structure that generate‬
‭experiences. Our results are also consistent with previous findings in causal inference that show‬
‭temporal information plays a role in inferring causal structure‬‭(Éltető et al., 2022; Song et al.,‬
‭2022)‬‭and forming memory traces accordingly‬‭(Franklin et al., 2020; Gershman et al., 2014)‬‭.‬
‭Building on these previous findings, we formally compared different ways by which temporal‬
‭information is utilized in inferring latent causes. Of special interest were cases in which the‬
‭likelihood for the most recently inferred cause is low (i.e., the observed stimulus is perceptually‬
‭dissimilar from other stimuli generated by the current cause) – in these cases, how does time‬
‭guide our inference of the latent cause?‬

‭One possibility is that the most recently inferred cause is prioritized in inference (higher prior‬
‭probability), which enhances the stability of causal inference in light of noisy observations. This‬
‭type of prioritization prevents frequent transitions between events – i.e., event boundaries,‬
‭(Speer & Zacks, 2005)‬‭and “flushing” the memories from working memory‬‭(Swallow et al.,‬
‭2009)‬‭. In episodic memory, drawing event boundaries decreases the recall of memories that‬
‭belong to previous events, even after re-visiting the same type of event‬‭(Radvansky et al.,‬
‭2011)‬‭. Our modeling results align with evidence from the episodic memory literature that‬
‭demonstrates the importance of “staying” in the most recently inferred latent cause. Specifically,‬
‭the model that persistently prioritizes the most recently inferred cause (i.e., persistent CRP‬
‭prior) performed better than a model that diminished the recent-cause boost as the number of‬
‭experiences increased (the sticky model;‬‭Fox et al., 2011)‬‭. This suggests that the stability of‬
‭causal inference is prioritized throughout the inference process.‬

‭A second possibility is that rather than treating all of the non-recent latent causes as equally‬
‭“old”, the probability of each latent cause decreases with the number of observations since it‬
‭was last active. In this case, more recently encountered latent causes would be more‬
‭preferentially used to explain the current experience. Such a pattern would align with temporal‬
‭contiguity effects where the association between two items decays with temporal distance‬
‭(Boakes & Costa, 2014)‬‭and the probability of recalling an item from memory decays with‬
‭temporal distance from the last item that was retrieved‬‭(Howard & Kahana, 2002)‬‭. Indeed, this‬
‭decay model provided the best explanation for approximately ⅓ of our participants. Notably, our‬
‭model suggests that temporal decay is at the level of latent causes. That is, even though the‬
‭“revisit” experiences were always perceptually novel, and thus there was no temporal recency‬
‭for the exact stimulus, the old latent cause that generated other experiences that share features‬
‭with the current stimulus was more likely to be used when the latent cause was more recently‬
‭encountered. Interestingly, reaction times on our task showed that when individuals erroneously‬
‭reported that a ‘revisit’ stimulus from an old cause comes from the current latent cause, they‬
‭were slower to “stay” when the stimulus was in fact generated from a more recently active old‬
‭cause.‬‭Using reaction times as a more sensitive measure of the inference process in future‬
‭studies can perhaps help better differentiate individual differences in how people use past‬
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‭information in their inference process. However, this would entail extending the latent cause‬
‭models we used here to account for reaction times as a function of the inference process.‬

‭While our study investigates the significance of time in inference behavior, it is difficult to‬
‭determine how latent causes are recognized from the past given this study alone.‬
‭Neuroimaging studies can complement our modeling approach, addressing how the brain‬
‭supports the inference of previously-encountered latent causes, and how it creates completely‬
‭new latent causes when necessary. Sarah DuBrow originally developed the “microbes task” with‬
‭an aim to examine the underlying neural processes of recognizing an old latent cause versus‬
‭inferring a new one, going beyond detecting transitions and “event segmentation” and asking:‬
‭how do I classify the new event when it is detected? For this, in a companion fMRI study now‬
‭underway, we are using the task she originally designed, where “new” and “revisit” trials are‬
‭matched for perceptual differences, to allow resolving the neural mechanisms of inference in‬
‭these cases. In particular, Sarah DuBrow hypothesized that the orbito-frontal cortex (OFC),‬
‭which has been shown to represent the posterior distribution of latent causes‬‭(Chan et al.,‬
‭2016)‬‭, might guide the hippocampus to either retrieve old latent causes or infer a new latent‬
‭cause, while the hippocampus would in turn trigger updating the event representation in the‬
‭OFC after an event concludes, similarly to what has been observed during learning in rodents‬
‭(Guise & Shapiro, 2017; Srinivasan et al., 2023)‬‭. If the posterior probabilities of existing latent‬
‭causes are low at the onset of an event, akin to the prefrontal cortex triggering the hippocampal‬
‭pattern separation at the start of learning (Guise & Shapiro, 2017), the prefrontal cortex may‬
‭initiate the hippocampus to create a new memory trace, instead of updating an existing one.‬
‭This will complement the event offset patterns, observed in the hippocampus in‬
‭humans(‬‭Ben-Yakov & Henson, 2018‬‭; Lee & Chen, 2022) and rats (Srinivasan et al., 2023),‬
‭which may update the posterior distribution over latent causes in the OFC.‬

‭We conceptualize latent cause inference as a process that is fundamental to generalization.‬
‭Since no two experiences are exactly alike, learning relies on generalization, and as such, is‬
‭intimately linked to memory processes as well. We thus hypothesize that alterations in latent‬
‭cause inference can potentially lie at the heart of some mental health concerns, e.g.,‬
‭overgeneralization from past experiences in some anxiety disorders, and undergeneralization,‬
‭or otherwise incoherent latent cause inference in schizophrenia and other psychotic disorders‬
‭(Cisler et al., 2024)‬‭.  The model that best aligned with participants’ behavior – with the‬
‭persistent CRP prior – had parameters that were internally consistent, reliable across days, and‬
‭almost perfectly recoverable. These psychometric properties of the persistent model show that‬
‭model parameters can reliably capture the process of inferring latent causes and suggest that‬
‭the model parameters can be used as individual difference measures, to be correlated to‬
‭different mental health symptoms.‬

‭In summary, the current findings suggest that the inference of latent causes relies on temporal‬
‭information, by prioritizing the most recently inferred cause to explain novel experiences and‬
‭decaying the probability of old causes over time. These results have implications for how‬
‭humans organize memories and make decisions drawing from relevant past experiences,‬
‭thereby providing fundamental insight into the ubiquitous impact of time information on learning‬
‭and memory processes.‬
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