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Abstract 

 We investigate the relationship between intramolecular rotational dynamics and molecular 

and crystal structure in 4,4'-dimethoxyoctafluorobiphenyl.  The techniques are electronic structure 

calculations, X-ray diffractometry, and 1H and 19F solid state nuclear magnetic resonance 

relaxation.  We compute and measure barriers for coupled methyl group rotation and methoxy 

group libration.  We compare the structure and the structure-motion relationship in 4,4'-

dimethoxyoctafluorobiphenyl with the structure and the structure-motion relationship in related 

compounds in order to observe trends concerning the competition between intramolecular and 

intermolecular interactions.  The 1H spin-lattice relaxation is nonexponential in both the high-

temperature short-correlation time limit and in the low-temperature long-correlation time limit, 

albeit for different reasons.  The 19F spin-lattice relaxation is nonexponential at low temperatures 

and it is exponential at high temperatures. 

 

Introduction 

 The relationship between structure and dynamics in molecular solids is an ongoing 

challenge in condensed matter science.  Here, we investigate the relationship between 

intramolecular (rotational) dynamics and molecular and crystal structure in a relatively simple 

organic solid and model the dynamics in a detailed manner.  The compound under investigation, 

4,4'-dimethoxyoctafluorobiphenyl (1), is, to our knowledge, of no particular interest in and of itself 

but hopefully, with slow and steady progress, one will be able to perform detailed models like 

those presented here in more complex and more important systems in the not-too-distant future.  In 

order to arrive at generalities (i.e., for a class of compounds rather than just individual compounds), 

in the Summary and Conclusions section of this paper we compare the study using 1 presented here 

with similar studies we have undertaken with 4,4'-dimethoxybiphenyl (2)1,2 and with 3-

fluoromethylphenanthrene (3).3,4  We present this summary with as little jargon as possible and we 
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have attempted to make the presentation in the Summary and Conclusions self-contained.  Indeed, 

the reader not concerned with the details is invited to proceed to that section after reading this 

Introduction. 

 

 

  1     2    3 

 

 The crystal structure of these compounds is determined by X-ray diffraction,5 as is the 

ground state molecular structure in the crystalline environment.  The structure of an isolated 

molecule is determined by density functional theory electronic structure calculations.  The energies 

of ground states and transition states for the various rotations (methyl, methoxy, and 

methoxyphenyl) are calculated.  The energy differences between the ground and transition states 

are the barriers for the rotations.  These calculations are done for the isolated molecule and for a 

central molecule in a suitable cluster of molecules based on the X-ray crystal structure.  As such, 

rotational barriers can be calculated for both the rotations in the isolated molecule and for a 

molecule in the crystalline environment and the differences in these barriers can provide insight 

into the relative role played by intramolecular and intermolecular interactions.  The calculations in 

the clusters presumably involve accounting for many van der Waals interactions.  Finally, we use 

solid state 1H and 19F nuclear magnetic resonance (NMR) spin-lattice relaxation experiments6 to 

measure activation energies involved with the motions that occur in the crystalline environment.  

The NMR activation energies are then compared with the electronic structure barrier calculations 

in the clusters and models for the dynamics are generated. 
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 The NMR relaxation in 1 is complicated.  1H and 19F spin-lattice relaxation occurs because 

the 1H – 1H and the 1H – 19F dipole-dipole (spin-spin) interactions are modulated by methyl group 

rotation.  The vibrational motions involving the eight ring F atoms are too fast on the NMR time 

scale to relax the 19F spins and as such 19F – 19F dipole-dipole interactions play no role. The 19F 

spins can only relax through the methyl 1H spins.  The 1H spin-lattice relaxation is nonexponential 

at all temperatures.  At high-temperatures the relaxation is nonexponential because of the 100% 

correlation among the three H – H vectors as a methyl group rotates.7,8  The relaxation is 

nonexponential at low temperatures as a result of 1H – 19F dipolar interactions contributing to the 

relaxation as well as 1H – 1H dipolar interactions.3,9  At middle temperatures, both phenomena are 

occurring.  Both these phenomena have been observed, but not, to our knowledge, in the same 

compound.  The 19F spin-lattice relaxation is also nonexponential at low temperatures (for the same 

reason the 1H spin-lattice relaxation is nonexponential) but it is exponential at high temperatures.  

We are able to fit the temperature dependence of the 1H and 19F relaxation data in a detailed 

manner with only three adjustable parameters, one of which is an activation energy for methyl 

group rotation (occurring on the NMR time scale; approximately 10
11 s at 280 K to 10

7 s at 110 

K).  The other two parameters that come from fitting the NMR relaxation rate data provide a good 

test of the Bloch-Redfield-Wangsness model of spin-lattice relaxation10-12 (which is summarized 

very clearly by Kimmich6) with appropriate modifications3,7-9 for the two kinds of nonexponential 

relaxation. 

 We learn from the electronic structure calculations that methyl group rotation is coupled 

with the much faster methoxy group libration.  We use the term "methyl group rotation" to refer to 

a rotation from the ground state to a transition state and then back (either in the same rotational 

sense or in the opposite sense) to the ground state.  That is to say, it "rotates over a barrier."  We 

use the term "methoxy group libration" to mean the group rotates from its ground state, part way to 

its transition state, and then back again.  This is a rapid motion occurring on a typical vibration-



Fahey et al                   5 

 

libration timescale; say within a few orders of magnitude of 10-14 s (which corresponds to a mode 

of approximately 1000 cm
1).13 

 Various comparisons offer insight into both the intramolecular and the intermolecular 

interactions involved in these kinds of organic molecular solids as well as insight into the kinds of 

motions occurring.  In 1, the eight F atoms are on the two rings and the only H atoms are in methyl 

groups.  In 2, the ring F atoms are replaced with H atoms.  We investigate the difference in the 

structure of the two isolated molecules as a consequence of the larger F atoms in 1.  The two 

crystal structures are quite different and a comparison provides insight into the competition 

between intramolecular and intermolecular interactions in going from the isolated molecule to the 

molecule in the crystal.  The methoxyphenyl group (half the molecule) is the asymmetric unit in 

both crystals of 1 and 2 so this makes these comparisons meaningful.  Another interesting 

comparison involves comparing 1 with 3.  1 and 3 have the H and F atoms reversed in some sense;  

1 has CH3 groups with neighboring F atoms on a ring and 3 has a CF3 group with neighboring H 

atoms on a ring.  There are two major differences, though.  One is that the CF3 groups in 3 are 

bonded directly to the ring and in 1, the CH3 groups are bonded to an O atom which is then bonded 

to the ring.  Also, in the crystal of 3, the CF3 groups from different molecules are close enough to 

each other that intermolecular 19F – 19F dipolar interactions matter, in addition to intrafluoromethyl 

19F – 19F dipolar interactions, in modeling the spin-lattice relaxation, whereas in 1, the CH3 groups 

are quite isolated from one another and only the intramethyl 1H – 1H dipolar interactions need be 

considered. 

 In the solid state, phenyl-phenyl rotation over the barrier in both 1 and 2 is completely 

quenched but there is coupled methyl group rotation and methoxy group libration in both.  The 

methyl H – ring F interactions (electronic and steric) in 1 are more severe than the methyl H – ring 

H interactions in 2 and this correlates well with the degree of methoxy group libration (as the 

methyl group rotates over the barrier).  Finally, the NMR activation energy for this coordinated 
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motion is in excellent agreement with the barriers calculated using electronic structure calculations 

even though NMR activation energies and barriers calculated by electronic structure calculations 

are not the same parameter.14,15  This tends to provide support for both the solid state relaxation 

NMR and the electronic structure calculation techniques.  Determining these low barriers (10 – 20 

kJ mol
1) in van der Waals solids using electronic structure calculations is challenging. 

 Above approximately 80 K in most solids, modeling methyl group rotation as a random 

hopping of the triangle of H atoms is an excellent model for the interpretation of NMR relaxation 

data.16-24  This is the model of methyl group rotation used here.  Below approximately 80 K in 

most solids, methyl group rotation is better described by quantum mechanical tunneling.  The 

transition from the low-temperature quantum mechanical tunneling regime to the high-temperature 

semiclassical hopping regime is well understood.16-18,20,23,25 

 

Experimental Methods 

 X-ray Crystallography.  The sample of compound 1, 4,4'-dimethoxyoctafluorobiphenyl, 

(99%, mp 85-88OC) was purchased from Acros.  The crystal structure was determined by X-ray 

crystallography5 at both 100 and 200 K.  At 100(2) K, a single colorless block (0.44 X 0.28 X 0.26 

mm) was mounted, using Paratone® oil, onto a glass fiber and cooled to the data collection 

temperature.  Data were collected on a Brüker-AXS Kappa APEX II CCD diffractometer with 

1.54178 Å Cu-K radiation.  Unit cell parameters were obtained from 90 data frames, 0.3O , from 

three different sections of the Ewald sphere yielding a = 13.1644(5), b = 7.7256(3), c = 12.5307(5) 

Å, V =  1274.4(1) Å3.  4613 reflections (Rint = 0.0182) were collected (1115 unique) over  = 6.64O 

to 67.54O.  The systematic absences in the diffraction data were consistent with the 

centrosymmetric, orthorhombic space group, Pbcn.  The data-set was treated with SADABS  

(Sheldrick, G., Brüker-AXS, 2001) absorption corrections based on redundant multi-scan data.   

Tmax/Tmin = 1.28.  All non-hydrogen atoms were refined with anisotropic displacement parameters.  
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All hydrogen atoms were treated as idealized contributions.  The goodness of fit on F2 was 1.070 

with R1(wR2) 0.0309(0.0940) for [Iq > 2(I)].  The largest difference peak was 0.238 e/Å3 and the 

largest difference hole was –0.229 e/Å3. 

 At 200(2) K, the single colorless block was (0.23 X 0.21 X 0.09 mm) and the unit cell is 

characterized by a = 13.1708(4), b = 7.8476(2), c = 12.6056(4) Å, V = 1302.90(7) Å3.  3645 

reflections (Rint = 0.0345) were collected (1128 unique) over  = 6.57 to 67.99O.  Tmax/Tmin = 1.24 

and the goodness of fit on F2 was 1.085 with R1(wR2) 0.0491(0.1329) for [Iq>2(I)].  The largest 

difference peak was 0.310 e/Å3 and the largest difference hole was –0.329 e/Å3.  

 The structure of the molecule in the solid state is shown in Figure 1(a) (which also shows 

the carbon numbering) and the crystal structure is shown in Figures 1(b and c).  The differences in 

structure between 100 K and 200 K are not visible at the resolution of Figure 1.   

 Electronic Structure Calculations in the Isolated Molecule.  All electronic structure 

calculations were carried out with the Gaussian 03 package of programs.26  Similar computational 

schemes have been used to study the internal rotation motions of 2
2 and 3.4  An isolated molecule 

of 1 was taken from the X-ray crystallographic structure.  To obtain the ground state, a full 

geometry optimization was performed at the B3LYP/6-311+G(d,p) level to reach the local energy 

minimum.27-32  There are three kinds of internal rotational degrees of freedom in the molecule: 

phenyl-phenyl rotation around the C1C1' bond, methoxy group rotation around the OC4 bond, 

and methyl group rotation around the CmO bond.  Here, the letter "m" refers to the methyl carbon 

atom.  Carbon numbering is indicated in Figure 1.  Dihedral angles (C6C1C1'C2'), 

(CmOC4C5), and (HCmOC4) are used as the rotational coordinates of the whole 4-

methoxytetrafluorophenyl group, the 4-methoxy group, and the methyl group, respectively.  

Potential energy surfaces for the three kinds of rotations were obtained at the 

B3LYP/6311+G(d,p)//B3LYP/6311+G(d,p) level by scanning , , and  from 0O to 180O at 

intervals of 15O.  Calculations were performed with the respective dihedral angle fixed while 
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allowing all other structural parameters to be optimized.  Additional points were calculated around 

the transition states.  Previous experience shows this computational scheme is a reasonable 

compromise between the accuracy and speed in studying the internal rotation problem.2,4  The 

ground state and transition state identified through this scheme were indistinguishable from those 

obtained directly from locating the minimum and first-degree saddle points.4,33 

 Electronic Structure Calculations in a Cluster.  A cluster consisting of 19 molecules of 1 

was constructed from the single-crystal X-ray crystallographic structure of the compound.  The 

cluster is shown in Figures 1(b and c).  The environment of the central molecule in the cluster was 

intended to simulate the crystal packing interactions as experienced by a molecule in an ideal 

crystal.  The cluster fixes all C, O, and F atoms at their positions as determined in the X-ray 

structure for the ground state, while the positions of H atoms in all states were determined by the 

electronic structure calculations at the B3LYP/631G(d) level.  This is important because the X-ray 

experiments position the hydrogen atoms with CH bond lengths that are too short.34,35  For 

example, the X-ray positioning of the H atoms (placed in idealized positions) in 1 gives the methyl 

CH bond lengths as 0.98 Å whereas the calculations give these bond lengths as 1.076, 1.078, and 

1.080 Å, a difference of approximately 0.10 Å, consistent with previous studies.34,35  The 

shortening can be as large as 0.03 Å for CH bond lengths in methyl groups as determined by 

neutron diffraction measurements at room temperature (due to thermal vibrations).35  Determining 

H atom positions accurately is important because the HH distances in a methyl group r enter into 

the calculation of an important NMR parameter as r
6.  This is discussed below. 

 Potential energy surfaces were calculated for the internal rotations on the central molecule 

of the cluster.  Prior experience shows that the cluster is large enough that all neighboring 

molecules with significant intermolecular interactions with the central molecule have been 

included and adding more neighboring molecules would not significantly change the calculated 

barriers.4,33,36  Due to the high computational cost, the basis set superposition error, which has been 
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shown not to be significant for the calculation of rotational barriers,4 was not corrected. 

 Two groups of calculations, all at the B3LYP/6-31G(d) level, were performed.  In the rigid 

rotation model, calculations were done for 15º steps in  , , and .  The rotational ground and 

transition states of the methyl group identified from these calculations were subject to an additional 

partial relaxation calculation.  In the partial relaxation model, all structural parameters of the 

central molecule were allowed to optimize except that the Cartesian coordinates of carbons at 1, 1', 

4 and 4' positions were fixed.  Previous studies have shown that the barriers obtained from the 

partial relaxation models are comparable with the rotational activation energy as measured by solid 

state NMR relaxation experiments.2,4,33,36  

 Rotational barriers were taken to be the difference in the calculated energies between the 

ground and transition states for methyl group rotation, methoxy group rotation, and 4-

methoxytetrafluorophenyl group rotation.    

 Solid State 1H Spin-lattice Relaxation Experiments.  1H and 19F spin-lattice relaxation 

measurements in a polycrystalline sample of 1 were made between 110 and 280 K at an NMR 

frequency of 22.5 MHz.  The experiments with the two spin species are fixed frequency, not fixed 

magnetic field.  When the magnetic field is 0.527 T, the 1H NMR frequency is   

   

wH/2 = 22.5 MHz 

(1H observed) and the 19F NMR frequency is F/2  = 23.9 MHz (19F not observed).  When the 

magnetic field is 0.560 T, the 19F NMR frequency is   

   

wF/2  = 22.5 MHz (19F observed) and the 1H 

NMR frequency is   

   

wH/2 = 21.2 MHz (1H not observed).  Temperature control and measurement 

is discussed in detail elsewhere.1  1H or 19F magnetization recovery curves were measured using an 

inversion-recovery pulse sequence.  It is convenient to define three temperature regions: a high-

temperature region I, 154 < T < 286 K (3.5 < 103/T < 6.5 K
1), a middle temperature region II, 133 

< T < 154 K (6.5 < 103/T < 7.5 K
1), and a low-temperature region III, 114 < T < 133 K (7.5 < 

103/T < 8.8 K
1).   
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 Nonexponential 1H spin-lattice relaxation was observed at all temperatures and 

nonexponential 19F spin-lattice relaxation was observed in the low-temperature region III.  

Exponential 19F relaxation was observed in the high-temperature region I and in the middle 

temperature region II and in those regions 19F magnetization recovery curves were fitted to a single 

exponential MF(t)  =  MF(∞)[1(1cos)exp(2t)].  2 is the nuclear spin-lattice relaxation rate,  

MF(∞) is the equilibrium 19F magnetization, and the adjustable parameter  accounts for 

imperfections in the perturbing inversion  -pulse.  The nonexponential 19F and 1H relaxation in 

the low temperature region III was fitted with a double exponential Mk(t)  = 

Mk1(∞)[1(1cos)exp(1t)] + Mk2(∞)[1(1cos)exp(2t)] (with k = H, F for 1H or 19F).  The 

two relaxation rates in this case are 1 and 2.  Figure 2 shows an example of a 1H magnetization 

decay in the low-temperature regime III where the double exponential fits the data.  Figure 3 shows 

an example of a 1H magnetization decay in the high-temperature region I where a double 

exponential does not fit the data (as expected and as discussed in the next section).  This is the case 

for the 1H magnetization decay in the middle temperature region II as well.  Both Figures 2 and 3 

show a fit to a single exponential for comparison.  Figure 3(d) shows a single exponential fit to the 

initial part of the nonexponential recovery curve in the high temperature region I, in which case the 

rate is 1.  We expand on the procedure used to determine this initial rate elsewhere.1  Figure 4 

shows the temperature dependence of these relaxation rates and is discussed more fully in the next 

section.  The two fractional magnetizations H1 = MH1(∞)/[MH1(∞) + MH2(∞)] and H2 = 

MH2(∞)/[MH1(∞) + MH2(∞)] characterizing the 1H double exponential relaxation in the low 

temperature region III (and discussed further in the next section) are shown in Figure 5.  (Figure 5 

also shows the failed attempts to fit the 1H magnetization decays to a double exponential in the 

middle temperature region II.)   
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The NMR Relaxation Model and the NMR Parameters  

 The 4,4'-dimethoxyoctafluorobiphenyl molecule 1 has two identical halves; each with four 

ring F atoms and three H atoms in a methyl group.  An analysis (in the NMR Relaxation Results 

section below) of the parameters determined by fitting the NMR relaxation rates in 1 shows that the 

principle motion causing the 1H spin-lattice relaxation is methyl group rotation.  On the NMR 

timescale, the F and H atom vibrations and the methoxy group libration are too fast to cause 

nuclear spin relaxation.  The methyl group, on the other hand, reorients with a temperature-

dependent mean hopping frequency in resonance with the NMR frequency in the temperature range 

studied.  Indeed, the ability to isolate a single motion in this fashion renders nuclear magnetic 

resonance relaxation studies potentially very powerful.  We first briefly review the basic Bloch-

Wangsness-Redfield model for nuclear spin-lattice relaxation10-12 (which is summarized in the 

texts by Abragam,9 Slichter,37 Ernst et al.,38 and Kimmich6) and then extend it two ways; first to 

include the fact that there are two spin species and second to include cross correlation effects 

involving the three H atoms in a methyl group.  The 1H relaxation is nonexponential at all 

temperatures so the goal is to determine an appropriate rate or rates from the nonexponential 

relaxation that correspond to the basic Bloch-Wangsness-Redfield model.   Appropriate 19F rates 

must also be extracted from the basic model.  (The 19F spins can only relax by trading energy with 

the 1H spins.)   

 The basic 1H relaxation rate in the Bloch-Wangsness-Redfield model for a polycrystalline 

powder is 

 

        

  

R = C J wH,t( ) + 4J 2wH,t( )[ ],    (1) 

 

where   

   

wH/2 is the 1H NMR frequency.  The spectral density for random motion described by 

Poisson statistics in eq 1 is 
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J (w,t ) =
2t

1+ w2 t 2
      (2) 

 

and the mean time between methyl group hops is16-25  

 

        

  

t = t¥ e
ENMR / kT .      (3) 

 

where ENMR is the "NMR activation energy."  It is convenient to scale the infinite temperature 

mean time between hops 

   

t¥ (which is an experimental fitting parameter) by a very simple 

harmonic model39  

 

        

   

˜ t ¥ =
2p

3

æ 

è 
ç 

ö 

ø 
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I

2ENMR
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ø 
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1/2

   ,     (4) 

 

where I is the moment of inertia of the methyl group.  A fitted value of 

   

t¥ that subsequently 

results in a value of 

   

t¥/

   

˜ t ¥ several orders of magnitude from unity would suggest the motion is not 

methyl group rotation. 

 The NMR relaxation parameter C in equation 1 is a measure of all the 1H – 1H spin – spin 

dipolar interactions, both intramolecular (i.e. intramethyl) and intermolecular (i.e., intermethyl), 

being modulated by methyl group rotation.  It involves a sum over all pairwise interactions.  It is 

both the changing lengths and the changing directions of the spin-spin vectors that cause the spin-

lattice relaxation.  The distances between the three H atoms     

   

rHH in a methyl group are time 

independent and are known to high precision from the electronic structure calculations as discussed 

previously in this paper.  This intramethyl contribution to C resulting from the 120O changes in 

direction of the intramethyl H – H vectors as the methyl group hops is labeled   

   

˜ C  and is given by 
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.     (5) 

 

The parameter   

   

gH is the 1H magnetogyric ratio and   

   

mo is the magnetic constant.    

   

˜ C  can be 

calculated explicitly and C/  

   

˜ C  is often taken as a fitting parameter, though in this study we will set 

C =   

   

˜ C  as discussed later in this section. 

 Both the 1H and 19F relaxation in the low-temperature region (region III in Figure 4) is 

nonexponential because the two spin species interact with one another via the unlike spin dipole-

dipole interaction.  We have provided a brief review of the literature related to this phenomenon.3  

Although the 1H – 19F interactions play a role at all temperatures, both spin species relax 

exponentially in temperature regions I and II (if this were the only phenomenon occurring).  This is 

discussed further below.  A recent work40 nicely summarizes the various interactions that 19F spins 

can be involved with for a liquid crystal with many kinds of motions – some of them quite slow – 

and shows why, at 22.5 MHz in a polycrystalline powder, we are not concerned with the spin 

rotation or chemical shift interactions for either 1H or 19F relaxation.  The NMR frequencies for 1H 

and 19F are close enough that, with a little help from the thermal bath of phonons, mutual spin flips 

can occur via the 1H  19F interactions.  As such, the "mobile" 1H spins in the methyl groups can 

relax the "immobile" 19F spins.  The result is that the two macroscopic magnetizations (i.e.,     

  

MH(t) 

associated with the 1H spin species and     

  

MF(t) associated with the 19F spin species) form a two-

component vector and the time dependence of the recovery of these two magnetizations following 

a perturbation is related to the two equilibrium magnetizations via:3   
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Eq 6 is constructed so the first term corresponds to the relaxation rates that would be observed if 

there were no 1H 19F dipolar interactions in which case the relaxation of the perturbed 1H  or 19F 

magnetizations are completely decoupled and each relaxes exponentially.      

   

RHH
L  (where the 

superscript L means "like" as in "like spins") in the first diagonal matrix in given by eqs 1-3 and 5. 

    

   

RFF
L  = 0 zero since no 19F – 19F dipolar interactions are modulated on the NMR time scale.  The 

second matrix (where the superscript U means "unlike" as in "unlike spins") accounts for the  1H 

19F dipolar interactions.  Although     

   

RFF
L  = 0 in the first matrix of eq 6, all four entries     

   

RHH
U ,     

   

RFF
U , 

    

   

RHF
U , and     

   

RFH
U  in the second matrix are non zero and expressions for them can be found in 

reference 3.  They can all be determined using logical extensions of the basic Bloch-Wangsness-

Redfield model.   Instead of equations like eq 1, the spectral densities     

  

J(wH +wF,t ) and 

    

  

J(wH -wF,t ) are involved, in addition to     

  

J(wH,t ) and     

  

J(2wH,t ).  The spectral densities    

  

J(wF,t ) 

and     

  

J(2wF,t ) do not appear.  The four multipliers corresponding to C in eq 1 involve the 19F 

gyromagnetic ratio   

   

gF (as well as   

   

gH) and the F-H atom distances     

   

rFH.3 

 Eq 6 means that the nuclear magnetizations    

  

MH(t) and     

  

MF(t) both relax with two time 

constants 1 and 2 via; 

 

    

    

   

Mk (¥) - Mk (t)

2Mk (¥)
= fk1 e-l1 t + fk 2 e-l2 t,   (7) 

 

for k = H, F.  The factor 2 is solely for convenience for the case of a perturbation using a 

   

p-pulse.  

The normalized magnetizations     

   

fk1 and     

   

fk2 depend on the initial conditions (i.e., on     

  

Mk(0)) but 

the observed relaxation rates 1 and 2 do not.  The rates 1 and 2, are obtained by diagonalizing 

the relaxation matrix in eq 6 and are 
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l1,2 =
1

2
RFF

L + RFF
U( ) + RHH

L + RHH
U( ) ± RFF

L + RFF
U( ) - RHH

L + RHH
U( )[ ]

2
+ 4 RFH

U RHF
U

é 

ë 
ê 

ù 

û 
ú  ,  (8) 

 

(with     

   

RFF
L  = 0 in the present case).  Eq 8, then, relates the observed 1 and 2, to the relaxation 

rates determined from the basic Bloch-Wangsness-Redfield model.  If the 1H spins are being 

observed and a 

   

p-pulse inverts the 1H magnetization (i.e.,     

  

MH(0) = - MH(¥)), the amplitudes of 

the observed normalized magnetization in eq 7 are3 

 

   

    

   

fH1 = 1- fH2 =
RHH

L + RHH
U - l2

l1 - l2

.     (9) 

 

Experimental values of   

   

fH1 and   

   

fH2 are plotted in Figure 5.  If the 19F spins are being observed 

and a 

   

p-pulse is applied to the 19F magnetization then all the Hs in eq 9 are replaced with Fs.  Both 

spin species relax with the same two spin-lattice relaxation rates 1 and 2, regardless of the 

relative numbers of spins in each species and the number of mobile and immobile atoms of each 

spin species.  The fractional magnetizations in eq 9 each approach 0.5 at low temperature.  As 

temperature is increased one of these approaches 1 and the other approaches 0 as observed (Figure 

5).  Thus, even though the relaxation is inherently nonexponential at higher temperatures (regions I 

and II), one magnetization disappears and only the other one is observed.  As such, discounting 

other phenomenon (discussed below), the observed relaxation is exponential at higher 

temperatures: The 1H magnetization relaxes with 1, which is observed when the 1H magnetization 

is observed, and the 19F magnetization relaxes with 2, which is observed when the 19F 

magnetization is observed.  Further details are provided elsewhere.3  The two maxima in Figure 4 

are predicted by this model.  The maximum at approximately 103 T 
1 = 6.2 K

1 occurs when F ≈ 
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H ≈ 1 and the maximum at approximately 103 T
1 = 7.7 K

1 occurs when F  H ≈ 1.  

Despite all these complexities, there is only a single motion (methyl group rotation) and eqs 2 and 

3 are valid throughout the entire analysis.  All this complexity results in one additional parameter, 

q, that is presented below. 

 Whereas the recovery of the 19F magnetization in 1 is found to be exponential at higher 

temperatures as presented above, there is an additional phenomenon, unrelated to the effects 

discussed in the previous paragraphs, for the 1H magnetization recovery at higher temperatures 

(regions I and II) which also results in nonexponential relaxation.  The basic Bloch-Redfield-

Wangsness model used here assumes the existence of 1H – 1H pairs whose internuclear vectors are 

reorienting randomly.  The pairs are not interacting with each other and their motion is 

uncorrelated.  Extending this to the three 1H spins in a methyl group while keeping these 

assumptions is straightforward and results in the factor 9/40 in eq 5.  However, the reorientation of 

the three spin-spin vectors in a methyl group is neither random nor uncorrelated.  First, each 

triangle of spins reorients in a plane, not isotropically.  (Albeit, because of rapid methoxy group 

libration as discussed below, this plane is not fixed in space but librates with the methoxy group.  

This methyl group plane libration is too fast to mask the effects being discussed here.)  Second, the 

motion of the three spin-spin vectors are 100% correlated.  Runnels7 and Hilt and Hubbard8 dealt 

with these complications in great detail and the results are discussed elsewhere.1  For a 

polycrystalline sample, the magnetization recovery after a perturbation cannot be modeled in a 

simple closed form.8  We show in Figure 3 that not even a double exponential will fit the data.  In 

this case, however, the single unique relaxation rate 1, related to the basic Bloch-Redfield-

Wangsness model as outlined above, corresponds to the initial exponential recovery of the 

magnetization in the nonexponential relaxation.  The experimental analysis of high-temperature 

nonexponential relaxation for the three 1H spins in a methyl group leading to the determination of 

this initial rate is presented elsewhere.1 
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 To summarize, the 1H relaxation is nonexponential at high and low temperatures for 

completely different reasons; two unrelated phenomena are at work.  At middle temperatures 

(region II), both mechanisms are at work and interpreting the 1H spin-lattice relaxation rate data is 

complicated as discussed below.   Despite the complexities associated with both nonexponential 

spin-lattice relaxation and the presence of two spin species, there are only five independent 

parameters in the model that characterizes both the 1H and 19F spin-lattice relaxation over all three 

temperature regions.  Here, we set two of these parameters to their theoretically computed values, 

leaving only three adjustable (fitting) parameters. Fixing two parameters at their theoretical values 

(or, seen another way, eliminating them as adjustable parameters), is based on the crystal structure.  

(1) Since the only hydrogen atoms are in methyl groups, and since the methyl groups are relatively 

far apart, the only 1H spin –1H spin interactions that need be considered are those that characterize 

the intramethyl 1H spin –1H spin interactions.  In this case, C in eq 1 is set to   

   

˜ C  in eq 5.   It is 

important, however, to use the correct H – H distance,     

   

rHH, in a methyl group.  Since   

   

˜ C  is 

proportional to     

   

rHH
-6 , a given % error in     

   

rHH results in six times this % error in   

   

˜ C  .  (2) In the 2 X 2 

relaxation matrix introduced above, there are several other constants3 and they can be related to   

   

˜ C  

and therefore computed explicitly.  The only one that cannot be calculated explicitly is one that 

characterizes an average overall 1H (methyl) spin – 19F (ring) spin interaction.  This average 

interaction is characterized by the interaction constant q  

   

˜ C  where q is a dimensionless number and 

should be much less than 1 if the model is to make any sense.  It can be thought of, conceptually, as 

a ratio: the average of the strengths of the 1H (methyl) spin – 19F (ring) spin interactions (both 

intramolecular and intermolecular), divided by the strength of the intramethyl 1H spin  – 1H spin 

interactions.  It is primarily, but not completely, the dependence of the 1H  – 19F interaction 

strengths on the H – F distances     

   

rFH
-6  that makes q small.  The time dependence of the direction of 

the spin-spin vectors (relative to the applied magnetic field) also plays a role.  The angular 

variations of the various vectors  tend to be small.  (3) There is another term that characterizes 
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the intermethyl 1H spin  – 1H spin interactions and this term3 is set to zero for 1 since the methyl 

groups are relatively far apart (and, again the     

   

rHH
-6  dependence of the interactions plays a role).  (4) 

An NMR activation energy ENMR for methyl group rotation and (5) a preexponential factor ∞ in eq 

3 are used to model the mean time between methyl group hops .  It is convenient to fit with ∞ /  

   

˜ t ∞ 

using eq 4.  For 1, then, there are only three adjustable parameters; ENMR, ∞ /  

   

˜ t ∞, and q. 

 

Results 

 Single-crystal X-ray diffraction.  The crystal structure of 4,4'-

dimethoxyoctafluorobiphenyl (1) at 200 K is shown in Figures 1(b and c).  At the resolution of the 

Figure, the structure is the same at 100 K.  Although there are 4 molecules per unit cell (Z = 4), 

there is a great deal of symmetry and the asymmetric unit is half a molecule (Z' = ½).  This means 

that all methyl (and methoxy and phenyl) groups are chemically equivalent.  Figure 1(a) shows a 

single molecule taken from the crystal structure in Figure 1(b and c) by eliminating all but one 

molecule in Figure 1(b and c).  The methyl carbon thermal ellipsoids (not shown) show elongation 

perpendicular to the ring plane (compared with the ring carbons) and this correlates well with the 

methoxy group libration discussed below.  Characteristic bond lengths and bond angles for the 

molecular structure observed at both 100 and 200 K are given in Table 1.  The root mean square 

deviation between the two sets of bond lengths (100 and 200 K) is 0.003 Å, meaning that to within 

the experimental uncertainties in bond lengths the two structures are identical.  The differences in 

the various angles are also negligible.  Whereas there is no difference in the molecular structures at 

the two temperatures, the volume of the unit cell is 2.2 ± 0.2 % larger at 200 K than it is at 100 K.  

This corresponds to an average volume coefficient of thermal expansion of (2.2 ± 0.2) x 10
4 K

1 

or, what is more relevant for the calculations performed here, an average linear coefficient of 

thermal expansion of (7.4 ± 0.8) x 10
5 K

1.  This thermal expansion is small enough that the 
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changes in the intermolecular van der Waals interactions over the temperature range studied will be 

very small.  These interactions are important for the electronic structure calculations. 

 Electronic Structure Calculations in the Isolated Molecule.  The isolated molecule 

structure of 1 is similar to the structure of the molecule in the crystal as determined by X-ray 

diffraction.  In Table 1, we show the comparison of the major structural parameters between the 

calculated values for the isolated molecule and the X-ray values for the molecule in the crystal.  

The electronic structure calculations for an isolated molecule reproduce the bond lengths, bond 

angles and most bond dihedral angles found in the molecule in the crystal.  The greatest difference 

lies in the dihedral angles formed between the two fluoro-substituted phenyl rings () and between 

the 4-methoxy group and the phenyl ring ().  The dihedral angle between the two phenyl rings, 

(C6C1C1'C2'), has a minimum at 62.5O (the negative sign reflects the handedness of the 

angle).  In the X-ray crystal structure, this dihedral angle is slightly smaller, 58.0O.  The dihedral 

angle between the methoxy group and the phenyl ring, (CmOC4C5), is 40.0O in the 

calculated isolated molecule structure while in the molecule in the crystal as determined by X-ray 

diffraction, this value is 13.3O.  These differences reflect the competition between non-bonded 

intramolecular interactions and intermolecular interactions in the crystal packing environment.    

 Interconversion between the ground state conformations at  = 62.5O  (presented above) 

and an equivalent ground state at  =  117.5O (noting that 117.5O + 62.5O = 180O) for the rotation 

of the two 4-methoxytetrafluorophenyl groups relative to each other needs to cross over a transition 

state at   = 90º, i.e. the two phenyl rings perpendicular to each other.  This transition state has a 

very low potential energy of 1.6 kJ mol
1 relative to the ground state.  However, for the other 

rotational route that crosses the co-planar conformation for the phenyl rings, there are barriers of 

64.7 kJ mol
1 at   = 0O and 70.4 kJ mol

1 at   = 180O.  In the   = 0O transition state the 4-

methoxy group and the 4'-methoxy group are in a trans configuration and in the   = 180º transition 

state the 4-methoxy group and the 4'-methoxy group are in a cis configuration.  Even so, the two 
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phenyl rings are not coplanar in these transition states.  Instead, the (improper) dihedral angles 

C1C2C6C1' and C1'C2'C6'C1 are twisted out of the planar configuration by about 25O to 

155O (from 180O) to avoid the close contacts between F atoms. 

 The potential energy surface for the 4-methoxy group rotation shows a pseudo 4-fold 

symmetry (the four conformations with the methoxy group perpendicular and coplanar with the 

phenyl ring are all rotational transition states) and the rotational barrier is small; approximately 1.3 

kJ mol
1.   Methyl group rotation shows a common 3-fold energy profile, in which the transition 

state is the conformation with one CmH bond eclipsed with the OC4 bond.  The barrier is 4.1 kJ 

mol
1.  In the transition state for the methyl group rotation, the methoxy group reorients by 17O 

from   = 40O to 57O.  

 Electronic Structure Calculations in the Cluster.  In the rigid rotation model, potential 

energy surfaces for the rotation of the methoxy group and the rotation of the methyl group in the 

central molecule of the cluster [Figures 1(a and b)] were calculated for 0O <  < 180O and 0O <  

< 180O in 15O steps, respectively.  Potential energy surfaces for the 4-methoxytetrafluorophenyl 

group rotation and 1,4-tetrafluorophenlyene group rotation were calculated for 88O <   < 28O 

(±30O  around the thermal equilibrium value of  = 58O found in the crystal) in 5O steps.  For the 

rotation of the substituted benzene ring alone (1,4-tetrafluorophenlyene group) or the 4-

methoxytetrafluorophenyl group around the C1C1' bond, the energy has already gone up more 

than 170 kJ mol
1 when the dihedral angle  is O away from its thermal equilibrium value of 

58O.  In addition, the barrier height for the methoxy group is approximately 340 kJ mol
1.  

Therefore, we may conclude that the rotation of the methoxy group or the substituted phenyl group 

over their barriers is completely quenched in the crystal.  For the methyl groups, the staggered 

conformation ( = 54O) in the ground state is found in the optimized structure of the central 

molecule in the cluster.  The barrier height for the methyl group rotation in this rigid rotation model 

( : 54O → 0O) is 25.5 kJ mol
1. 
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 In the partial relaxation model, all the structural parameters of the central molecule were 

allowed to optimize except that C1, C1', C4 and C4' were held at their crystallographically 

measured positions.  The barrier height for methyl group rotation becomes 17.1 kJ mol
1.  In the 

optimized ground state structure, the two phenyl groups form a dihedral angle of  55O which 

is very close to the value 58O found in the X-ray crystal structure; the orientation of the methoxy 

group is also nearly identical to that found in the crystal structure,   14O vs.   13O in the 

crystal.  These results show from another perspective that the cluster is a reasonable model for the 

molecule in the crystal packing environment and that the intermolecular interactions have been 

properly accounted for in the electronic structure calculations.  In the transition state for the methyl 

group rotation, in which one of the CH bonds is eclipsed with the OC4 bond, the most 

significant changes are that the methoxy group reorients by 29O from   = 13O to 42O.  Such 

structural libration significantly relieves the repulsion between an H atom and the F atom at the 3-

position. 

 NMR relaxation.  In both the high-temperature region I and the middle temperature region 

II (Figure 4), the 19F spin-lattice relaxation is exponential and 2 is the relaxation rate.  In the high 

temperature region I and in the middle temperature region II the 1H spin-lattice relaxation is 

nonexponential (and not fitted by a double exponential as indicated in Figures 3 and 5).  The 

meaningful 1H relaxation rate is the one that describes the short-time recovery of the magnetization 

and can be interpreted as the theoretical rate 1.  Both the 1H and 19F relaxation curves in the low-

temperature region III in Figure 4 require (and are well-fitted by) double exponential fits (Figure 2) 

and both spin species relax with both 1 and 2 as indicated in Figure 4.  There are three adjustable 

parameters; ENMR, ∞ /  

   

˜ t ∞, and q.  The double lines in region III of Figure 4 are a consequence of 

the fact that the experiments for the two spin species were performed at the same NMR frequency, 

not the same magnetic field.3  First, ENMR = 16.5 ± 1.7 kJ mol
1 in eq 3 is the NMR activation 

energy for methyl group rotation.  Although all three parameters are obtained from a global fit, 
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conceptually, one can think of ENMR as being determined by the slope of ln1 and ln2 versus T 
1 

at both high and low temperatures.  Second, ∞ is the preexponential factor in the Arrhenius 

relation eq 3.  One can think of changing ∞ as moving relaxation curves in Figure 4 left and right 

(i.e., to higher and lower inverse temperature).  The global fit gives ∞ /  

   

˜ t ∞ = 0.3 ± 0.2.  The third 

parameter is the single parameter q that characterizes the 1H – 19F cross-relaxation3 and the fit 

shown in Figure 4 gives q = 0.020 ± 0.005.  With the other parameters held constant, q is related to 

the difference 1  2.  If q = 0, all cross couplings would be zero, the 1H relaxation would be 

exponential at low temperatures and the 19F relaxation rate would be zero at all temperatures (i.e., 

no relaxation) since the F atoms are not moving on the NMR timescale.  So, q is small but it cannot 

be taken to be zero as an approximation.  

 

Summary and Conclusions 

 We present a summary and a series of conclusions arrived at by comparing (a) X-ray 

diffraction experiments, (b) density functional theory electronic structure calculations in both 

isolated molecules and in molecules in the crystalline environment, and (c) NMR 1H and 19F spin-

lattice relaxation experiments in 4,4'-dimethoxyoctafluorobiphenyl (1) (presented here), 4,4'-

dimethoxybiphenyl (2) (presented elsewhere 1,2), and 3-fluoromethylphenanthrene (3) (also 

presented elsewhere3,4).  We investigate and compare the differences in the ground state structures 

of 1 and 2 both in the isolated molecule and in the crystal.  The structure of a molecule of 3 (which 

has no internal rotation axes other than that of the fluoromethyl group) is essentially the same in 

both the isolated molecule and in the crystal.  Compound 1 has two OCH3 groups and eight ring F 

atoms.  Compound 2 has two OCH3 groups and eight ring H atoms.   

 (1) The angle between the two rings is 40O in the isolated molecule of 2 while the two rings 

are coplanar (i.e., 0O) in the crystal.  The repulsion between H atoms at the 6 and 2' positions and 

between H atoms at the 2 and 6' positions pushes the two rings away from each other to form this 
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angle of 40º.  (See Figure 1 for atom labeling, which is the same for compounds 1 and 2.)  The 

intramolecular energy cost to force them to be coplanar in the solid in 2 is 8 kJ mol
1.  This energy 

is provided by the intermolecular interactions in the crystal which results in a coplanar 

conformation and an overall lower total intramolecular plus intermolecular energy.  In an isolated 

molecule of 1, greater repulsion between F atoms at the 6 and 2' positions and at the 2 and 6' 

positions causes the phenyl rings to twist to 62.5O.  Forcing them to be coplanar costs at least 65 kJ 

mol
1.   This energy cost is too large for intermolecular interactions in the crystal to compensate 

for and as a result this angle decreases by only 4.5O to 58.0O in the solid. 

 (2) In crystals of both 1 and 2, the asymmetric unit is half a molecule.  Having dealt with 

the angle between the two halves above, we now only have to consider half the molecule in both 

the isolated molecule and the molecule in the crystal in discussing the structure of the ground state 

for the methoxy and methyl groups.  In an isolated molecule of 2, the dihedral angle 

CmOC4C5 (the methoxy group angle) is 0O (meaning that the methoxy group lies in the plane 

of the ring).  This angle increases to only 3O in the crystal; a small change.  But in 1, the F atoms at 

the 3 and 5 positions provide a strong repulsion to the 4-methoxy group.  The methoxy group is 

oriented 40O out of the plane in the isolated molecule and, in the crystal, this is lowered to 13O as a 

consequence of intermolecular interactions.  

 (3) For the electronic structure calculations, the C and O positions in a suitable cluster of 

molecules is taken from the X-ray diffraction studies.  It is important, however, to allow the 

positions for some C and O atoms to relax in the transition state (i.e., change from the positions 

determined by X-ray diffraction).  Indeed, if this is not done, the computed barrier for methyl 

group rotation (or methyl group rotation plus methoxy group libration) is considerably too large.  

The difference between the total energy in the ground state and the total energy in the transition 

state is taken as the barrier for the particular rotation.  (The determination of the positions of the H 

atoms in general, and the positions of the fluoromethyl F atoms in 3 are discussed below.) 
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 (4) Compound 3 involves "simple" fluoromethyl group rotation.  However, in 1 and 2, the 

coupling between the methyl group and the methoxy group potential energy surfaces (determined 

by electronic structure calculations) suggests a coupled motion: methyl group rotation (through a 

transition state) and methoxy group libration (a rotation part way to a transition state and back 

again).  Strictly speaking, however, the calculations say nothing about motion.  The calculations 

just provide a two-dimensional energy surface.  A model for the "motion" involves the moments of 

inertia of the rotating groups and other assumptions and approximations.  The methoxy group 

libration will be much faster than the methyl group rotation as discussed in the Introduction.  For 

an isolated molecule of 1, when the methyl group has rotated to the transition state, the methoxy 

group librates from its ground state angle of 40O (with respect to the adjacent benzene ring) to 57O.  

For an isolated molecule of 2, when the methyl group has rotated to the transition state, the 

methoxy group librates from its ground state angle of 0O to 30O.  For 1 in the crystal, when the 

methyl group has rotated to the transition state, the methoxy group librates from its ground state 

angle of 13O to 42O.  For 2 in the crystal, when the methyl group has rotated to the transition state, 

the methoxy group librates from its ground state angle of 3O to 19O.  The different angular methoxy 

group librations in 1 and 2 reflect predominantly the difference between there being H atoms or F 

atoms on the nearby ring.  The differences between the isolated molecule and crystal values for the 

angular methoxy group libration angles corresponding to the methyl group transition state reflect 

the relative importance of intramolecular and intermolecular interactions.   

 (5) Considering only the isolated molecules of 1, 2, and 3, the calculated methyl or 

fluoromethyl group barriers are 4.1 kJ mol
1 (methoxy group librating from 40O to 57O), 12.8 kJ 

mol
1, (methoxy group librating from 0O to 30O) and 1.7 kJ mol

1 (involving a lone CF3 group).   

The difference between the methyl group barriers in 1 and 2 might seem counterintuitive but 

barriers are differences between ground state energies and transition state energies and the presence 

of ring F atoms raises the energy of both states in 1 relative to those same states in 2.  The strong 
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methyl group H – ring F repulsion in 1 is present for all geometries.  This is reflected in the fact 

that the methoxy group rotates only 17O in 1 (as the methyl group rotates over the barrier) whereas 

the methoxy group rotates 30O in 2. 

 (6) The calculated methyl or fluoromethyl group barriers for a molecule in the center of a 

cluster of molecules based on the X-ray structure are 17.1 kJ mol
1 in 1 (methoxy group librating 

from 13O to 42O), 10.3 kJ mol
1 in 2 (methoxy group librating from 3O to 19O), and 10.9 kJ mol

1 

in 3.  The methyl group barrier in the crystalline environment in 2 is lower than the barrier in the 

isolated molecule and the methoxy group libration angle is reduced from 30O to 16O.  There are 

several competing interactions at work here but the result is that the ground state is raised in energy 

more than the transition state in going from the isolated molecule to the crystalline environment.  

The methyl group barrier in 1 is significantly higher than in the isolated molecule and the methoxy 

libration angle increases from 17O to 29O, just the opposite change from the change in 2.  Finally, 

the large increase in the fluoromethyl group barrier in 3 in going from the isolated molecule to the 

crystal results from the dominant contribution of the intermolecular interactions. 

 (7) The calculated methyl or fluoromethyl group barriers in the clusters compare favorably 

with the observed NMR activation energies ENMR which are 16.5 ± 1.7 kJ mol
1 , 11.5 ± 0.5 kJ 

mol
1 , and 11.5 ± 0.7 kJ mol

1  in 1, 2, and 3.  This agreement provides support for both the NMR 

relaxation technique and the electronic structure calculation technique. 

 (8) The 1H spin-lattice relaxation in 1 and 3 is nonexponential at low temperatures because 

the 1H and 19F spins interact via the unlike-spin dipolar interaction.  The model that explains this 

phenomenon makes several distinct predictions.  The biexponential relaxation of both spin species 

(1H and 19F) is characterized by the same two relaxation eigenrates of a 2 X 2 relaxation matrix.  

The various rates in this matrix can all be calculated from the Bloch-Wangsness-Redfield model.  

At low temperatures, both spin species relax with these same two rates (biexponential relaxation) 

whereas at high temperatures, where the relaxation is exponential, one of these eigenrates 
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corresponds to the rate for 1H and the other to the rate for 19F.  The most interesting prediction of 

this model, in our opinion, is that the observed spin-lattice relaxation rates of the two spin species 

contain no constant multipliers involving the ratio of "mobile spins" (on the NMR time scale) to all 

spins (of the same spin species) in the molecule.  This ratio is necessary in the theoretical 

expressions for the relaxation rate for single spin species relaxation.1  This model introduces a 

parameter that characterizes the ratio of the strength of the methyl group 1H – ring 19F (or the 

fluoromethyl group 19F – ring 1H) dipolar interactions to that of the intramethyl group 1H 1H  (or 

the intrafluoromethyl group 19F 19F) dipolar (spin-spin) interactions.  This ratio is a measure of 

the difference of the two eigenvalue relaxation rates in the nonexponential relaxation process.  This 

parameter3 is  q = 0.020 ± 0.005 for 1 and q = 0.055 ± 0.010 for 3.  If q = 0, the 1H – 19F 

interactions disappear and both the 1H and 19F relaxation is exponential and uncoupled at all 

temperatures. 

 (9) The 1H spin-lattice relaxation in 1 and 2 is nonexponential at high temperatures because 

the motion of the three HH vectors in a methyl group are 100% correlated and reorient in a plane.  

In compounds like 2, where there are no 19F spins, the relaxation rate that characterizes the initial 

recovery of the 1H nuclear magnetization corresponds to the basic Bloch-Wangsness-Redfield 

model.  In compounds like 2, where there are both 19F and 1H spins (previous paragraph), the 

relaxation rate that characterizes the initial recovery of the 1H nuclear magnetization is one of the 

eigenrates discussed in the previous paragraph.   

 (10) Thus, regardless of the complexities associated with the nonexponential relaxation, a rate 

or rates can be determined that corresponds to that given by, or easily derived from, the Bloch-

Wangsness-Redfield theory of nuclear spin relaxation.  An analysis of the parameters determined by 

fitting the NMR relaxation rates in the solid states of 1, 2, and 3, show that the principle motion is the 

rotation, over a barrier, of CH3 (or CF3) groups.  It is this motion, characterized by a mean frequency 

1, that is occurring on the NMR time scale.  This parameter,  = ∞exp(ENMR/kT), is the mean time 
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between CH3 (or CF3) hops in a random hopping process described by Poisson statistics.  Perhaps 

the most useful parameter extracted from the relaxation rate data is the activation energy ENMR that 

can be compared with the barrier calculated by electronic structure calculations.  The parameter ∞ 

involves the moment of inertia of the rotating group with ∞ =   

   

˜ t ∞ = (2/3)(2I/ENMR)1/2  in the 

harmonic model.39  This is indeed a crude model but the fitted values of ∞ /  

   

˜ t ∞ = 0.3  ± 0.2 in 1, ∞/

  

   

˜ t ∞ = 0.8 ± 0.2 is in 2, and ∞/  

   

˜ t ∞ = 0.4 ± 0.1 in 3 tell us, again, that the observed 1H and/or 19F 

spin lattice relaxation results from the modulation of the spin-spin dipolar interactions by 

methyl/fluoromethyl group rotation.   

 (11)  The conceptual model for methyl or fluoromethyl group rotation is one where the group 

hops by 120O from one equilibrium position to an identical equilibrium position.  The energy needed 

for such a hop is much greater than kT [e.g., 15 kJ mol
1 = k(1800 K)] so this hop happens when the 

group gets a kick from the thermal reservoir (phonons).  In an NMR relaxation experiment, the 

average frequency of this random (Poisson) hopping process can be observed for approximately two 

orders of magnitude on either side of the NMR frequency of 22.5 MHz (which is the inverse of 4 x 

10
8 s).  On the NMR time scale, the time for a hop in this model is zero; it is instantaneous.  The 

actual time for a hop is determined by the group vibrational time scale; say 

   

˜ t ¥ ≈ 10
14 s in the 

simple harmonic model.39 

 (12)  The positions of all H atoms in 1, 2, and 3 and the positions of the F atoms in the 

fluoromethyl group in 3 are determined by the electronic structure calculations in both the ground 

and transition states of the molecules in the clusters.  The X-ray diffraction study in 3 showed the 

fluoromethyl group F atoms were disordered and this necessitated the positions being calculated.  

But for H atoms, the positions are difficult to measure accurately by X-ray crystallography.  Using 

these calculated H positions is important in calculating the barriers for the various motions.  But 

using the calculated H and F positions in methyl and fluoromethyl groups is also very important in 

interpreting the NMR relaxation rate.   
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 (13)  The fitted or calculated NMR relaxation parameters are consistent with the model that 

says CH3 or CF3 rotation (over a barrier) is responsible for the spin-lattice relaxation.  However, 

the electronic structure calculations indicate that this CH3 rotation is superimposed on methoxy 

group libration in 1 and 2.  The model for the NMR relaxation considers a random time-

independent orientation of methyl group rotation axes41 which is the case in a polycrystalline solid.  

The rapid methoxy group libration has no effect on the fitted NMR relaxation parameters and 

simply adds a rapid random time-dependence to the spatial randomness of the methyl group 

rotation axes in the polycrystalline sample.  This is not to say that NMR relaxation experiments are 

not sensitive to superimposed motions.  For example, these kinds of experiments can detect (and 

model) the superposition of methyl group and t-butyl group rotation.42,43  But both these motions 

are on the NMR time scale.  For 1 and 2, the librational motion of the methoxy groups is much too 

fast to effectively modulate the spin-spin interactions.  As such, a time average is indistinguishable 

(and only adds to) the spatial average due to the polycrystalline nature of the sample. 
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Table 1. Comparison of parameters for the calculated 

isolated molecule structure and the X-ray 

crystallographic structure of the 

4,4'-dimethoxyoctafluorophenyl molecule 

 

Parameters
a,b X-ray 

(100 K) 

X-ray 

(200 K) 

Calc 

Bond Lengths (Å)   

C1-C1/ 1.482(3) 1.484(4) 1.481 

C1-C2 1.397(2) 1.393(3) 1.396 

C2-C3 1.377(2) 1.374(3) 1.385 

C3-C4 1.400(2) 1.392(3) 1.402 

C4-C5 1.395(2) 1.394(3) 1.399 

C5-C6 1.382(2) 1.380(3) 1.388 

C6-C1 1.385(2) 1.382(3) 1.393 

C2-F 1.340(2) 1.336(2) 1.341 

C3-F 1.341(2) 1.339(2) 1.338 

C5-F 1.346(2) 1.341(2) 1.347 

C6-F 1.343(2) 1.341(2) 1.341 

C4-O 1.348(2) 1.350(3) 1.347 

O-Cm 1.445(2) 1.435(3) 1.441 

RMSD 
            0.003

c
 0.004

d
 

Bond Angles (º)   

C2-C1-C1/ 122.6(2) 122.7(2) 121.8 

O-C4-C5 127.7(2) 128.2(2) 125.7 

Cm-O-C4 120.5(2) 120.0(1) 119.6 

Bond Dihedral Angles (º)   

C2-C1-C1/-C6/ 58.0(2)  62.5 

Cm-O-C4-C5 13.4(4) 13.0(2) 40.0 
a
Since the two 4-methoxytetrafluorophenyl groups are equivalent in 

both the calculated (isolated molecule) and experimental structures, 

only the parameters of one part or between the two parts are given.  

 
b
Atom labeling is indicated in Figure 1. 

 
c
Root mean square deviation between the 100 K and the 200 K X-ray 

values in the crystal.  

 
d
Root mean square deviation between the calculated values in the 

isolated molecule and the average of the 100 K and 200 K X-ray 

values in the crystal.  
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Figure 1.  The molecular and crystal structure of 4,4'-dimethoxyoctafluorobiphenyl (1).  The large 

black spheres are oxygen atoms, the large grey spheres are fluorine atoms, the small black spheres 

are carbon atoms, and the small grey spheres are hydrogen atoms, all of which are in methyl 

groups.  (a)  The structure of the molecule, which, at the scale shown, is the same for the isolated 

molecule as determined by electronic structure calculations as it is in the crystal as determined by 

x-ray diffraction.  The view is such that all atoms are visible.  The carbon atoms are labeled.  (b) A 

view of the crystal structure in the 100 plane.  Unit cells are shown.  The horizontal axes are the z-

axes and the vertical axes are the y-axes.  The 19 molecules shown (some behind others) 

correspond to the cluster used in the electronic structure calculations.  (c) The same 19 molecules 

corresponding to the cluster shown in (b).  This view is rotated by 3O about the z-axes away from 

the 010 plane and all 19 molecules in the cluster can be seen.  Unit cells are shown.  The horizontal 

axes are the x-axes and the vertical axes are the z-axes. 
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Figure 2.  The 1H magnetization recovery in an inversion recovery experiment at 1000/T = 8.76 

K
1 (T = 114 K) in polycrystalline 4,4'-dimethoxyoctafluorobiphenyl (1).  This is in the low 

temperature regime III indicated in Figure 4.  The solid line is a double exponential fit (giving 1 

and 2) and, for comparison, the short-dashes line is a single exponential fit.  (a) The entire 

recovery curve.  (b) The short-time recovery indicated by the grey box at the upper-left-hand 

corner of part (a).  (c)  The long-time recovery indicated by the grey box at the lower-right-hand 

corner of part (a).  The uncertainties are shown but are within the size of the symbols in (a) and (b). 
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Figure 3.  The 1H magnetization recovery in an inversion recovery experiment at 103 T 
1 = 4.00 

K
1 (T = 250 K) in polycrystalline 4,4'-dimethoxyoctafluorobiphenyl (1).  This is in the high-

temperature regime I indicated in Figure 4.  (a) The entire recovery curve.  (b) and (d) The short-

time recovery indicated by the very small grey box at the upper-left-hand corner of part (a).  (c) 

The long-time recovery indicated by the grey box at the lower-right-hand corner of part (a).  (a), 

(b), and (c)  Using all 10 s of data, the solid line is a double exponential fit and the short-dashes 

line is a single exponential fit.  Neither are successful.  (d) The heavy dotted line uses only the first 

0.17 s of data, namely that which is shown, to fit to a single exponential. 
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Figure 4.  1H ( ) and 19F ( ) ln1 and ln2 versus T 1 in polycrystalline 4,4'-

dimethoxyoctafluorobiphenyl (1) both at an NMR frequency of 22.5 MHz.   The vertical lines at 

103 T 
1  = 6.5 and 7.5 K

1 separate the three temperature regions I, II, and III.   
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Figure 5.  The fractions H1 ( ) and H2 ( ) of the 1H magnetization associated with the rates 1 

and 2 respectively in a double exponential fit of the relaxation versus T 
1 in polycrystalline 4,4'-

dimethoxyoctafluorobiphenyl (1) at an NMR frequency of 22.5 MHz in the low temperature region 

III and part of the middle temperature region II.  The vertical line at 103 T 
1  = 7.5 K

1 separates 

the two temperature regions.  The vertical line at 103 T 
1  = 7.05 K

1 is actually an uncertainty 

bar.  The predicted linear dependence of the two magnetizations H1 and H2 characterizing the 

double exponential relaxation in the low temperature region III is shown by the solid lines.  The 

two lines sum to 1.  The double-exponential fit is not successful in region II. 

 

 

 


	Nonexponential Solid State 1H and 19F Spin–Lattice Relaxation, Single-crystal X-ray Diffraction, and Isolated-Molecule and Cluster Electronic Structure Calculations in an Organic Solid: Coupled Methyl Group Rotation and Methoxy Group Libration in 4,4′-Dimethoxyoctafluorobiphenyl
	Citation

	tmp.1513451055.pdf.k7cZM

