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The dynamics of methyl (CH3) and fluoromethyl (CF3) groups in organic molecular (van 
der Waals) solids can be exploited to survey their local environments.  We report solid 
state 1H and 19F spin-lattice relaxation experiments in polycrystalline 3-
trifluoromethoxycinnamic acid, along with an X-ray diffraction determination of the 
molecular and crystal structure, to investigate the intramolecular and intermolecular 
interactions that determine the properties that characterize the CF3 reorientation.  The 
molecule is of no particular interest; it simply provides a motionless backbone (on the 
NMR time scale) to investigate CF3 reorientation occurring on the NMR time scale.  The 
effects of 19F-19F and 19F-1H spin-spin dipolar interactions on the complicated 
nonexponential NMR relaxation provide independent inputs into determining a model 
for CF3 reorientation.  As such, these experiments provide much more information than 
when only one spin species (usually 1H) is present.  In the Discussion section, which can 
be read immediately after the Introduction without reading the rest of the paper, we 
compare the barrier to CH3 and CF3 reorientation in seven organic solids and separate 
this barrier into intramolecular and intermolecular components. 

 
I.  INTRODUCTION 
 Methyl (CH3) and fluoromethyl (CF3) groups (and other similar groups) can be employed 

to investigate intramolecular and intermolecular interactions in their environment in a wide variety 

of solids.1-25  Here we report solid state nuclear magnetic resonance (NMR) 1H and 19F relaxation 

experiments in, and an X-ray diffraction study of the molecular and crystal structure of, 3-

trifluoromethoxycinnamic acid (1) (Fig. 1).  The asymmetric unit26 in the crystal is a single 

molecule, meaning that all molecules have the same environment and therefore all CF3 groups are 

dynamically equivalent.  In the temperature range studied, the CF3 group is reorienting on the 

NMR time scale which, in the current study, we can take to mean that the mean time between CF3 

reorientations is 10-10 to 10-6 s.  This is approximately two orders of magnitude on either side of 
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the inverse NMR frequency of 22.5 MHz.  The intramolecular and intermolecular interactions that 

determine the reorientational CF3 barrier are not to be confused with the spin-spin (dipolar) 

interactions that determine the parameters in the model used to interpret the NMR relaxation 

experiments.  To avoid confusion, we use the terms intramolecular and intermolecular solely when 

discussing the former.  The latter interactions have three parts: The 19F spins in CF3 groups (and 

they are only in CF3 groups in 1) are interacting, via spin-spin dipolar interactions, (1) among 

themselves in the same CF3 group, (2) with 19F spins in other CF3 groups (on other molecules since 

there is only one CF3 group per molecule), and (3) with the 1H spins on both the same and 

neighboring molecules.  The H atoms are not moving on the NMR time scale (the time scale for 

vibrations is typically 10-15-10-14 s).  In addition 1H-1H spin-spin energy conserving spin flips are 

important (in maintaining a common spin temperature27) even though no H-H vectors are 

reorienting on the NMR time scale.      

 We recently reported solid state 1H and 19F NMR relaxation experiments, electronic 

structure calculations, and X-ray diffraction experiments, to investigate CH3 reorientation in 

polycrystalline 4,4'-dimethoxyoctafluorobiphenyl (2).8  Half a molecule of 2, which is the 

asymmetric unit in the crystal, is shown in Fig. 1 (CSD-WOQFAL8).  The F and H atoms in 2 

trade roles compared with 1.  Methoxy group (OCH3) reorientation in 2 is quenched8 so the CH3 

reorientation axis is not reorienting on the NMR time scale; it will undergo small-angle, high-

frequency vibrations.8  The same will be true for fluoromethoxy group (OCF3) reorientation in 1.  

We have also previously investigated CF3 reorientation in 3-fluoromethylphenanthrene (3)11, 12 

(Fig. 1; CSD-QCIMOD12) where the CF3 group is bonded directly to the ring.  None of these 

compounds are of any particular interest as far as we know.  Covalently bonded molecules that 

form van der Waals molecular solids such as 1-3 simply provide very stable convenient 

laboratories with backbone structures for CH3 or CF3 reorientation being the only motion on the 

NMR time scale, along with 'fixed' atoms (on the NMR time scale) having another spin-1/2 

species, different from the spin species in the CH3 or CF3 rotor.  

 When 1H and 19F spins interact with one another, the bulk nuclear magnetization associated 

with either spin species, when perturbed, relaxes to its equilibrium value via a double 

exponential.11, 25, 27  Independently and in addition, the nuclear spin-lattice relaxation of an 

ensemble of isolated CH3 or CF3 groups is inherently nonexponential.28-30  Modeling the 

nonexponential relaxation in closed form and/or numerically due to both the crosstalk between 1H 
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and 19F spins and due to the inherent nonexponential relaxation of the three-spin ½ system would 

be unwieldy.  Fortunately, it is not necessary to consider both phenomenon simultaneously.  One 

occurs predominantly at high temperatures28, 29 and the other occurs predominantly at low 

temperatures.8, 11  In Sec. II we discuss the experimental procedure needed to characterize the 

nonexponential 1H and 19F spin-lattice relaxation.  In Sec. III, we set up the model that presents the 

parameters used to interpret the observed spin-lattice relaxation.  We seek the simplest model that 

fits the data in the sense that it reproduces the general (and somewhat complicated) features of the 

temperature dependence of both the 1H and 19F relaxation rates.  This involves five adjustable 

parameters and they are all defined rigorously in Sec. III.  (1) There is an NMR activation energy 

closely related to a barrier to CF3 (or CH3) reorientation.31-35  In the Conclusions (Sec. IV) we 

divide this into an intramolecular and an intermolecular component and compare the two 

components in seven compounds similar to 1-3 (1-3 and four others).  Covalent bonds keep the 

molecule together as a unit, even in the solid, so, it is convenient to define the intramolecular 

interactions as those present in an isolated molecule.  Then the intermolecular interactions are 

defined as the difference between the total interactions in the solid minus the isolated molecule 

interactions.  This is an approximation because in the solid state the intramolecular interactions 

will be different from what they are in the isolated molecule because the structure of the molecule 

in the solid will be different from the structure of the molecule when it is isolated.  But its a helpful 

approach.  (2) There is a preexponential factor in an Arrhenius relationship but NMR relaxation 

experiments don't determine this parameter very accurately. (3)  There is a phenomenological 

dimensionless parameter that is a measure of the strength of the interactions between 1H and 19F 

spins.8, 11 Although the 19F component of the spin-lattice relaxation is dominated by the modulation 

of the intraCF3 19F-19F spin-spin interactions (the strength of which involves no adjustable 

parameters) by CF3 reorientation, there is (4) another phenomenological dimensionless parameter 

that is a measure of the interactions between 19F spins on different CF3 groups, assuming all F 

atoms are found in CF3 groups as in 1 and 311 (or between 1H spins on different CH3 groups 

assuming all H atoms are found in CH3 groups as in 28).  (5) Finally, there is a parameter that 

characterizes a (very small) distribution of NMR activation energies for CF3 reorientation.  We 

restrict ourselves to the case where all atoms with one spin-1/2 nuclear spin species are in a group 

(CH3 or CF3) reorienting on the NMR time scale and all the other spin-1/2 nuclear spin species are 

not moving on the NMR time scale as in 1-3 in Fig. 1.   
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 Readers not interested in the details of the NMR relaxation experiments or the X-ray 

diffraction experiments are invited to go directly to the Discussion section (Sec. IV) which 

provides a discussion of the barriers to CF3 and CH3 reorientation in seven organic solids, 

including 1, 2, and 3.  Finally, as an aside, we note for completeness that because the 

reorientational properties of methyl groups in the solid state provide information concerning their 

environment, spin-lattice relaxation experiments are becoming very helpful in investigating the 

intramolecular and intermolecular interactions in biologically relevant molecules.36-55   

 

II.  THE EXPERIMENTS 
A.  X-ray diffraction.   

 The sample of 3-trifluoromethoxycinnamic acid (1) was purchased from Sigma Aldrich 

and used as is.  The quoted purity was 97%.  A single crystal, taken from the same polycrystalline 

sample used to perform the solid state NMR relaxation experiments, was mounted on a Hampton 

CryoLoop with Paratone-N and data collected with a Bruker D8 diffractometer using an Ultra 

rotating-anode generator (Mo) equipped with a high-efficiency multilayer, double-bounce 

monochromator.  Experimental details are collected in Table I.  All data were collected with 1.0 

sec/1.0O correlated scans.  Structure solution and subsequent refinement used various components 

of the SHELXTL software package distributed by the Bruker Corporation (G. Sheldrick, Bruker-

AXS, Madison WI).  The molecular structure (in the crystal) is shown in Fig. 1 and the crystal 

structure is shown in Fig. 2. 

 

B.  Solid state NMR relaxation.   
 Solid state 1H and 19F spin-lattice relaxation was observed between 120 and 320 K at an 

NMR frequency of ω/2π = 22.50 MHz using a (perturbation π)-t-(observe π/2)-tw pulse sequence.  

The wait time tw was sufficiently long to allow the magnetization to return to its equilibrium value 

within 0.1 %.  Unlike most high frequency NMR spectroscopy experiments involving different 

spin species, which are done at constant magnetic field, the relaxation experiments reported here 

are performed at constant NMR frequency.  The magnetic field was 0.5285 T when 1H nuclei were 

observed and 0.5617 T when 19F nuclei were observed.  Another difference is that the NMR 

frequency (22.5 MHz)  being used here is very low compared with conventional high resolution 

NMR spectroscopy experiments.  This is needed in order to bring the frequencies for CF3 group 
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reorientation into resonance with the NMR frequency in a temperature range below the melting 

points of solids like 1, 2, and 3. 

 The various parameters that characterize the relaxation are presented as a function of 

temperature in Figs. 3 and 4.  Temperature was controlled with a flow of cold nitrogen gas and 

temperature was measured with a home-made, silver-soldered, copper-constantan thermocouple 

imbedded in a part of the sample just outside the NMR coil.  Absolute temperature was measured 

to ± 2 K and temperature differences were monitored to ± 0.3 K.  The thermocouples used in the 

laboratory are calibrated to four secondary temperature standards and the calibration is checked 

every few years.   

 Exponential relaxation is characterized by 

 

      

€ 

M t( ) = M ∞( ) 1− 1− cosθ( )exp −Rt( )[ ] .     (1) 

 

R is the spin-lattice relaxation rate (the inverse of the spin-lattice relaxation time T1) and M(∞) is 

the equilibrium magnetization.  The parameter θ characterizes the perturbation pulse since M(0) = 

[cosθ]M(∞).  Ideally θ  = π in the present case but in fact θ can differ from π just enough to 

produce systematic errors in the other parameters if it, itself, is not taken as an adjustable 

parameter.  There are three adjustable parameters, R, M(∞), and θ [or M(0)].  The relaxation 

reported here was never exponential and never described by Eq.1. 

 The relaxation was nonexponential at all temperatures for both 1H and 19F.  Above 172 K 

(region I in Figs. 3 and 4) the recovering perturbed magnetization (1H or 19F) was well fitted to a 

four-parameter stretched exponential:56-66 
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for k = H or F.  The characteristic relaxation rate     

€ 

Rk
* in Eq. 2 replaces the relaxation rate R in Eq. 

1, and Eq. 2 introduces a fourth parameter β, the stretching parameter.  (Whereas     

€ 

RF
* and     

€ 

RH
*  

differ greatly, β is relatively insensitive to which spin species is being investigated.)  In an NMR 

relaxation experiment, the parameters     

€ 

Rk
* and β are not amendable to interpretation by any closed-
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form model as far as we are aware.  However, β  < 1 is a quantitative measure of the 

nonexponentiality of the relaxation and measuring it is important because it imposes conditions on 

performing the relaxation measurements.  Care must be taken when performing nonexponential 

relaxation experiments because the recovery at long times is 'stretched' and M(∞) must be 

accurately established.  In order to ensure that the relaxed magnetization is within 0.1 % of its 'true' 

equilibrium value, the wait time tw is tw > (7R*)1/β and we generally ensure that the value is tw > 

(8R*)1/β.  The parameter β versus T-1 above 172 K (region I) is shown in Fig. 4.   

 For this same temperature range (region I in Figs. 3 and 4), the initial relaxation rate RS 

characterizing the short-time recovery,  
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for k = H or F, was determined since this is the parameter that can be modeled (Sec. III) when the 

relaxation is well characterized by the stretched exponential in Eq. 2.  The procedure for 

determining (Rk)S in practice is outlined in detail elsewhere.6 

 At temperatures below 160 K (region III in Figs. 3 and 4) the relaxation is characterized by 

a five-parameter double exponential: 

 

     

€ 

Mk t( ) = M1k ∞( ) 1− 1− cosθ( )exp −λ1 t( )[ ] + M2k ∞( ) 1− 1− cosθ( )exp −λ2 t( )[ ] , (4) 

 

with adjustable parameters λ1, λ2, M1k(∞), M2k(∞) (k = H or F), and θ.  The observed rates λ1 and 

λ2 are shown in Fig. 3 and the four observed fractional equilibrium magnetizations, 
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φ jk =
M jk ∞( )

M1k ∞( ) + M2k ∞( )
 ,        (5) 

 



Beckmann and Rheingold             7 
 
with j = 1,2 and k = H or F are shown in temperature region III Fig. 4.  In this region both spin 

species relax with the same two relaxation rates λ1 and λ2 and the same two equilibrium fractional 

magnetizations.11  The reason for a subscript k = F or H on φ1k and φ2k in Eq. 4 is subtle (and 

necessary) and is discussed in Sec. III.  The wait time tw was always tw > 8λ2
-1 where λ2  <  λ1.  

 When the relaxation is nonexponential, it is important to establish that a four parameter fit 

(Eq. 2) to the relaxing magnetization will not work before employing a five-parameter fit (Eq. 4) 

otherwise the fit has an unnecessary number of adjustable parameters.  An example is shown in 

Fig. 5 where the five-parameter double exponential fits the recovery very well but the four-

parameter stretched exponential is a poor fit.  The "step" in the magnetization recovery curve in the 

vicinity of 300 ms in Fig. 5 indicates that a double exponential fit is appropriate.  The time axis in 

Fig. 5 is presented on a logarithmic scale solely to make the data and fits more clear.  Note that the 

time spans more than four orders of magnitude in order to appropriately characterize two 

relaxation rates λ1 and λ2 that differ by more than a factor of ten. 

 The region between 160 and 172 K (region II) is a segue between the two regions I and III 

and, in general, neither a four-parameter stretched exponential or a five-parameter double 

exponential fits the relaxing magnetization very well.  However, in this region in Fig. 3 we show 

the (somewhat meaningless) values of     

€ 

Rk
* (closed squares) from the stretched exponential and  

(Rk)S (closed circles), the initial short-time relaxation rate, to indicate the significant difference 

between the behavior of the 19F relaxation rates between regions I and III (the 19F spins being the 

"relaxing spins") and the behavior of the 1H relaxation rates (the 1H spins being the "non-relaxing 

spins" relaxed by the 19F spins).  (This region II is left blank in Fig. 4.)  

 

III.  THE THEORETICAL MODEL AND AN ANALYSIS OF THE 

EXPERIMENTAL RESULTS 
 The Bloch-Wangsness-Redfield model of nuclear spin-lattice relaxation,27, 67-75 motivated 

by the original Bloembergen-Purcell-Pound experiments,67 is the basis of the somewhat 

complicated and multifaceted NMR spin-lattice relaxation model presented here.  We first 

consider a system comprised of isolated and randomly, isotropically orienting, spin-1/2 pairs (19F-
19F or 1H-1H but we will use 19F-19F as the example here since that is the case for 1) with fixed F-F 

distances rFF .  In addition, the motions (the reorientations of the vectors       

€ 

! r FF) of the isolated pairs 
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are uncorrelated and only autocorrelation functions are involved.27  In this case, a perturbed 19F 

magnetization M(t) relaxes exponentially according to Eq. 1 with27  

 

      

€ 

R = A J ω,τ( ) + 4J 2ω,τ( )[ ] ,       (6) 
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€ 

J ω,τ( ) =
2τ

1+ω2 τ 2 ,        (8) 

 

      

€ 

τ = τ∞ eENMR kT .        (9) 

 

Here, µ0 is the magnetic constant, γF is the 19F magnetogyric ratio, J(ω, τ) is the spectral density 

[the angular frequency spectrum of the local time-dependent magnetic fields resulting from the 

motion (reorientation) of the constant length spin-spin vectors       

€ 

! r FF], ωF is the 19F NMR angular 

frequency [= (2π)(22.5 MHz) in this work], τ  is the correlation time that can be taken to be the 

mean resident time between reorientations in a Poisson reorientational process,76-85 τ∞ is a 

preexponential factor whose inverse can be taken as a vibrational frequency at the bottom of the 

well or, equivalently, a reorientation attempt frequency,78, 86-88  and ENMR is an NMR activation 

energy that is closely related to the barrier that a spin pair must overcome in order to reorient; that 

is, to reorient from one orientation to another.  The Discussion section (Sec. IV) of this paper 

presents a discussion of ENMR in seven related compounds.  If we applied this model 

(inappropriately so) to the high-temperature linear ln(Rk)S versus T-1 (k = H and F) relaxation rate 

data in Fig. 3, ENMR = 23 ± 2 kJ mol-1 and, interestingly enough, this value of ENMR will not change 

in the subsequent required refinements of the model.  It is simply the slope of ln(Rk)S versus T-1. 

 If we now account for the fact that there are three spins in a CF3  group then the factor of 

3/20 in Eq. 7 is multiplied by 6/3 = 2 since there are now six interactions and three spins76, 77  as 

opposed to the two interactions involving two spins as presented in the previous paragraph.  If, in 
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addition, we account for the fact that the reorientation axis is always α = 90O from the reorienting 

      

€ 

! r FF vectors, there is an additional factor of76, 77 

 

  
  

€ 

Λ(α) =
3
4

sin4α + sin2 2α( )  ,      (10) 

 

which equals ¾ for α = 90O.   Thus the relaxing 19F bulk magnetization in a polycrystalline sample  

would (were it not for additional required refinements to the model presented below) be given by 

Eqs. 1 and 6-9 with the parameter 3/20 in Eq. 7 replaced by 9/40.76, 77   

 CF3 group reorientation, though random, is not isotropic; the three F-F vectors       

€ 

! r FF in any 

given CF3 group in the solid reorient in a plane.  In addition, the motion of the three       

€ 

! r FF vectors are 

100% correlated.  Runnels28 and Hilt and Hubbard29 dealt with these complications in detail.  The 

motion of the three spins and the fact that there are eight spin states introduces cross-correlation 

functions as well as the auto-correlations functions that characterize isolated spin pairs.28, 29   If all 

the CF3 group reorientation axes are oriented with the same angle with respect to the applied 

magnetic field (this is not the angle α in Eq. 10), the relaxation involves the sum of four 

exponentials and can be presented in closed form.28, 29  When the reorientation axes are distributed 

randomly as in a polycrystalline sample, a numerical average (of the angle between the 

reorientation axes and the applied magnetic field) must be computed and the relaxation is still 

nonexponential, especially near the relaxation rate maximum (ωFτ  ~ 1) and at higher temperatures 

(ωFτ  <  1).29  This has been observed in many experiments.2, 6, 89-95  (Note that this nonexponential 

relaxation has nothing to do with the biexponential relaxation resulting from 1H-19F spin-spin 

interactions which we have not "turned on" yet.  We are still considering only CF3 groups isolated 

from one another and from all other spins.)  In this case the relaxation is accurately described by 

the stretched exponential in Eq. 2.89   This is simply an experimental result and has nothing to do 

with the model.  In this case, the initial relaxation rate6 RS, defined by Eq. 3 is characterized by 

Eqs. 6-9.29  We  replace Eqs. 6 and 7 with 

 

      

€ 

(RFF
L intra )S = KFF

L intra J ωF ,τ( ) + 4J 2ωF ,τ( )[ ] ,    (11) 
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= 9.51×108 s−2.    (12) 

 

The cumbersome notation is necessary.  The superscript L on     

€ 

(RFF
L intra )S  and     

€ 

KFF
L intra  reminds us 

that the interactions involved are among like spins (in this case 19F spins) and the superscript 'intra' 

refers to the six intraCF3 group 19F-19F spin-spin interactions.  The subscript FF indicates that the 

(like) spin-spin interactions being considered involve 19F spins.   Again, the subscript S reminds us 

that when the relaxation is nonexponential because of the Hilt-Hubbard-Runnells effects28, 29 then 

Eq. 11 refers to the initial relaxation rate defined experimentally in Eq. 3.  The distance between F 

atoms in the CF3 group rFF intra in Eq. 12 is known from X-ray diffraction and     

€ 

KFF
L intra  is not an 

adjustable parameter.  The main reason that Eqs. 11, 3, and 12 are valid for short times following a 

perturbation is that the effects of cross correlations do not manifest themselves at short times.  That 

is, with the adjustments to numerical factors that now appear in Eq. 12, the three pairs of spins in a 

CF3 group 'appear' as independent pairs of isolated spins for t << (R*)-1 in Eq. 2. 

 For completeness we note that (now using CH3 groups as the example), the presence of 

either 1H spin-spin interactions between CH3 group 1H spins and other 1H spins or between 1H 

spins on different CH3 groups makes the relaxation more exponential.95, 96  This has been born out 

in experiments with solids comprised of larger organic molecules with several or many static (on 

the NMR time scale) H atoms.  In some of these cases, the departure from exponential relaxation is 

very slight or not observed at all.97-99   

 We introduce the Davidson-Cole spectral density4, 100  

 

  

    

€ 

J ω,τ( ) =
2
ω

sin ε arctan ωτ( )[ ]
1+ω2 τ 2( )ε / 2 ,      (13) 

 

which replaces the BPP67 spectral density in Eq. 8.  This allows for a very small distribution of 

correlation times (characterized by ε < 1) with τ  being the ideal crystal NMR correlation time.4  As 

ε → 1, J(ω,τ) in Eq. 13→ J(ω,τ) in Eq. 8.  The BPP67 spectral density in Eq. 8 will not fit data if 

the magnitudes of the slopes of the low and high-temperature linear lnR versus T-1 are different 
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(assuming that a single motion is responsible for the relaxation in the entire temperature region 

studied).  In the Davidson-Cole spectral density, ε is the ratio of the magnitudes of these two 

slopes.16  In the present case, ε = 0.85 ± 0.03 and this will not change in the subsequent 

complications of the model.  The distribution of ENMR values for ε = 0.85 is so small101 that 

without any loss of generality or consistency, ENMR can be taken as 'the' single NMR activation 

energy. 

 As an example of the predictions of the model developed so far (isolated CF3 groups), the 

contribution to the 19F relaxation data corresponding to Eqs. 11-13, and 9 in 1 is shown by the 

single line labeled q = 0 (q is defined below) in Fig. 6.     

€ 

(RFF
L intra )S  = λ1 in region I, the fit to which 

will not change significantly in further refinements to the model presented below.  Note that the 

only additional adjustable parameter for this lnλ1 versus T-1 in region I (once ENMR  and ε have 

been determined) is τ∞ in Eq. 9.  The high temperature     

€ 

(RFF
L intra )S  = λ1 values are fit very well as 

are the λ2 component of the low-temperature rates. 

 The model presented above has been appropriately modified11, 25, 27 and applied to a system 

with two spin-1/2 species whose NMR frequencies are close enough that mutual spin flips can 

occur.  The energy difference involved with mutual spin flips involving different spin species, if 

small enough (which is the case for 19F and 1H spins) is made up by the heat bath (lattice 

vibrations).  In the present case (compound 1 in Fig. 1), CF3 reorientation occurs on the NMR time 

scale and the 19F spins are the "prime relaxors."  (All 19F spins are in CF3 groups.)  The same is 

true for 3.11  The 1H spins are immobile (on the NMR time scale) and are relaxed by the relaxing 
19F spins via mutual spin flips.  In 2,8 the opposite is true; the F and H atoms trade places with 

those of 1 and 3.   

 Many experiments have been reported where both 1H and 19F spin-lattice relaxation rates 

have been measured.1, 8-9, 11, 13-14, 17-25  In general, for a system with both 1H and 19F spins (or any 

two spin-1/2 species for that matter), the time dependence of the 19F and 1H nuclear magnetizations 

following a perturbation is given by8, 27 
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The superscripts 'L' on the entries in the relaxation matrix in Eq. 14 mean 'like spins' and the 

superscripts 'U' mean 'unlike spins.'      

€ 

RHH
L  characterizes the relaxation resulting from the 

modulation of all the 1H-1H spin-spin interactions and is identically zero in 1 and 3.      

€ 

RFF
L  

characterizes the relaxation resulting from the modulation of all the 19F-19F spin-spin interactions 

and (in 1 and 3) is 

 

      

€ 

RFF
L = RFF

L intra + RFF
L inter ,       (15) 

 

with     

€ 

RFF
L intra  given by Eqs. 11 and 12.  There is now no need for the subscript 'S' in Eq. 11.  

Nonexponential relaxation resulting from the Hubbard-Hilt-Runnells effect28, 29 only manifests 

itself at high temperatures (region I in Figs. 3 and 4) and the double exponential relaxation 

resulting from Eq. 14 (discussed further below) manifests itself only at low temperatures (region 

III in Figs. 3 and 4).  In Eq. 15,     

€ 

RFF
L inter  characterizes the relaxation caused by the modulation of F-

F vectors between 19F spins on different CF3 groups and is given by 

 

      

€ 

RFF
L inter = KFF

L inter J ωF ,τ / 2( ) + 4J 2ωF ,τ / 2( )[ ]  ,    (16) 
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KFF
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Γ δFFinter( )
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rFFinter
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& 
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) ! r FF inter
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€ 

= y KFF
L intra .        (17) 

 

A numerical value for the parameter     

€ 

KFF
L intra  that appears in Eq. 17 is given in Eq. 12 so this is 

known.  The dimensionless phenomenological parameter y introduced in Eq. 17 can be thought of 

as the ratio of [the overall contribution to the relaxation of all the interCF3  19F-19F spin-spin 
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interactions] to [the contribution to the relaxation of the intraCF3 19F-19F spin-spin interactions].11  

Note that the correlation time in Eq. 16 is τ/2 rather than τ since it involves the random 

reorientation of two CF3 groups.  The angle δFFinter in Eq. 17 is the angle that a particular interCF3 

vector       

€ 

! r FFinter  makes with the applied magnetic field and the function Γ(δ) represents, somewhat 

symbolically, the functions (primarily various spherical harmonics) whose modulation enters the 

general spin-lattice relaxation problem.27, 67-75  Accounting for these interCF3 19F-19F spin-spin 

interactions in a detailed manner is an extraordinarily complicated computational problem.102, 103   

Some of these interCF3 vectors       

€ 

! r FFinter  will undergo very small angular variations δFFinter as the 

two CF3 groups involved reorient and as such will contribute very little to the relaxation, even 

though this motion is on the NMR time scale.  In addition, the strength of the spin-spin interactions 

go as     

€ 

rFFinter
−6  and so fall off very rapidly with F-F separation.   We note that some of the distances 

    

€ 

rFFinter  appear small in Fig. 2 but this is misleading.  The neighboring CF3 groups in Fig. 2 are 

considerably displaced in the direction perpendicular to the page.  Characterizing these interCF3 
19F-19F spin-spin interactions in a more complicated manner is simply not justified by the limited 

information provided by the relaxation rate data.  The angular brackets < . . . > in Eq. 17 indicates 

an ensemble average over all values of       

€ 

! r FFintra .   

 The single adjustable parameter y hides our ignorance.  For 1, the best fit of the data 

provides y = 0.15 ± 0.05 and the fact that it is significantly less than unity somewhat justifies 

hiding our ignorance.  This value for y, along with ENMR and ε presented above, using only Eq. 15 

for the relaxation rate, gives the same single line labeled q = 0 in Fig. 6 as introduced above.  This 

line (q = 0) for y = 0.15, is indistinguishable from that as produced with y = 0 previously, because 

the as-yet not-finalized value of 

€ 

τ∞  in Eq. 9 is adjusted accordingly.  Finally, we note that the fact 

that the correlation time for     

€ 

RFF
Linter  in Eq. 16 is τ/2, rather than τ for     

€ 

RFF
Lintra  in Eq. 11 has a very 

small effect because it does not affect ENMR which is in the exponential in Eq. 9. 

 The parameter     

€ 

RHH
L  in Eq. 14 is identically zero for 1 (and 3).  No 1H-1H spin-spin 

interactions are modulated on the NMR time scale.  The remaining four entries RU in the relaxation 

matrix in Eq. 14 characterize the 1H-19F spin-spin interactions and turn the relaxation function into 

a double exponential. They are: 
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€ 

RFF
U = KFF

U J ωH −ωF,τ( ) + 3J ωF,τ( ) + 6J ωH +ωF,τ( ){ } ,   (18) 

 

      

€ 

RHH
U = KHH

U J ωH −ωF,τ( ) + 3J ωH,τ( ) + 6J ωH +ωF,τ( ){ },   (19) 

 

      

€ 

RFH
U = RHF

U = KFH
U −J ωH −ωF,τ( ) + 6J ωH +ωF,τ( ){ }.   (20) 

 

That there are terms in     

€ 

RFH
U  and     

€ 

RHF
U  is to be expected but that there are terms in     

€ 

RFF
U  and     

€ 

RHH
U  is, 

perhaps, not so obvious.27  The four K-values are equal (but only because both spin species are 

spin-½) and given by 
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€ 

= q KFF
L intra .        (21) 

 

Eq. 21 defines the phenomenological parameter q as the ratio of [the overall contribution to the 

relaxation of all the 1H-19F spin-spin interactions] to [the contribution to the relaxation of the 

intraCF3 19F-19F spin-spin interactions].11   In principle, it could be computed in the same manner 

described for the possible computation of y as discussed above.  Again, the single parameter q 

summarizes our ignorance concerning the details of how the modulation of the H-F vectors       

€ 

! r FH  

affect the relaxation and a more complicated model is not warranted. 

 The relaxation of either a perturbed 1H or 19F magnetization is given by Eq. 4 with the 

relaxation rates λ1 and λ2 (the "eigenvalues" or "eigenrates") found by diagonalizing the relaxation 

matrix in Eq. 14: 
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€ 

λ1,2 =
1
2

RFF
L + RFF

U( ) + RHH
L + RHH

U( ) ± RFF
L + RFF

U( )− RHH
L + RHH

U( )[ ]
2

+ 4 RFH
U RHF

U
$ 

% 
& 
& 

' 

( 
) 
) 
.  (22) 

 

The equilibrium magnetizations φjk in Eq. 5 (the "eigenvectors") give the fraction of the 

magnetization that relaxes with each of the two eigenrates via 

 

  
    

€ 

Mk ∞( )− Mk t( )
1− cosθ{ } Mk ∞( )

= φ1k e−λ1t +φ2k e−λ2t ,     (23) 

 

with k = H or F and where θ is the perturbation pulse flip angle which is very close to θ = π.  The 

φjk values are given by8 

 

  
    

€ 

φ1k = 1−φ2k =
Rkk

L + Rkk
U −λ2

λ1 −λ2
  .      (24) 

 

for k = F, H.  

 The 1H-19F spin-spin interactions, whose modulation results in the four RU entries in Eq. 14 

turn the single relaxation curve indicated by q = 0 in Fig. 6 into pairs of curves for q ≠ 0 in Fig. 6 

since the relaxation is now characterized by a double exponential.    

 There are five adjustable parameters.  The complicated λ1 and λ2 versus T-1 over 

determines these parameters and we feel it is most instructive to fit the linear lnλ1 and lnλ2 versus 

T-1  data above 213 K (10-3 T-1 < 4.7 K-1 in Fig. 3) and below 143 K (10-3 T-1 > 7.0 K-1) which 

uniquely determines all five parameters.  The λ1 and λ2 versus T-1 between 143 and 213 K is then 

determined.  Above 213 K, ωFτ , ωHτ ,   

€ 

(ωH +ωF)τ , and   

€ 

(ωH −ωF)τ  are all << 1 and lnλ1 and lnλ2 

versus T-1 are linear with the same slope ENMR  but different intercepts.  Fitting these two lines 

gives (1) ENMR = 23 ± 2 kJ mol-1 in Eq. 9.  Below 143 K, ωFτ , ωHτ ,   

€ 

(ωH +ωF)τ , and   

€ 

(ωH −ωF)τ  

are all >> 1 and lnλ1 and lnλ2 versus T-1 are again linear with the same slope −εENMR but different 

intercepts.  This gives (2) ε = 0.85 ± 0.03 in Eq. 13.  The four intercepts of these two linear 
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relationships provide four closed-form relationships among the three parameters τ∞, y, and q and 

uniquely determines them all.  However, the difference between the two high-temperature 

intercepts and the difference between the two low-temperature intercepts depend solely on q which 

is over determined.  That both pairs of straight lines are very well fitted with (3) q = 0.15 ± 0.03 in 

Eq. 21 indicates that the simplest model whereby the myriad of  1H-19F spin-spin interaction can be 

modeled by the single phenomenological parameter q is justified (or, is, at least, reasonable).  This 

leaves two (not three) closed form relationships between τ∞ and y which  give (4) τ∞ = (2.2   

€ 

−1.1
+2.2  ) 

X 10-15 s in Eq. 9 and (5) y = 0.15 ± 0.05 in Eq. 17. 

 Although the now completely predicted λ1 and λ2 versus T-1  between 143 and 213 K 

reproduces the general features in the observed relaxation rates (Fig. 3), there are discrepancies 

which would no doubt be rectified with more robust models with a greater number of adjustable 

parameters.  The fit for λ1 versus T-1 between the two limiting regions shows two maxima, one at 

190 K where ωFτ , ωHτ , and   

€ 

(ωH +ωF)τ   ~ 1 and one at 155 K where (ωH – ωF)τ  ~ 1.  The two 

maxima have partially coalesced for the fit to λ2 versus T-1.  The very closely spaced double lines 

in the fit in region III (below 160 K) in Fig. 3 are a consequence of the fact that ωF has two 

different values and ωH has two different values depending on which spin species is being 

observed.  When 19F is observed [ωF = 2π(22.50 MHz)], ωH = 2π(23.91 MHz) and when 1H is 

observed [ωH = 2π(22.50 MHz)], ωF = 2π(21.17 MHz).  The greatest effect is in the terms in ωH – 

ωF in Eqs. 18-20.  The angular frequency ωH – ωF  = 2π(1.41 MHz) when 19F is observed at 0.5617 

T and 2π(1.33 MHz) when 1H is observed at 0.5285 T.  So, λ1 and λ2 versus T-1 each produce two 

sets of very closely spaced curves, much too closely spaced to be discriminated between by the 

experiments. 

 ENMR and τ∞ characterize the reorientation of the CF3 group while ε  < 1 suggests that there 

is a very small distribution of ENMR values, probably because of surface effects in very small 

crystallites4 or because of crystal imperfections in general.  Since ENMR is in the exponential of τ  = 

τ∞ exp(ENMR/kT), the uncertainty in ENMR leads to a very large uncertainty in τ∞, about ± 50%.  

NMR relaxation experiments are not very good in determining τ∞ accurately but the value here is 

in the expected range for CF3 or CH3 reorientation.2, 3, 6, 8, 11, 15, 16, 101  If ENMR were frozen at its 
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central value, the uncertainty in τ∞ would be significantly smaller.  It seems that most practitioners 

quote this smaller uncertainty. 

 We can compare the parameters y introduced in Eq. 17 and q introduced in Eq. 21 found 

here for 1 with the values found in 2 and 3 (Fig. 1).  The parameter y characterizes the interactions 

between 19F spins on different CF3 groups in 1 and 3 and between 1H spins in different CH3 groups 

in 2.  The ordering of the experimentally determined values is y = 0.15 ± 0.05 (in 1) > y = 0.10 

  

€ 

−0.05
+0.10 (in 311) > y  = 0   

€ 

−0
+0.03(in 28).   The parameter q characterizes the interactions between 1H and 

19F spins in all three solids and the ordering is q = 0.15 ± 0.03 (in 1) > q = 0.055 ± 0.010 (in 311) > 

q = 0.020 ± 0.005 (in 28).  The ordering is the same for both parameters and reflects the fact that 

the CF3 groups in 1 have 1H and 19F spins closer to them than do the CH3 groups in 2.  Compound 

3 is between the two. 

 The relaxation curves for q = 0, 0.05 (close to that found for 311), 0.15 (found here for 1), 

and 0.25 are shown in Fig. 6 to indicate the effect of the parameter q in Eq. 21.  (For these 

different curves, all other adjustable parameters have been frozen at the values indicated above.)  

Note that all curves (including q = 0) closely reproduce λ1 at high temperatures (region I) and λ2 at 

low temperatures (region III).  As q is increased from 0, λ1 becomes larger at low temperatures 

(starting with λ1 = λ2 for q = 0) and λ2 becomes larger at high temperatures (starting at λ2 = 0 for q 

= 0).   

 As T → 0 in region III, all four fractional equilibrium magnetizations (φ1H, φ2H, φ1F, and 

φ2F)  → 0.5.  Note that the vertical positioning of the upward and downward pointing triangles in 

Fig. 3, when compared with those in Fig. 4, are reversed for 1H but not for 19F.  This is why there 

is a subscript k on the equilibrium magnetizations in Eq. 4.  Even though the two equilibrium 

magnetizations are the same, they are reversed, depending on which spin species is being 

observed.   

  as T → ∞ in region III, φ1F(∞) → 1 for 19F, φ2H(∞) → 1 for 1H, φ2F(∞) → 0 for 19F, and 

φ1H(∞) → 0 for 1H.  So even though the relaxation is, in principle, described by a double 

exponential, the magnetization associated with one of the two relaxation rates disappears as T → 

∞.  The single surviving 19F magnetization relaxes with λ1 (region I) and the single surviving 1H 

magnetization relaxes with λ2 (region I).  These limits are not obvious from Eq. 24 but can be 
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derived by inserting all the appropriate λs and Rs into Eq. 24.  The caveat here is that the rates λ1 = 

(RF)S and λ2 = (RH)S at higher temperatures (region I) all pertain to initial rates RS defined in Eq. 3.  

In this case,  RS  >  R* (in Eq. 2) (significantly so).6  However, at low temperatures (region III in 

Figs. 3 and 4), RS  = R* = R (the usual unique relaxation rate in an exponential process) for both 

terms in the double exponential relaxation (Eq. 4) since β = 1 for both terms.  So, the expression 

for the double exponential in region III is valid.  That is, λ1 is the rate characterizing the entire 

time evolution of one component of the magnetization and λ2 is the rate characterizing the entire 

time evolution of the other component of the magnetization.  To put it another way, at low 

temperatures λ1 and λ2 are not rates associated with the initial relaxation (of their share of the 

magnetization) but with the entire recovery curve (of their share of the magnetization).  This is 

consistent with the observation that the relaxation due to CH3 rotation in systems with no F atoms 

is observed to be exponential at low temperatures (ωHτ >> 1).2, 6, 89-95 

 The straight lines drawn to guide the eye in region III in Fig. 4 show the high and low 

temperature trends for the φjk (Eqs. 5 and 24) but are, nevertheless, misleading.  The expressions 

for the fractional equilibrium magnetizations are nonlinear in T-1.  The temperature region where 

the fractional magnetizations have been observed (Fig. 4) corresponds to a central part of the low-

temperature region in the model where the functions are approximately linear.  Eq. 24 indicates 

that the fractional magnetizations that → 1 and that → 0 at high temperature do so much faster 

above 160 K than an extrapolation of the straight lines to higher temperature in Fig. 4 would 

suggest and those that → 0.5 at low temperature do so more slowly than an extrapolation of these 

straight lines to lower temperatures would suggest.   

 For completeness, we note that the magnetization that is not observed in a particular 

relaxation experiment starts from its equilibrium value after the perturbation (since it is not 

affected by the perturbation to the other spin species), then proceeds away from equilibrium with 

the larger (faster) rate λ1 and then decays back to equilibrium with the smaller (slower) rate λ2.   

 A comment is in order concerning the reorientational motion of the OCF3 and OCH3 

groups about their respective O-C axes.  Methoxy and fluoromethoxy group reorientation has been 

studied by both solid state NMR relaxation2, 6, 8 and by ab initio electronic structure calculations in 

the solid state2, 5, 8 in three compounds.   In all three cases the methoxy or fluoromethoxy group has 

a very low reorientational barrier in the isolated molecule.2, 5, 8  However, in the solid, this 
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reorientation is completely quenched and these groups only librate over small angles about their 

equilibrium positions.  These librations will be at much higher vibrational frequencies than the 

NMR frequency.  As such, the OCF3 reorientational librations in 1, like the OCH3 reorientational 

librations in 2, have no (direct) effect on the spin-lattice relaxation process and simply add a very 

fast, small-angle, time dependence of the CF3 or CH3 reorientation axes to the already spatial 

distribution of CF3 or CH3 reorientation axes resulting from the polycrystalline nature of the 

sample.   (These reorientational vibrations likely have a small effect on the value of the NMR 

activation energy ENMR.) 

 An additional comment is appropriate concerning the hydrogen bonding in 1 as shown in 

the crystal structure in Fig. 2.  The molecules in the crystal arrange themselves with paired O-H . . 

. . O and O . . . .  H-O hydrogen bonds.  The H atoms might very well perform a pairwise exchange 

but if they do so, it is not observed as a distinct motion in the 1H relaxation rate experiments.  This 

is probably because this motion is simply not occurring on the NMR time scale.104  There are 

seven H atoms in the molecule and the OH H atom represents one-seventh of the 1H nuclear 

magnetization.  Signal-to-noise is good enough that additional relaxation resulting from one-

seventh of the magnetization decaying at a very different rate would have been noticed in the 

temperature range studied.  Though unlikely,104 this exchange could be occurring at approximately 

the same rate that characterizes CF3 reorientation, in which case it would not be observed as a 

separate motion.  This OH H atom is 0.33 nm from its nearest H neighbor on the same molecule 

and this is close enough for spin diffusion energy conserving 1H-1H spin flips to contribute to the 

process whereby a common spin temperature is maintained. 

 

IV.  DISCUSSION 
 We want to gain insight into the intramolecular and intermolecular interactions in a large 

class of van der Waals solids composed of covalently bonded molecules having planar aromatic 

backbones and either a CH3 or CF3 group.  Seven representative compounds are listed in Table II, 

of which 1-3 are shown in Fig. 1.  In Sec. III, we addressed how the modulation of the 1H-1H, 19F-
19F, and 1H-19F spin-spin dipolar interactions affect the NMR 19F and 1H spin-lattice relaxation.  

However, the interactions of interest to a larger community of scientists are (1) intramolecular 

bonded (covalent) interactions, (2) intramolecular and intermolecular electronic 

(hyperconjugation105-107) interactions, (3) intramolecular and intermolecular steric interactions, and 



Beckmann and Rheingold             20 
 
(4) intermolecular interactions somewhat arbitrarily divided into several types that the 

International Union of Pure and Applied Chemistry (IUPAC) bundles under the umbrella term of 

van der Waals interactions.108  The segue between all these atomic and molecular interactions and 

the spin-spin dipolar interactions that are very well understood27, 109-111 and of less interest to a 

wider community, are the solid state NMR spin-lattice relaxation experiments.  The relaxation 

experiments are sensitive to the barrier for CH3 or CF3 reorientation and to the spin-spin 

interactions, with the important point being that the contributions (to the parameters that 

characterize the relaxation process) of like-spin spin-spin (1H-1H and 19F-19F) interactions and the 

unlike-spin spin-spin (1H-19F) interactions can be separated in the model, as discussed in Sec. III.  

When two communicating spin species are present, the NMR relaxation experiments provide more 

information than when only like-spin interactions (usually 1H) are present. 

 The most important parameter that the solid state NMR relaxation experiments provide is 

an NMR activation energy ENMR.31-35  The relation τ  = τ∞ exp(ENMR/kT) presented in Eq. 9 

provides the mean time between reorientations for a methyl (CH3) or fluoromethyl (CF3) group 

reorienting in a three-fold or six-fold potential2-5, 7, 8, 10, 12, 112 in a random (Poisson113) process.  The 

physical origin of τ−
-1

  = τ∞
-1

 exp(−ENMR/kT)  is the Canonical Ensemble.113  The literature has 

provided a myriad of models for this relationship over the last 100 years or so but in the present 

case it boils down to the simplest possible two-level reorientational model.  The CH3 or CF3 group 

reorientation frequency in a ground state (taken to be energy E = 0) is zero, assuming there is no 

quantum mechanical tunneling114 which is the case here.76-85  The reorientation frequency at the 

energy where the group can reorient (defined as ENMR) is τ∞
-1.  The probability of being in this 

high energy state is given by the Canonical Ensemble Boltzmann factor113 exp(−ENMR/kT) so the 

mean reorientation frequency is τ−
-1

  = τ∞
-1

 exp(−ENMR/kT) which is the reorientation rate times 

the probability of being in the state where the group can reorient.  This assumes that ENMR >> kT.  

The smallest ENMR entry in Table II is ENMR = 5 kJ mol-1 = 602 K rotor-1 (the other six entries in 

Table II are all more than twice this) and the temperatures for the spin-lattice relaxation 

experiments with the compounds in Table II are all below 330 K.  That this extraordinarily simple, 

almost naive, model works so well (i.e., fits the data in many published cases) is the basis of the 

great power of the solid state NMR relaxation experiments. 
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 NMR relaxation experiments in molecular solids can determine ENMR with an accuracy of 

approximately ± 10% or so, so long as the CH3 or CF3 group reorientation is the only motion on 

the NMR time scale in the appropriate temperature range.  This is the case for many systems, 

including the seven compounds presented as examples in Table II.   ENMR can be related to the 

barrier V for CF3 or CH3 reorientation.31-35  The lower energy for the energy difference that enters 

into ENMR will not be zero as the naive model presented in the previous paragraph suggests, but 

will be the ground reorientational state which will be above the bottom of the reorientational 

barrier V.31, 35  Flygare,112 page 129, shows a reorientational energy level diagram for a CH3 group 

with V = 1158 cm-1 = 13.8 kJ mol-1.  This value is typical of all but one of the entries in Table II.  

For the model presented in the previous paragraph, the upper energy for the energy difference that 

enters into ENMR will be the top of the barrier, or at least near it.  So one suspects that ENMR might 

be slightly smaller than V.  Indeed, detailed calculations suggest that relating ENMR and V is 

complicated but that ENMR will be between 0 and 20% smaller than V in the range of 

approximately 12 kJ mol-1.33, 34  This is in the middle of the range of six of the seven ENMR values 

in Table II.   

 In a large class of van der Waals molecular solids comprised of covalently bonded 

molecules whose molecular structure in the crystal is very similar to the structure of the isolated 

molecule,2-5, 7, 8, 10, 12 these barriers have contributions from both intramolecular and intermolecular 

interactions.  For rotationally asymmetric groups like methoxy, ethyl, and isopropyl groups whose 

reorientational barriers are very small in many isolated molecules,2, 5, 8, 10 these reorientational 

barriers, due entirely to intermolecular interactions in the solid state, are so high that reorientation 

is completely quenched.2, 5, 8, 10  We are very careful to call the parameter determined in the NMR 

relaxation experiments the NMR activation energy ENMR and not the barrier V.   The latter for the 

case of CH3 and CF3 groups has been computed for several systems similar to 1-3 shown in Fig. 1, 

both in the isolated molecules and for molecules in the solid state.2-4, 7, 8, 10, 12   Several examples of 

barriers in the isolated molecules are shown in Table II under the heading of Viso where the 

subscript 'iso' means 'isolated molecule.' 

 Table II compares values of NMR activation energies ENMR in a series of seven solids 

composed of molecules with similar structures.  These ENMR values are in very good agreement 

with barrier values V calculated for the appropriate rotor in the solid state2-5, 7, 8, 10, 12 which are not 

given in Table II.  As such, these ENMR values can be taken as a stand in for the total barrier, 
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intermolecular + intramolecular.  The entries in Table II for Viso, on the other hand, are the 

calculated reorientational barriers for the isolated molecules and as such can be taken as a measure 

of the intramolecular component of the barrier.  Assuming that the intramolecular potentials are 

not so different in the crystal than they are in the isolated molecules, the difference ENMR –  Viso can 

be taken as a measure of the intermolecular component of the reorientational barrier. 

 For the methyl group in 4, approximately half the ENMR = 5 kJ mol-1 is intramolecular in 

origin and approximately half is intermolecular in origin.  This 5 kJ mol-1 = 601 K rotor-1 is, 

approximately, the lower limit for ENMR that can be treated by the reorientational model presented 

in Sec. III.  Indeed, this rotor will be a tunneling methyl group at lower temperatures.114  All other 

entries in Table II have ENMR values greater than 10 kJ mol-1.  In 2 (a CF3 group with nearby ring 

H atoms) and 3 (a CH3 group with nearby ring F atoms), the barriers are dominated by the 

intermolecular component ENMR –  Viso and in 5, 6, and 7 (all with a CH3 group with nearby ring H 

atoms), the barriers are dominated by the intramolecular component Viso .  (For compounds 1, 2, 6, 

and 7, the methoxy/fluoromethoxy groups lie in the aromatic plane, or nearly so.)  The crystal 

structures of all these compounds are very different and so it is difficult to generalize as to why 

one component should dominate in a particular compound.  However, the observation that the 

CH3-F and CF3-H systems have reorientational barriers dominated by intermolecular interactions 

whereas the CH3-H systems have barriers dominated by intramolecular interactions is an 

interesting observation.  ENMR = 23 kJ mol-1 for 1 is, by some measure, the largest ENMR value in 

Table II but until electronic structure calculations are carried out we can't say how much of this in 

intramolecular in origin and how much is intermolecular in origin.  The prediction, based on the 

preceding comments, is that it is dominated by the intermolecular component of the barrier.  The 

current study is the first one involving a fluoromethoxy (OCF3) group. 
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Table I: Crystal data and structure refinement 
for 3-trifluoromethoxycinnamic acid (1) 

 
  CCDC deposit number 1413079 
Empirical formula C10 H7 F3 O3 
Formula weight 232.16 
Temperature 100(2) K 
Wavelength 0.71073 Å 
Crystal system Triclinic 
Space group P-1 
Unit cell dimensions a = 4.7820(5) Å 
 b = 6.8510(8) Å 
 c = 15.4140(17) Å 
 〈 = 77.298(5)° 
 ® = 88.257(4)° 
 ©  = 74.448(4)° 
Volume 474.37(9) Å3 
Z 2 
Density (calculated) 1.625 g/cm3 
Absorption coefficient 0.157 mm-1 
F(000) 236 
Crystal size 0.29 x 0.14 x 0.10 mm3 
Theta range for data collection 3.69 to 26.44° 
Index ranges -5 ≤ h ≤ 4, -8 ≤ k ≤ 8, -19 ≤ l ≤19 
Reflections collected 4472 
Independent reflections 1860 [R(int) = 0.0307] 
Completeness to theta = 26.44° 95.8 % 
Absorption correction Multi-scan 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 1860 / 0 / 149 
Goodness-of-fit on F2 1.044 
Final R indices [I>2sigma(I)] R1 = 0.0383, wR2 = 0.0936 
R indices (all data) R1 = 0.0509, wR2 = 0.1002 
Largest diff. peak and hole 0.251 and -0.256 e Å-3 
Recrystallization solvent Acetone 
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Table II.  NMR activation energies ENMR and isolated-molecule calculated 
barriers Viso for CH3 and CF3 reorientation in various compounds. 

 
         compound X in  

CX3 
ring 

atoms 
ENMR 

(kJ mol-1) 
Viso

a
 

(kJ mol-1) 
ENMR 
ref 

Viso
a
 

ref 
        4 3-methylphenanthrene H H 5 ± 1 2 16 4 
3b 3-fluoromethylphenanthrene F H 12 ± 1 2 11 12 
5 9-methylphenanthrene H H 11 ± 1 11 7 7 
6 3-methoxyphenanthrene H H 16 ± 2 14 2 2 
7 4,4'-dimethoxybiphenyl H H 12 ± 1 13 6 5 
2b 4,4'-dimethoxyoctafluorobiphenyl H F 17 ± 1 4 8 8 
1b 3-trifluoromethoxycinnamic acid F H 23 ± 2 - this 

work 
- 

         
aThe computed CH3 or CF3 barrier V in the isolated molecule 
bSee Fig. 1. 
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        (1)      (2)     (3) 

FIG. 1.  Two views of the molecular structures in the crystal of (1) a molecule of 3-

trifluoromethoxycinnamic acid where the asymmetric unit26 Z' = 1 [this work], (2) half a molecule 

of 4,4'-dimethoxyoctafluorobiphenyl where Z' = ½ (CSD-WOQFAL8), and (3) a molecule of 3-

fluoromethylphenanthrene where Z' = 1 (CSD-QCIMOD12).  F atoms are large green spheres, O 

atoms are large red spheres, C atoms are small black spheres, and H atoms are small pink spheres. 
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FIG. 2.  The crystal structure of 3-trifluoromethoxycinnamic acid (1) showing the 001 plane.  The 

lines indicate the unit cell.  F atoms are large green spheres, O atoms are large red spheres, C 

atoms are small black spheres, and H atoms are small pink spheres. 
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FIG. 3.  The temperature dependence of the various relaxation rates in polycrystalline 3-

trifluoromethoxycinnamic acid (1) at 22.5 MHz.  At high temperatures (region I) λ1 = (RF)S as 

indicated (red circles) where RS is the initial rate of the nonexponential relaxation (Eq. 3) and the 

subscript F refers to 19F.  Also in region I, the parameter λ2  = (RH)S (blue circles) where the 

subscript H refers to 1H.  At low temperatures (region III), the 1H and 19F magnetizations both 

relax via a double exponential (Eq. 4) with the same two rates, λ1  [downward pointing triangles 

(red for 19F and blue for 1H)], and λ2 [upward pointing triangles (red for 19F and blue for 1H)].   In 

the transition region (region II) the 19F initial relaxation rates (RF)S are indicated by yellow circles 

and the characteristic relaxation rates     

€ 

RF
*

 (in Eq. 2) are indicated by yellow squares.  These same 

two parameters for the 1H relaxation in region II are indicated by cyan circles (RH)S and cyan 

squares     

€ 

RH
* . 
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FIG. 4.  The temperature dependence of various relaxation parameters for 3-

trifluoromethoxycinnamic acid (1) at an NMR frequency of 22.5 MHz.  At higher temperatures 

(region I) the relaxation is fitted by a stretched exponential (Eq. 2) and the plot shows β for 19F 

(red circles) and 1H (blue circles).  At lower temperatures (region III) the relaxation is fitted by a 

double exponential (Eq. 4).  The fractions of the magnetizations that relax with the rate λ1 are φ1k 

(Eqs. 5 and 24) [downward pointing triangles (red for k = F and blue for k =  H) and the fractions 

of the magnetizations that relax with the rate λ2 are φ2k (Eqs. 5 and 24) [upward pointing triangles 

(red for k = F and blue for k = H).  The two straight lines, which add to unity, are guides for the 

eye. 
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FIG. 5.  A 19F magnetization recovery curve in polycrystalline 3-trifluoromethoxycinnamic acid 

(1) at 22.5 MHz and at 152 K (region III in Figs. 3 and 4).  The recovery time between the 

perturbation π-pulse and the observing π/2 pulse is plotted on a logarithmic scale for visual clarity.  

The (good) five-parameter fit to the double exponential in Eq. 4 (solid red line) gives the two 

relaxation rates λ1 and λ2 shown in Fig. 3 and the corresponding fractional equilibrium 

magnetizations φ1F and φ2F shown in Fig. 4.  The smaller (slower) rate was  λ2 = 0.75 ± 0.11 s-1 for 

this particular experiment and tw [the time between the observing π/2 pulse and the (next) 

perturbation π pulse] was tw = 15 s which is greater than 10 λ2
-1.  For comparison, the (bad) four 

parameter fit to the stretched exponential (Eq. 2) is shown by the blue dashed line.   
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FIG 6.  The effect of 1H-19F spin-spin interactions on the 19F and 1H spin-lattice relaxation rates in 

polycrystalline 3-trifluoromethoxycinnamic acid (1) at 22.5 MHz.  The relaxation rate data is 

described in the caption to Fig. 3.  The phenomenological scalar parameter q defined in Eq. 21 

(with values as indicated) describes the cumulative effects of 1H-19F spin-spin interactions as a 

fraction of the intraCF3 19F-19F spin-spin interactions.  The 1H-19F spin-spin interactions are turned 

off for q = 0 and there is a single RF as indicated by the single line.  In this case RH = 0.  As q is 

increased from 0, a second set of curves appear.  The two lines labeled q = 0.15 corresponds to the 

final fit value for 1 and are the same as those in Fig. 3. 
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