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Lower neural value signaling in the prefrontal cortex is related to childhood 
family income and depressive symptomatology during adolescence 
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A B S T R A C T   

Lower family income during childhood is related to increased rates of adolescent depression, though the un
derlying mechanisms are poorly understood. Evidence suggests that individuals with depression demonstrate 
hypoactivation in brain regions involved in reward learning and decision-making processes (e.g., portions of the 
prefrontal cortex). Separately, lower family income has been associated with neural alterations in similar regions. 
Motivated by this research, we examined associations between family income, depression, and brain activity 
during a reward learning and decision-making fMRI task in a sample of adolescents (full n = 94; usable n = 78; 
mean age = 15.2 years). We focused on brain activity for: 1) expected value (EV), the learned subjective value of 
an object, and 2) prediction error, the difference between EV and the actual outcome received. Regions of in
terest related to reward learning were examined in connection to childhood family income and parent-reported 
adolescent depressive symptoms. As hypothesized, lower activity in the subgenual anterior cingulate (sACC) for 
EV in response to approach stimuli was associated with lower childhood family income, as well as greater 
symptoms of depression measured one-year after the neuroimaging session. These results are consistent with the 
hypothesis that lower early family income leads to disruptions in reward and decision-making brain circuitry, 
contributing to adolescent depression.   

1. Introduction 

Child poverty is a prevalent societal problem, with detrimental ef
fects for mental health (Reiss, 2013; Yoshikawa et al., 2012). In 
particular, adolescents from lower income families are more likely to 
experience elevated depressive symptoms, earlier onset of depressive 
episodes, and a more severe course of major depression (McLaughlin 
et al., 2011; Najman et al., 2010). Given these widely replicated find
ings, it is critical to identify mechanisms in order to predict, prevent, and 
treat depressive symptomatology after exposure to poverty. Such prog
ress will likely emerge by: a) considering “multiple levels of analysis”, 
specifically neurobiological alterations related to exposure to poverty; 
and b) more precise consideration of the “lived experiences of poverty” 
and distinctions between facets of adversity (e.g., exposures and 
experiences). 

In regards to neurobiology, adolescence is marked by significant 
structural and functional brain reorganization and growth (Casey, 2015; 
Giedd et al., 2015; Luna et al., 2010). Given the protracted develop
mental trajectories of areas like the amygdala and the hippocampus, it is 
perhaps not surprising that poverty and the stressors associated with 
lower family income have been related to alterations in these and con
nected brain areas (Johnson et al., 2016; Palacios-Barrios and Hanson, 
2019). Less explored, however, have been potential alterations in the 
structure and function of the corticostriatal circuit, which include the 
ventral striatum (VS) and different sub-regions of the prefrontal cortex 
(PFC), such as ventromedial PFC (vmPFC). Given the critical role of this 
brain circuit in motivation, reward responsiveness, and learning (Becker 
et al., 2019; Berridge and Robinson, 2003) and research finding that this 
brain circuit is often aberrant in depressed individuals (Forbes and Dahl, 
2012; Pizzagalli, 2014), it may be particularly important to probe the 
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functioning of this circuit in relation to poverty exposure and increased 
risk for depression. 

As one thinks about poverty, it is critical to understand that “lived 
experiences” of poverty encompass a host of stressors and environmental 
disadvantages that pose threats to normative development. For instance, 
common stressors associated with poverty include harsher family in
teractions (e.g. inconsistent parental support; greater parental hostility) 
and community violence (Evans, 2004). However, conceptualizing 
exposure to poverty as a risk factor often blurs the distinction between 
“exposures” and “experiences”. In brief, exposures capture the proba
bility of something occurring and the context that development occurs in 
(see McLaughlin et al., 2020) for additional, thoughtful discussion of this 
issue). Exposures are, however, not a direct measurement of what a child 
actually experiences. Many youths may be exposed to different adverse 
developmental context (e.g., poverty), but actually not experience 
harsher family environments, community violence, and other negative 
experiences likely to directly impact development. 

Related to potential brain alterations, past research has found that 
various forms of childhood adversity relate to behavioral correlates and 
neurobiological functioning in the corticostriatal circuit (Gianaros et al., 
2011; Gonzalez et al., 2016; Marshall et al., 2018). For example, mal
treated individuals have shown an impaired ability to update behavioral 
responses to rewards (Guyer et al., 2006) and slower learning of reward 
associations (Hanson et al., 2017; Sheridan et al., 2018). Neuro
biologically, maltreatment and high levels of stressful experiences in 
childhood are related to lower activity in the VS (Hanson et al., 2016, 
2015a) and smaller volumes and lower activity in medial portions of PFC 
(Fan et al., 2020; Van Harmelen et al., 2010). Notably, multiple reports 
from our research group have found that corticostriatal responsivity to 
positive feedback and rewards, but not negative feedback and punish
ment, is altered after exposure to high levels of childhood stress and 
adversity (Hanson et al., 2018, 2016, 2015a). Connected to these ideas, 
multiple reports in non-human animals have found rodents living in 
impoverished environments demonstrate features of anhedonia and 
aberrant processing of rewarding stimuli, including reductions in su
crose preference and peer-play (Bolton et al., 2018; Molet et al., 2016). 

While the processing of positive feedback and rewards will be an 
important continued focus, it will also be critical to think about richly 
decomposing and parsing apart different component processes of the 
corticostriatal circuit. Indeed, basic cognitive neuroscience research 
indicates that the corticostriatal circuit underlies two important reward- 
learning and decision-making processes: the coding of prediction error 
(PE) and the estimation of value (or the expected value, EV). PE is the 
difference between an actual outcome and one’s expectations; EV is the 
“net value” associated with a stimulus and combines the magnitude of a 
reward with the potential probability of receiving it (Knutson et al., 
2005; Rescorla and Wagner, 1972). These two aspects of reward 
learning and decision-making consistently activate regions within the 
corticostriatal circuit, with the VS being a key brain area for both PE and 
EV being strongly connected to functional patterns in portions of PFC, 
including: the subgenual cingulate (sACC), perigenual cingulate (pACC), 
and ventromedial PFC (vmPFC) (Garrison et al., 2013; O’Doherty, 2011; 
Rangel et al., 2008). Limited work has examined these types of processes 
in youth exposed to poverty or adverse experiences; the only notable 
exception focused on maltreated youths, which found these participants 
demonstrated blunted activity in the VS and the vmPFC during a passive 
avoidance decision-making task, compared to non-maltreated partici
pants (Gerin et al., 2017). Although maltreatment was associated with 
alterations of these specific elements of the corticostriatal circuit, it is 
unclear whether exposure to poverty and lower family income may 
similarly influence neurobiology related to reward learning and 
decision-making. It may be possible that youth living in poverty are 
unable to robustly recruit corticostriatal hubs (e.g., VS; portions of the 
PFC) to track expected value across time and adapt behavioral responses 
according to such feedback. Thinking collectively, understanding how 
EV and PE, specifically in relation, to positive feedback and rewarding 

stimuli may be critical in understanding connections between poverty, 
depression, and neurobiology. 

Connected to the “exposure” and “experience” distinction, we 
believe it will be critical to, first, probe the impact of exposures like 
poverty and lower socioeconomic status on brain development; indeed, 
millions of children are currently living in poverty and understanding 
broad impacts of this exposure are critical to public-health and public- 
policy (Shonkoff, 2016). We, however, believe such work should then, 
when possible, be followed up with a focus on specific adverse experi
ences common to poverty and likely to influence neurodevelopment. In 
this regard, a prominent model to more deeply understand experiences 
of poverty argues that environmental facets of harshness and unpre
dictability may differentially impact behavioral and neural development 
(Belsky et al., 2012; Ellis et al., 2009; McLaughlin et al., 2020). Expe
riences of harshness are extrinsic threats to morbidity and mortality, 
while unpredictability involves uncertain and unexpected variations in 
developmental experiences, particularly unpredictable, chaotic, and 
harsh events (Baram et al., 2012; Ellis et al., 2009). Chronic occurrence 
of these types of experiences may adversely impact the cognitive skills 
and associated neurocognitive systems underlying reward learning and 
decision making. For example, harshness may impact the hypothal
amic–pituitary-adrenal axis and stress-responsivity systems (Del Giudice 
et al., 2011) and this may then alter reward-related, dopaminergic 
functioning through glucocorticoid regulation (Kinner et al., 2016). 
Unpredictability, in contrast, may connect to volatile environmental 
input that then causes aberrant synaptic strengthening and pruning 
within the reward circuit (see Birnie et al., 2020, for additional review). 
Both of these types of experiences are common in impoverished con
texts. As such, considering reward learning and decision-making 
component processes (e.g., PE; EV), the broad exposure of child 
poverty, and also specific potential experiences common to these envi
ronments (e.g., harshness; unpredictability) may be particularly infor
mative and important to understand links between development, 
neurobiology, and psychopathology. 

Motivated by these ideas, we used a rich, prospective, longitudinal 
project (the Parenting Across Cultures Study; PAC) to examine associa
tions between childhood family income, adolescent brain functioning 
related to reward learning and decision-making processes, and depres
sion. We used a well-validated passive avoidance learning task that 
allowed us to probe PE and EV through computational modeling and 
neuroimaging (White et al., 2013). Based on past work, we hypothesized 
that lower family income in childhood would be related to lower func
tional activity: for EV within portions of the prefrontal cortex, and for PE 
in the VS, both for rewarding stimuli. We believe this lower activity is a 
sign of poor tracking and updating of choice values based on environ
mental feedback. We also hypothesized that these corticostriatal func
tional differences would be related to greater depressive symptoms 
assessed after the neuroimaging session. Finally, given that exposure to 
poverty often encompasses specific adverse experiences, we also 
explored potential associations between neurobiology and dimensions 
of adversity (e.g., harshness; unpredictability). Grounding our work in 
models put forth by Ellis and colleagues (e.g., Ellis et al., 2017), as well 
as Baram and coworkers (Baram et al., 2012; Birnie et al., 2020), we 
conducted exploratory analyses to evaluate whether experiences of 
harshness versus unpredictability were related to functional brain ac
tivity during reward learning and decision-making. 

2. Materials and methods 

2.1. Participants 

A subsample of youths and their parents from the Parenting Across 
Cultures (PAC) study was recruited for the current project. The PAC 
study is a prospective, longitudinal study of parenting practices and 
child development (see http://parentingacrosscultures.org for more 
details). Participants were recruited through local elementary schools 
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and the full cohort consisted of 311 socioeconomically diverse families 
(109 European American, 103 African American, and 99 Hispanic). 
Youth participants and their parents were interviewed approximately 
every year, beginning when the participants were approximately 8 years 
of age. This project uses data from the beginning of the study through 
when participants were 16 years old, on average. 

For this project, the original families were contacted to participate in 
a neuroimaging study. Of those that were contacted, 92 families chose to 
participate. The participants were approximately 15 years of age at the 
time of this neuroimaging session. Of the 92, 5 participants were 
excluded due to issues with computational modeling (e.g., poor model 
convergence; See “Neuroimaging Task” Section for description of model- 
fitting) and 9 participants were excluded due to fMRI modeling issues (e. 
g., no behavioral responses during one condition, causing inappropriate 
fMRI modeling fitting); no participants were excluded due to motion 
(>25 % censored frames). The final (usable) sample, therefore, consisted 
of 78 participants (see Table 1 for descriptive statistics). Here, we con
nected neuroimaging to four PAC study time-points (Study Waves 2, 3, 
5, and 7; neuroimaging was collected between Waves 5 and 6). PAC 
study time-points occurred approximately every year, but this was oc
casionally >12 months due to data collection logistics. A timeline is 
included in our Supplemental Materials that overviews this project in 
relation to the larger PAC study (Fig. S1). 

2.2. Measures 

2.2.1. Childhood family income 
Parents used the Family Information Form to report family income 

when participants were approximately 10 and 11 years of age. The 
measure assesses family income on a 10-point scale ranging from 1- “up 
to $5,000” to 10- “beyond $81,000.” Parents selected an answer in 
response to the statement “Indicate the gross annual income of your 
family.” In keeping with past reports (Hanson et al., 2011), the midpoint 
of an income bracket selection was then log-transformed at each wave, 
and averaged for the two waves. For example, up to $5,000 had a 
midpoint of $2,500 and then a log-transformed value of 3.398; for the 
highest income bracket, a midpoint of $115,500 was used (bracketing 
between $81,000 and $150,000) and yielded a log-transformed value of 
5.062. 

2.2.2. Depressive symptoms 
Parents completed the Child Behavior Checklist (CBCL) one year 

after the neuroimaging scan (when participants were approximately age 
16). The CBCL is a widely used caregiver-report used to assess child 
behavioral and emotional problems (Achenbach et al., 1991). Questions 
are scored on a three-point Likert scale (0 = “not true,” 1 = “somewhat 
or sometimes true,” 2 = “very true or often true”). Total raw scores for 
the Withdrawn/Depressed subscale were then standardized (to 
“T-Scores”); these compare the raw score to what would be typical 

compared to responses for youths of the same sex and similar age. 
Previous studies have shown that the Withdrawn/Depressed subscale 
strongly correlates with other measures of depression (Gomez et al., 
2014; Kweon et al., 2016). This construct was also measured at the same 
time as family income (Wave 2, when participants were approximately 
10 years of age); this earlier measure of withdrawn symptoms was used 
as a covariate in relevant analyses to limit the impact of early psycho
pathology on our variables of interest. 

2.2.3. Exploratory variables focused on environmental harshness and 
unpredictability 

When adolescents were 15 years of age on average, parents 
completed a measure of harshness, as well as a measure of unpredict
ability. Related to harshness, parents completed a 7-item questionnaire 
on the perceived safety and livability of their neighborhood (O’Neil 
et al., 2001). Questions such as “I feel scared in my neighborhood” and 
“My neighborhood is a nice place to live” (reverse-coded) were rated 
using a four-point Likert scale (0 = “almost never true,” 4 = “almost 
always true”). Connected to unpredictability, parents completed the 
Confusion, Hubbub, and Order Scale (Matheny et al., 1995) to assess 
confusion, chaos, and disorder in their homes. Questions such as “It’s a 
real zoo in our home” and “The atmosphere in our home is calm” 
(reverse-coded) were rated on a five-point Likert scale (1 = “definitely 
untrue,” 4 = “definitely true”). Each measure was summed and entered 
into exploratory regression models as independent variables. 

2.2.4. Neuroimaging task 
Participants completed a well-validated passive avoidance learning 

task during a neuroimaging scan (White et al., 2013). During the task, 
participants were presented with four stimuli, each associated with 
winning or losing points (a large amount or a small amount). On each 
trial, participants were first presented with one of four stimuli for 
1500 ms and decided whether they wanted to actively “approach” it (via 
button press) or passively “avoid” it (withhold a response). Following 
the decision, a randomly jittered fixation cross was presented 
(0− 4000 ms). Participants were then provided feedback for 1500 ms. 
Two of the stimuli resulted in winning points 70 % of the time (one 
stimulus: 50 points; one stimulus: 10 points). The other two stimuli 
resulted in losing points 70 % of the time (one stimulus: 50 points; one 
stimulus: 10 points). The high win (or lose) stimulus was always the 
same and would win (or lose) more points 70 % of the time. Participants 
could only win or lose points if the stimulus was actively approached 
(via a button press). If participants chose to passively avoid the stimuli, a 
fixation cross was then presented instead for 1500 ms. Following the 
feedback, another randomly jittered fixation cross was presented 
(0− 4000). Each stimulus was presented 14 times, for a total of 56 trials. 

Each participant’s behavioral task data was used to model expected 
value (EV) and prediction error (PE) for each trial based on the Rescorla- 
Wagner model of learning (O’Doherty et al., 2007; Rescorla and Wagner, 
1972). For the first trial of each object, EV was initially set to 0 and then 
updated using the formula:  

EV(t) = EV(t-1) + (⍺ x PE(t-1))                                                                 

This formula indicates that the EV of the current trial (t) is equal to 
the EV of the previous trial (t-1) plus the PE of the previous trial 
multiplied by the learning rate. The learning rate was set to 0.667 after 
averaging across learning rates from all subjects that were estimated 
individually via a model-fitting simulation. The following formula was 
used to calculate the PE of the current trial:  

PE(t) = F(t) - EV(t)                                                                                 

This formula indicates that the PE for the current trial is equal to the 
feedback (F) of the current trial minus the EV of the current trial. Pa
rameters for EV and PE were extracted for both approached and avoided 
stimuli, and used a parametric regressors (“modulators”) in our model- 

Table 1 
Descriptive Statistics.  

Variable Statistic 

Sex Female: 44.9 % (N = 35); Male: 55.1 % 
(N = 43) 

Race/Ethnicity European American: 44.9 % (N = 35); 
African American: 35.8 % (N = 28); 
Hispanic: 23.1 % (N = 18) 

Participant age (Study Start) 9.02 (+/- 0.531) years, Range: 7.83–10.1 
Participant age (At Scanning Session) 15.2 (+/- 0.671) years, Range: 13.6–16.9 
Participant age (Follow-up) 16.4 (+/- 0.615) years, Range: 15.06–17.63 
Family Income (Midpoint of Income 

Bracket, Averaged Across 2 Years) 
$61,753.21 (+/- $40,580), Range: $5,000- 
$115,500 

Depressive Symptom T-Score (~1 
Year After the Neuroimaging Scan) 

54.546 (+/- 7.269), Range: 50− 76 

CHAOS (Wave 5) 13.454 (+/- 3.62), Range: 6− 23 
Community Violence (Wave 5) 2.649 (+/-3.54), Range: 0− 18  
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based fMRI analyses (see fMRI Data Preprocessing and Analysis below). Of 
note, exploratory analyses related to task behavioral performance (e.g., 
omission errors; commission errors) during this learning task are 
detailed in our Supplemental Materials. 

2.3. fMRI data acquisition 

Scanning took place on a 3.0 T General Electric scanner at the Duke- 
UNC Brain Imaging and Analysis Center. Structural and functional im
ages were acquired during the scanning session. A high-resolution T1- 
weighted anatomical image was acquired, as well as whole-brain func
tional images were acquired using a SENSE inverse-spiral sequence 
(repetition time =2000 ms; echo time =32 ms; field of view = 256 mm; 
image matrix, 64 × 64; flip angle = 77 degrees; voxel size, 
4 × 4 × 4 mm; 34 axial slices). Additional information about our neu
roimaging acquisition are noted in our Supplemental Materials. Of note, 
resting state fMRI results from these same participants have been the 
focus of a previous publication (Hanson et al., 2019). 

2.4. fMRI data preprocessing and analysis 

Pre-processing and analysis of imaging data were conducted using 
Analysis of Functional Neuroimages (AFNI; http://afni.nimh.nih.gov, 
Cox, 1996). Participants’ scans were realigned to the first acquisition 
volume. Individual fMRI time points were then censored if motion was 
>1.5 mm between frames, using the derivative and euclidean norm 
(through AFNI’s 1d_tool.py tool). We planned to exclude participants 
with >25 % of frames censored; however, no participants met this 
threshold, meaning no participants were excluded for excessive motion. 
Data were then normalized into MNI-152 space using deformation fields 
from subjects’ T1-weighted scan, with a final voxel size of 2 mm3. The 
resulting images were smoothed with a 6-mm Gaussian filter. 

First-level individual analyses for each participant were calculated 
by convolving the event timing with the canonical hemodynamic 
response function modeling the four conditions: stimulus approached, 
stimulus avoided, reward received, punishment received. First-level 
models included parametric modulators (EV and PE) from the compu
tational model, as well as nuisance covariates of the second-order 

polynomial used to model the baseline and slow signal drift, six mo
tion estimate covariates and binary flags corresponding to neuroimaging 
frames with excessive motion (>1.5 mm). Second-level group analyses 
were conducted by entering the first-level individual models containing 
the parameter estimates of the four conditions into a mixed-effects 
analysis, with subject as a random factor. 

We then completed region of interest (ROI) analyses by combining 
data from automated meta-analysis and also a commonly used 
anatomical brain atlas. This involved combining voxel-wise maps of 
brain areas involved in value-based decision-making using a mask 
derived from Neurosynth (Yarkoni et al., 2011), as well as the 
Harvard-Oxford anatomical atlas available in FSL. Of note, Neurosynth 
(neurosynth.org), is an automated brain-mapping application that uses 
text-mining, meta-analysis, and machine-learning techniques to 
generate a large database of mappings between neural and behavior
al/cognitive states. Here, we focused on the term “value” from Neuro
synth’s past studies database, which included 470 studies (as of 
September 2018). The Harvard-Oxford Cortical and Subcortical Struc
tural Atlases is a probabilistic atlas provided by the Harvard Center for 
Morphometric Analysis. Only clusters of > 50 voxels were included and 
explored in proceeding steps. By combining these data sources, we 
aimed to isolate brain areas related to value-based decision-making that 
were anatomically distinct (and did not span multiple areas; derived 
ROIs shown in Fig. 1). Such an approach may overcome issues with 
voxel-wise testing (e.g., clusters of interest spanning multiple discrete 
brain regions), as well as challenges with exact neural localization (e.g., 
portions of discrete brain regions not being involved with a candidate 
neurobehavioral process, such as value-based decision-making; Woo 
et al., 2014). We extracted the mean activity for these parametric 
modulators (i.e., EV and PE) for each ROI for “approached” stimuli. 
Approached stimuli were our primary focus given past reports showing 
effects of stress on positive feedback and rewards (Hanson et al., 2018, 
2016, 2015a). Additional, exploratory analyses related to “avoided” 
stimuli are detailed in our Supplemental Materials. 

2.5. Statistical analysis 

Statistical analyses involved examination of neuroimaging measures 

Fig. 1. Graphical depiction of how our brain regions of interest were derived. These procedures involved combining automated meta-analyses from NeuroSynth.org 
related to the search term “value” (shown on the top left) and a commonly used anatomical atlas, the Harvard-Oxford Atlas (shown on the top-right). Combining 
these sources, we are able to overcome issues with each approach. As shown in the bottom of the figure, this yielded four regions that were >50 voxels. These were 
used in subsequent data reduction steps and analyses. 
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derived from our passive avoidance learning task. After ROI extraction, 
linear regression models were constructed using the R statistical package 
(http://cran.r-project.org). These models examined associations be
tween family income, task-based functional activity for “approached” 
stimuli, and depressive symptoms. Sex (binary-coded) was included as a 
covariate in all analyses. First, we examined whether family income 
(measured when youth approximately 10 and 11 years of age, entered as 
the independent variable) was related to activity in brain regions 
derived using the methods described above (entered as the dependent 
variable). To reduce Type I error, we also adjusted our p-values based on 
the Benjamini & Hochberg False Discovery Rate Correction (Benjamini 
and Hochberg, 1995). Next, we tested associations between any brain 
regions related to childhood family income (as the independent vari
able, entered in separate models) and adolescent depressive symptoms 
(measured when youth were approximately 16 years of age, as a 
dependent variable). We then tested whether family income (X) was 
associated with later depressive symptoms (Y) and whether the observed 
association was mediated by individual differences in task-based func
tional activity (M). This test was done by computing the product of the 
indirect effects (a X b), as well as the total effect (c + a × b) using 
bootstrap confidence intervals (95 % CIs) based on 5,000 draws with 
replacement in R’s lavaan package; effects were deemed significant if the 
confidence interval for indirect effects did not include zero (Preacher 
and Hayes, 2008). Earlier depressive symptoms (measured when par
ticipants were approximately 10 years of age) and sex were included as 
covariates in this mediation model. Related to our exploratory aims, we 
tested if associations existed between environmental harshness and 
unpredictability, and brain activity during this decision-making task 
using linear regression models (brain activity entered as the dependent 
variable; harshness or unpredictability entered as an independent vari
able in separate models). Finally, exploratory analyses related to task 
behavioral performance (e.g., omission errors; commission errors) dur
ing this learning task are detailed in our Supplemental Materials. 

3. Results 

3.1. Family income and neural markers of decision-making processes 

Across our derived sets of ROIs, we investigated connections between 
prediction error and expected value for portions of the PFC and the 
striatum. Examining portions of the PFC and EV, multiple anatomically 
distinct regions related to reward were associated with family income. 
Specifically, regression analyses indicated that subgenual, as well as 
more ventromedial, divisions were positively related to this SES measure 
(sACC β = 0.331, p = 0.002, ventromedial-PFC β = 0.244, p = 0.0319). 
Put another way, with greater income, greater activity was seen in these 
regions for stimuli that participants “approached.” Of note, EV-related 
activity in the pACC for approach stimuli was not related to family in
come (β = 0.187, p = .11). With PE and portions of the PFC, regression 
analysis indicated that activity in the pACC were related to family in
come (β = 0.267, p = 0.021). Associations for PE in our other PFC ROIs 
were non-significant (all p’s>.06). In regard to the striatum, family in
come was not related to brain activity for PE or EV (all p’s>.33). As 
noted above, given the number of statistical tests conducted (4 ROIs x 2 
decision-processes [PE and EV]) and to further reproducibility, we 
adjusted our p-values based on the Benjamini & Hochberg False Dis
covery Rate Correction. After application of this correction, only asso
ciations between sACC and family income remained significant 
(p = 0.023; as shown in Fig. 2); all other corrected p-values were >.08. 

3.2. Neural markers and depression 

We next investigated the potential psychological relevance of these 
neurobiological variations by examining associations between func
tional brain activity related to aspects of decision-making and a 
commonly used, symptom-based measure of depression. In line with our 
predictions and past work showing corticostriatal differences in 
depressed samples, we found significant associations between activity in 
the sACC (for approach EV) and adolescent depression; specifically, 
higher withdrawn symptoms, approximately one year after the fMRI 
scan, were correlated with lower sACC activity (β=-0.269, p = 0.017; as 

Fig. 2. Scatterplot showing associations between early family income (Wave 2 and 3, mid-point log-transformed) shown on the horizontal axis, and fMRI BOLD 
percent signal change for the subgenual anterior cingulate (sACC) for the trial-wise parametric modulator of expected value on the vertical axis. With greater levels of 
family income, greater activity is seen in this sACC ROI. 
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shown in Fig. 3). 

3.3. Probing the mediating role of the sACC 

Given connections between sACC activity, family income, and 
depressive symptoms, we tested for potential statistical mediation by 
entering family income (X), depressive symptoms (Y), and sACC activity, 
(M) into nonparametric bootstrapped models. Mirroring the results re
ported above, we find connections between sACC activity and family 
income (z = 2.737, p = 0.006), as well as sACC activity and later 
depressive symptoms (z=-4.536, p < .0001). The indirect effect 
(combining these two effects, a × b) was significant in the model con
taining the direct path from family income to depressive symptoms (B=- 
0.098, SE = 0.044, z=-2.216, p = 0.027; 95 % CI=-0.185 to -0.011, as 
shown in Fig. 4). This analysis controlled for earlier depressive symp
toms (measured at approximately 10 years of age) and sex. However, it 
should be noted that the direct association between family income and 
later depressive symptoms was non-significant (p = 0.134). 

3.4. Exploratory analysis regarding dimensions of adversity 

Motivated by past reports from our group (Chang et al., 2019) and 
connected to different adverse experiences common in impoverished 
environments, we also explored associations between functional activity 
and two dimensions of adversity (harshness and unpredictability). 
Across our ROIs (the subgenual cingulate [sACC], perigenual cingulate 
[pACC], ventromedial PFC [vmPFC]; striatum) and multiple neural 
markers (PE, EV), there were no associations with unpredictability or 
harshness (all p’s > .19, uncorrected). We also completed Bayesian ver
sions of these models and found similar patterns (as noted in our Sup
plemental Materials). 

4. Discussion 

Bridging together perspectives from cognitive, developmental, and 
clinical psychology, as well as neuroscience, the current study examined 
whether childhood family income was associated with neurobiological 

functioning related to reward learning and decision-making processes, 
and whether these alterations were associated with adolescent depres
sion. At the neural level, we found that adolescents with lower child
hood family income demonstrated reduced representation of EV in the 
sACC when making decisions during a learning task. This blunted sACC 
activity was significantly related to greater depressive symptoms one 
year later. Interestingly, indirect effect/mediation analyses suggested 
that depressive symptoms were predicted by considering income-related 
differences in sACC activity, and also relations between sACC activity 
and depression. Of important note, these effects appear to only be for 
“approached” stimuli (see our Supplemental Materials for non-significant, 
exploratory analyses for avoided stimuli). Our results suggest unique 
impacts of rewarded or positive stimuli learning. As such, these findings 
offer important insights into the effect of lower family income on cor
ticostriatal activity, and how these neurobiological changes may in turn 
give rise to depressive symptoms in adolescence. 

Our results showing an association between lower childhood family 
income and lower sACC activity complement previous findings on early 
stress exposure and neural alterations within the corticostriatal circuit. 
For instance, studies consistently find that exposure to child maltreat
ment, such as physical abuse or social neglect, is associated with reduced 
reward-related activation in the striatum (Dillon et al., 2009; Hanson 
et al., 2016, 2015a; Mehta et al., 2010). In terms of the broader corti
costriatal circuit, parental education has been related to corticostriatal 
functionality, with lower education relating to lower activity in portions 
of the anterior cingulate for rewarded compared to non-rewarded 
stimuli (Gianaros et al., 2011). These collective findings relate to 
recent work by Gerin and colleagues that found hypoactivation in por
tions of the anterior cingulate and vmPFC in maltreated youth compared 
to their non-maltreated counterparts (Gerin et al., 2017). These neural 
differences may connect to behavioral impairments in decision-making, 
such as being insensitive to changes in expected value or speeding re
sponses when the chance of winning increases (Guyer et al., 2006; 
Weller and Fisher, 2013). Considered more broadly, different adverse 
exposures and experiences may influence neural and behavioral func
tioning involved in reward learning and decision-making. 

Given our results, we believe it is important to consider how poverty 

Fig. 3. Scatterplot showing associations between parental report of withdrawn symptomatology shown on the horizontal axis, and fMRI BOLD percent signal change 
for the subgenual anterior cingulate (sACC) for the trial-wise parametric modulator of expected value on the vertical axis. Lower activity in this sACC ROI is related to 
greater withdrawn symptoms (a proxy for youth depression). 
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may be impacting neural and behavioral functioning. As detailed in our 
introduction, poverty may be conceptualized as an adverse exposure, or 
developmental context, capturing a heightened probability of many 
deleterious events likely to influence development. Adverse experiences, 
in contrast, are the direct measurement of what actually happens to a 
child (McLaughlin et al., 2020). Connected to these ideas, we attempted 
to probe different dimensions of experience, harshness versus unpre
dictability, common to poverty to more deeply understand our results. 
Experiences of harshness are external threats, while unpredictability 
involves uncertain and unexpected variations in developmental experi
ences, particularly unpredictable, chaotic, and harsh events. We, how
ever, did not find any links with brain activity in our ROIs and these 
dimensions of adversity. Our project had reasonable measures of these 
constructs, but this was not the original focus of the work. Unpredict
ability, in particular, may come in many forms of varying “sizes” (e.g., 
parental inconsistency, residential instability, fluctuating threat; see 
Adam, 2004; Davis et al., 2017) and be common in the “lived experi
ences” of poverty and the stressors associated with lower family income. 
Future research would benefit from the inclusion of these dimensions of 
adversity to compliment traditional measures of poverty. 

Reflecting on the significant association between sACC activity and 
later symptoms of depression, it is important to unpack and think about 
recent reports focused on this form of psychopathology independent of 
adversity. For example, heightened connectivity between limbic regions 
(like the amygdala) and sACC have commonly been reported in samples 
of individuals with depression, with many arguing this represents a 
neural risk marker for the development of depression (Marusak et al., 
2016). While our results may seem complex (or even potentially coun
terintuitive) in light of these patterns, it is important to consider: 1) the 
task domain (or lack thereof) being probed, and 2) challenges with 
specific spatial locations in the prefrontal cortex. Connectivity-based 
resting state studies have constituted much of the work finding height
ened sACC “activity” (Connolly et al., 2013; Greicius et al., 2007). It is 
likely that brain activity will show different patterns when using 
different tasks (e.g., emotion processing versus 
reward/decision-making). Finally, many studies examine the PFC (or 
adjacent anterior cingulate cortex), but reported findings are often 
variable in naming convention and cover large, heterogeneous regions 
of the brain (Marusak et al., 2016). 

Connecting our significant results to previous cognitive neuroscience 
work, portions of the PFC, including the sACC, are implicated in tracking 

the expected value of rewards, and these areas of the PFC allow for 
flexible, adaptive decision making in response to changing stimulus- 
outcome contingencies (Frank and Claus, 2006; Haber and Knutson, 
2010; Murray et al., 2007). Given these findings, we believe it is 
important to expand neurobiological foci in the search for brain-based 
mechanisms linking adversity to psychopathology (Palacios-Barrios 
and Hanson, 2019). The majority of investigations (Hanson et al., 2019, 
2015c, 2015b) have focused on the amygdala and the broader cortico
limbic circuit. Fewer studies have centered in on corticostriatal circuitry 
in relation to child poverty and other early stressors (cf. (Romens et al., 
2015). With deep relations to multiple forms and aspects of psychopa
thology (Snyder et al., 2017), in-depth investigations of corticostriatal 
networks could aid in understanding the impact of negative environ
mental experiences. Taking cues from affective neuroscience, many 
research groups have gained additional purchase in understanding 
depression (independent of adversity) by focusing on aspects of reward 
learning and decision-making. For example, different research groups 
have examined reversal learning where stimulus-reward pairings are 
learned and then contingencies are switched (Cools et al., 2002; Fellows 
and Farah, 2003). Behavioral and neurobiological differences have been 
noted between individuals with and without depression (Remijnse et al., 
2009; Robinson et al., 2012), and this could be a particularly fruitful 
avenue of investigation in relation to adversity-related 
psychopathology. 

Considering the strengths of our work, the current study benefitted 
from the use of a prospective, longitudinal study design that permitted 
temporally separated assessment of childhood family income, adoles
cent brain activity, and later depressive symptoms. Recruitment and 
tracking of participants from childhood to adolescence strengthened 
developmental considerations, as youth during this period experience 
extensive neurodevelopment of corticostriatal structures, as well as a 
significantly elevated risk for depression. The reasonable sample size 
and use of a well-validated reward learning and decision-making task 
served as additional advantages. However, we must consider potential 
issues with the work; one notable limitation is the timing of our mea
surements. Our earliest income variable is when youth were ~10 years 
of age, but exposures and experiences in early childhood may pro
foundly shape development. It is likely that different critical and sen
sitive periods exists for the impact of poverty, harshness, 
unpredictability, and other adversities (Gabard-Durnam and McLaugh
lin, 2020). However, the design of our work is unable to speak to this 

Fig. 4. Statistical mediation models are shown in this figure. Standardized regression coefficients along with their standard errors (in parentheses) are shown for each 
path. Significant coefficients are bolded (Path a: Income to Brain Activity; Path b: Brain Activity to Depression). The indirect effect [aXb] is significant (p = .027); 
however, and of important note, the direct effect from income to depression was not (p = 0.134). 
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issue and may represent an overestimation of the effect of income in 
middle childhood. Future work should aim to have measures of poverty 
and socioeconomic status earlier in development, while also considering 
important developmental moderators (e.g., parenting or peer relation
ships). It will similarly be important to think about what other factors 
may be driving changes in the brain, such as changes in inflammation 
and hypothalamic-pituitary-adrenal axis functioning (Kraynak et al., 
2019). 

These limitations notwithstanding, our results provide suggestive 
data about potential neurobiological alterations seen after lower family 
income (and exposure to child poverty). Few investigations have 
examined the corticostriatal circuit in relation to variables such as 
family income or other markers of poverty. Even fewer reports have 
leveraged novel paradigms and approaches derived from basic cognitive 
neuroscience and neuroeconomics. By decomposing elements of reward 
learning and decision-making, we uncovered novel connections with 
child poverty, brain activity, and adolescent depression. These neural 
alterations may be a potential mechanism underlying the commonly 
seen associations between child poverty and later depression. Variations 
within portions of PFC may convey risk for depression and other facets 
of mood dysregulation (Lemogne et al., 2012). Indeed, advances in in
terventions for depression have actually started specifically focusing on 
cultivating positive affect and reducing anhedonia (Fava and Tomba, 
2009; McMakin et al., 2011). Continued progress in this space could 
have implications for the development and implementation of novel 
resilience-promoting interventions in those exposed to child poverty and 
other early life adversities. Similar approaches might be effective in 
reducing the negative developmental consequences of poverty and the 
stressors associated with poverty. Additional research is needed to 
clarify the complex relations among early poverty exposure and 
long-term mental health difficulties; our data are, however, a needed 
step in the ability to predict, prevent, and treat stress-related 
psychopathology. 
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