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ABSTRACT

In the context of a star cluster moving on a circular galactic orbit, a “potential es-
caper” is a cluster star that has orbital energy greater than the escape energy, and
yet is confined within the Jacobi radius of the stellar system. On the other hand
analytic models of stellar clusters typically have a truncation energy equal to the
cluster escape energy, and therefore explicitly exclude these energetically unbound
stars. Starting from the landmark analysis performed by Hénon of periodic orbits of
the circular Hill equations, we present a numerical exploration of the population of
“non-escapers”, defined here as those stars which remain within two Jacobi radii for
several galactic periods, with energy above the escape energy. We show that they can
be characterised by the Jacobi integral and two further approximate integrals, which
are based on perturbation theory and ideas drawn from Lidov-Kozai theory. Finally
we use these results to construct an approximate analytic model that includes a phase
space description of a population resembling that of potential escapers, in addition to
the usual bound population.

Key words: galaxies: star clusters: general; methods: analytical

1 INTRODUCTION

1.1 Tidal effects on the structure of star clusters

As a star cluster orbits around the centre of the host galaxy,
the tidal forces induced by the galactic potential shape the
“unstable” orbits on which stars, in principle, can escape
from the cluster. In the simplest case, we may consider the
star cluster as moving on a circular orbit around the galac-
tic centre, and the motion of a star in the potential of the
galaxy-cluster system may be treated as a restricted three-
body problem (for a review of “Hill’s problem” in the con-
text of star cluster dynamics, see Heggie 2001a). Several of
the interesting physical mechanisms that underlie the dy-
namical evolution of star clusters depend on the effects of
the tidal field of the host galaxy. None the less, star clus-
ters are still often studied in the context of simple analytic
models in which the action of tides is implemented by im-
posing a suitable energy truncation, perhaps supplemented
by a prescription for the escape of stars.

In this context a classical problem in stellar dynamics
is the search for self-consistent solutions of the Boltzmann

⋆ E-mail: kjdaniel@brynmawr.edu (KJD); d.c.heggie@ed.ac.uk
(DCH); varri@roe.ac.uk (ALV)

equation with a tidal cutoff, such as the family of models
proposed by King (1966). These solutions are often defined
as functions of constants of the motion which characterise
a stellar system, e.g. the stellar energy. In this approach,
the starting point is the identification of an appropriate
form for the distribution function in phase space. Indeed, as
a zeroth-order dynamical description, the simple classes of
spherical equilibrium models defined by a Maxwellian distri-
bution function, suitably modified near the tidal boundary
and truncated above it (e.g. Woolley & Dickens 1961; King
1966; Wilson 1975 and, more recently, Gomez-Leyton & Ve-
lazquez 2014 and Gieles & Zocchi 2015), have had remark-
able success in reproducing the observed properties of glob-
ular clusters (e.g. see McLaughlin & van der Marel 2005).

Of course, the choice of the tidal modification in the
definition of the distribution function strongly affects the
structural and kinematic properties of the resulting configu-
rations, at least in the outer parts of the cluster (see Davoust
1977; Hunter 1977). Modifications which give smoother dis-
tribution functions, such as in Wilson (1975) models, gener-
ally produce configurations with more extended halos, and
these equilibria are often more successful than King (1966)
models in reproducing the surface brightness and velocity
dispersion profiles of star clusters in the proximity of the
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prescribed truncation radius (see Section 4 of McLaughlin &
van der Marel 2005, and other references listed below). This
aspect is particularly relevant for the dynamical study of
star clusters characterised by significant “extra-tidal” struc-
tures, i.e., with a surface brightness profile extending beyond
the cut-off predicted by spherical King models (e.g. see the
structural parameters of star clusters in the Milky Way and
its satellites as determined by McLaughlin & van der Marel
2005 and Miocchi et al. 2013, in M31 by Barmby et al. 2002,
and in NGC 5128 by Harris et al. 2002, especially their ta-
ble 3), or velocity dispersion profiles which are peculiarly
flattened in the outskirts of the cluster (e.g. see the studies
of M15 and M92 by Drukier et al. 1998, 2007, ω Cen by
Sollima et al. 2009 and Da Costa 2012, and NGC 5694 by
Bellazzini et al. 2015). In this context, an heuristic approach
to the description of the density profile in the proximity of
the tidal boundary has often been adopted, by characterising
its slope in terms of a power-law function (e.g. see Grillmair
et al. 1995; Leon et al. 2000, and more recently Olszewski et
al. 2009; Correnti et al. 2011; Kuzma et al. 2016) or similar
templates (see Elson et al. 1987; Küpper et al. 2010).

Such analytic equilibrium models and templates are
usually limited to a very idealised treatment of the cluster-
galaxy system, in which the tidal field is assumed to van-
ish within the Jacobi radius. In contrast, its effects are in-
cluded fully in the slightly more realistic equilibrium models
of Heggie & Ramamani (1995) and Bertin & Varri (2008),
but these models have not been applied to observed clus-
ters, and cannot account for the observed flattened velocity
dispersion profiles just inside the Jacobi radius. In fact, so
far only numerical simulations by means of N-body codes,
in which an external tidal field can be taken into account ex-
plicitly, provide a tool for the full study of the evolution of a
tidally perturbed cluster, especially when elliptic galactic or-
bits are considered, so that tidal effects are time-dependent
(see Aarseth 2003; Renaud & Gieles 2015). In particular, this
approach has led to detailed investigations of the rich mor-
phology and kinematics of the tidal tails, i.e. the streams of
stars which have escaped from the cluster, resulting in a ma-
jor improvement of our current understanding of these strik-
ing morphological and dynamical features (e.g. see Johnston
et al. 1999; Küpper et al. 2008).

In addition to the existence of tidal tails, numerical sim-
ulations have also shown that even star clusters on sim-
ple circular orbits possess a population of stars with en-
ergies above the escape energy which are none the less
confined within the stellar system itself (“potential esca-
pers”). Though the definition sounds contradictory, it was
realised long ago by Hénon (1970) that such stars could ex-
ist. They were later studied with N-body simulations by
Heggie (2001b) and Baumgardt (2001). From the theoret-
ical point of view, potential escapers play a fundamental
role in determining the properties of the process of escape
from a star cluster (especially its time scale, see Ross et al.
1997, Fukushige & Heggie 2000, and related prescriptions by
Takahashi & Portegies Zwart 2000, Giersz et al. 2013, and
Sollima & Mastrobuono Battisti 2014 for their implementa-
tion in the context of Fokker-Plank and Monte Carlo codes,
respectively). From a more phenomenological perspective,
Küpper et al. 2010 have shown that such a population of en-
ergetically unbound stars dominates the mass distribution
of a star cluster above about 50 per cent of its Jacobi radius,

and that beyond 70 per cent nearly all stars are potential es-
capers. This investigation also revealed that the behaviour
of the main observables, especially the surface brightness
and velocity dispersion profiles, in the proximity of the tidal
limitation of the system, is almost entirely shaped by the
contribution of these energetically unbound stars.

This recent progress on the numerical exploration of
the structural and kinematic properties of tidally perturbed
star cluster models is particularly relevant in the context
of the forthcoming “era of precision astrometry” for Galac-
tic studies. The exquisite astrometric information which
is beginning to emerge from the Gaia mission, combined
with ground-based wide-field imaging, archival information
from the Hubble Space Telescope, and detailed spectroscopic
campaigns (e.g. Gaia-ESO survey, see Gilmore et al. 2012),
will allow us to access, for the first time, virtually the full
phase space of several Galactic star clusters. In this respect,
a key element is that such a richness of observational data
will allow us to map stars in the outer regions of several
Galactic globular clusters on the basis of photometry, proper
motions and parallaxes, leading to a proper separation of
cluster members and foreground/background stars; such a
distinction is critical for studying the outskirts of globular
clusters, especially to empirically distinguish between ener-
getically bound and unbound stars.

Unfortunately, this growing body of numerical and
observational information is not matched by comparable
progress in the theoretical understanding of the phase space
properties of tidally perturbed stellar systems, and, as a re-
sult, none of the analytic models which are currently avail-
able include the contribution of the potential escapers. The
need of such a tool is the stimulus that triggered the present
study.

1.2 Outline of the paper

We begin by reviewing Hill’s equations (Sec.2.1) and their
invariant Γ (the Jacobi integral). These are a special form
of the equations of motion of a star in a cluster on a circu-
lar galactic orbit, and form the basis of Hénon’s landmark
analysis of a remarkable family of stable, planar, periodic or-
bits (Hénon 1969, 1970), which we review in Sec.2.2. Their
particular relevance for this paper is that they contain eas-
ily understood examples of potential escapers. Sec.2.3 ex-
tends Hénon’s survey into a numerical exploration of three-
dimensional orbits. The initial conditions are still chosen by
an artificial procedure, and so Sec.2.4, which is really prepa-
ration for later sections of the paper, discusses how to select
initial conditions according to principles of equilibrium sta-
tistical mechanics (the “microcanonical ensemble”).

Sec.3 begins with theoretical and numerical results on
the dynamics of orbits above the escape energy, and then
(Sec.3.2) sets up a criterion for approximately determining,
on the basis of initial conditions alone, whether a particle
escapes or not. In this part of the study we use sets of orbits
for various discrete values of Γ, each set using essentially
a microcanonical distribution of initial conditions. Then
in Sec.4.1 a new data set is considered, with random, uni-
formly distributed values of Γ, for each of which the initial
conditions are again selected from the microcanonical distri-
bution. The spatial and kinematic distributions of this data
set are described. Then Sec.4.2 builds a composite model
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from a Woolley model plus a distribution of non-escapers
constructed by applying the escape criterion to a canonical

distribution (in analogy with the distribution function of
the Woolley model). We conclude the paper by presenting
an extensive discussion of the limitations and strengths of
the resulting equilibria (Section 5).

1.3 A note on nomenclature

The notion of potential escapers, which we have already de-
fined and referred to several times, is quite well established
in the literature, but it is not identical to the idea of non-
escapers, with which we will be concerned in practice in this
paper. In an N-body model, potential escapers include tran-
sients, such as ejecta from three-body interactions, which
leave the cluster promptly. It also includes stars whose en-
ergy comes to exceed the escape energy simply because the
potential well of the cluster becomes shallower as a result of
escape. It includes stars whose energy has been altered by
two-body relaxation. None of these processes are included in
our work, which considers orbits in a simplified gravitational
field, which is smooth and static in a frame which rotates
with the cluster about the galactic centre. In such a model
there are stars which never escape, and others for which the
time scale of escape can be very extended. In the context of
numerical integrations, these are indistinguishable, and so
we are obliged to define “escape” in an essentially arbitrary
but practical manner which relates to the astrophysical con-
text.

We now describe the choice we have made, leaving more
detailed discussion to Sec.5.1.1. Throughout this investiga-
tion, we operationally define a “non-escaper” as an orbit, at
an energy above the energy of escape, such that its maxi-
mum radius, during a time of 8 revolutions of the cluster
around the galaxy, is less than twice the Jacobi radius. The
criterion which we construct in Sec.3.2 aims to match the
distribution of non-escapers, defined in this sense, and so a
star on an orbit satisfying this criterion will be referred to
as a “predicted non-escaper”.

2 NUMERICAL STUDIES OF NON-ESCAPING

ORBITS IN HILL’S PROBLEM

2.1 Equations of motion

In a linear approximation of the tidal field, the equations
of motion of a star in a star cluster are given in Chan-
drasekhar (1942). The coordinate system he adopts has the
origin placed at the centre of the globular cluster and the
frame co-rotates with the cluster. The Cartesian unit vector
exR points radially away from the galactic centre, and eyR

points in the direction of rotation about the galactic cen-
tre, where the subscript “R” indicates this rotating frame.
We use units in which G = 1, the cluster mass is unity and
the angular velocity of motion about the galaxy is also unity.
Thus the unit of time at the sun’s distance from the Galactic
Centre would be about 3.5 × 107yr. If we assume further-
more that the galactic and cluster potentials are Keplerian,

Figure 1. Figure 12 from Hénon (1970). The horizontal axis
shows the 2D analogue to the Jacobi integral, Γ, while the vertical
axis shows the xR-coordinate of the starting point, which Hénon
calls ξ. The curve marked “f” gives the initial conditions for the
f -orbit family. Credit: M. Hénon, A&A, 9, 30, 1970, reproduced
with permission c©ESO.

then the equations of motion are those of Hill’s problem, i.e.

ẍR = 2ẏR + 3xR − xR

r3R
, (1)

ÿR = −2ẋR − yR
r3R

(2)

z̈R = −zR − zR
r3R

. (3)

where

rR = (x2
R + y2

R + z2R)
1/2. (4)

Throughout our analysis it will also be convenient to
use a coordinate system which shares the same origin as
the above rotating frame, i.e. at the centre of the cluster
potential, but is non-rotating. The two coordinate systems
coincide at t = 0, and, since the angular velocity of the
cluster around the galaxy is unity, the components of the
velocity are given by

ẋN = ẋR cos t− ẏR sin t− yN (5)

ẏN = ẋR sin t+ ẏR cos t+ xN (6)

żN = żR, (7)

where the subscript “N” indicates the non-rotating frame.
The corresponding equations of motion are

r̈N = −rN

r3
+ 2xRexR − yReyR − zRezR, (8)

where exR, eyR, ezR are the three unit vectors of the rotat-
ing frame. This way of expressing the tidal acceleration is
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convenient because the galactic tidal potential is constant
in the rotating frame. (See equation 13 below.)

These equations have an integral, the Jacobi integral,
which will be very important throughout this study, and is
defined as

Γ = 3x2
R +

2

rR
− z2R − ẋ2

R − ẏ2
R − ż2R = −2ER, (9)

where ER is the energy in the rotating frame. In terms of the
non-rotating coordinate system, the energy and the Jacobi
integral can be related in the form

HK = −1

2
Γ + JzN − Φt, (10)

in which the new notation is defined as follows:

• HK is the Keplerian energy in the non-rotating frame,
i.e.

HK =
1

2
v
2
N − 1

r
, (11)

where vN denotes the velocity vector;
• JzN is the z-component of the angular momentum in

the non-rotating frame, which can be written as

JzN = ω.(rN × vN), (12)

where ω, the angular velocity of the cluster around the
galaxy, is simply the unit vector in the z-direction; and

• Φt is the tidal potential, which is most economically
expressed in the rotating frame, i.e.

Φt = −x2
R +

1

2
y2
R +

1

2
z2R. (13)

2.2 Hénon’s f orbital family

During his exploration of the restricted 3-body problem in
the 2D Hill’s approximation, Hénon (1969, 1970) identified
a family of stable periodic orbits, which he called family f
and which have formed the starting point of our own ex-
plorations. In those papers his exploration was limited to
planar orbits which start on the xR-axis with ẋR = 0; then
ẏR > 0 is determined by the value of Γ.

For the reader’s convenience, Fig. 1 shows a re-print of
fig. 12 from Hénon (1970). The horizontal axis shows the Ja-
cobi integral Γ, and the vertical axis shows the initial value
of xR. The horizontal hashed regions are “forbidden” in the
sense that their boundary marks the zero velocity curves of
the effective potential. A star with Γ < ΓJ ≡ 34/3 ≃ 4.33,
will have energy greater than the critical energy at the La-
grange points L1, L2, which are marked on the figure; they
lie at xR = ±rJ , where the Lagrangian (Jacobi) radius is
rJ ≡ 3−1/3 ≃ 0.69. Initial conditions for the f -orbital fam-
ily are marked “f”. Vertically hashed regions are regions of
stability, in the sense that a star launched from position xR

in the hashed region, with initial velocity defined as above,
describes a closed invariant curve in a surface of section. (See
Binney & Tremaine 2008, Section 3.2.2 for an introduction
to the use of this technique in stellar dynamics, though it
plays no further role in our study.) For our purposes the
importance of these findings is that, in the planar problem
considered by Hénon, such a star must remain in the vicin-
ity of the star cluster for all time. Indeed, in the sense used

in this paper (see Secs.1.3 and 2.3) it is a non-escaper, pro-
vided that its radius remains less than 2rJ up to at least
time 16π.

In Fig. 2, we show several examples of f -orbits where
we have used the initial conditions published in table 3 of
Hénon (1969).1 The orbit is shown in dark blue while the
tidal (Jacobi) radius (rJ ) is cyan. f -orbits with low values of
Γ appear as approximate epicycles to orbits about the galac-
tic centre with guiding centre at x = y = 0. At high values
of Γ, f -orbits appear as approximate circular Keplerian or-
bits about the cluster. The orbits in this family cross from
lying entirely within to entirely outside the Jacobi radius at
a threshold value Γ ≈ 0. For our purposes, the importance
of these results is that they show us in simple terms that it is
possible for a star to remain inside the cluster even though
its energy exceeds the energy of escape (i.e. Γ < ΓJ ). It is
also shown in Appendix A that the f -orbits can be described
successfully, in the range Γ >∼ 0, by using first-order pertur-
bation theory; they are approximately Keplerian orbits with
a tidal perturbation. This result was important in guiding us
to the possibility that non-escaping orbits in general might
be thought of as tidally perturbed Keplerian motions.

2.3 Two-parameter exploration

We now expand Hénon’s exploration from a one-parameter
family of planar orbits (at fixed Γ) to a two-parameter fam-
ily of three-dimensional orbits, that is, we consider starting
positions on the xR, zR plane yR = 0. As in Section 2.2,
the starting velocity is orthogonal to this plane, but hence-
forth we restrict values of Γ to the range [0,ΓJ ], and in this
subsection restrict the starting position to points within the
Jacobi radius rJ .

In Fig. 3 we show a tabular sample of the orbits, pro-
jected onto the xN − yN plane of the non-rotating frame.
These show results for Γ = 3, and we have carried out sim-
ilar visual studies for several other values of Γ ∈ [0,ΓJ ].
The top, leftmost panel shows a planar orbit starting at
y0R = 0, x0R = −r0 = −rJ . Thus it corresponds to the mo-
tion in Fig.1 at Γ = 3, ξ = −rJ , close to the lower boundary
of the vertically hatched region surrounding family f . Each
row down has an initial radius, r0, that incrementally de-
creases by 0.1 (in the units described in Section 2.1) and
each column to the right has incrementally increasing initial
inclination, i0, from the xR − yR plane (where i0 = 0 is on
the negative xR-axis pointing toward the galactic centre at
t = 0 and increases via the positive zR-axis towards the posi-
tive xR-axis in steps of 15◦). The values for the initial radius
and inclination are shown at left and bottom, respectively.
We integrated each orbit for sixteen galactic orbital periods,
i.e. 32π units, corresponding to approximately 3.5Gyr at the
Sun’s Galactocentric distance.

The colour of each panel divides the orbits into two
classes, which we refer to as “escaper” and “non-escaper”.
Operationally, our definition is that an orbit is classed as a
“non-escaper” if its maximum radius r, over an integration
time of 16π (i.e. half the integration time in Fig.3), is less

1 We have used a variable-order integrator from the scientific
Python integration library (odeint), and tested our orbits to en-
sure that the change in Γ remains less than 10−6.
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Figure 2. Examples of stable f -orbits with initial conditions from Hénon (1969). The associated Γ and initial position, x0 ≡ xR(0), for
each orbit are printed as an inset. The abscissa and ordinate are xR, yR, respectively.

than 2rJ , and an escaper otherwise. Our reason for choos-
ing a radius larger than rJ is the possibility, suggested by
Fig.1, that there may exist permanently bound planar or-
bits with maximum distance slightly larger than rJ , even for
values of Γ in the restricted interval which we have explored.
This issue is discussed further in Section 5.1.1, though for
the small sample of orbits in Fig.3 it may seem that this
precaution is superfluous; non-escapers appear to remain
within the Jacobi radius, though it must be recalled that we
have here only the projection of three-dimensional motions.
Similarly, there are no orbits classed here as “non-escapers”
which escaped over the longer integration time of 32π. In-
deed, the majority of escapers were classified as such within
the first few orbital periods. We further discuss our classifi-
cation scheme in the context of integration time in Section
5.1.1.

A central aim of our efforts in Section 3 will be to build
a simple criterion which enables us to distinguish escapers
from non-escapers. However, in order to construct an equi-
librium distribution function, such a criterion should depend

only on integrals of the motion, which is the subject of Sec-
tion 3.1. All we see from the results shown in Fig.3 is that
non-escapers in this sample generally start inside the Jacobi
radius and are retrograde (i.e. i0 < 90 in our notation). The
latter characteristic of non-escapers has been known for a
long time (e.g. our Fig.1, and Keenan & Innanen 1975, and
references therein). These authors note that this finding may
be understood in terms of resonance between the motion of
the star and that of the cluster, but also observe that retro-
grade motion results in a Coriolis acceleration towards the
cluster centre in the rotating frame, which thus effectively
operates in such a way as to enhance gravitational attrac-
tion (see also Read et al. 2006). In our explorations, at fixed
Γ, an analogous effect also emerges from equation (10). This
equation shows that retrograde motions in the non-rotating
frame, which have JzN < 0, correspond to more negative
values of the Keplerian energy HK . Thus retrograde orbits
have smaller semi-major axis (in the Keplerian approxima-
tion), which means that they are subject to smaller tidal
acceleration, and are therefore less liable to escape.
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Figure 3. Three-dimensional orbits with Γ = 3, projected onto the xN , yN plane in the non-rotating frame. At upper left is a planar
orbit starting on the xR-axis at xR = −r0 = −rJ with a velocity orthogonal (in the rotating frame) to the xR-axis. In general the initial
position is x0R = −r0 cos i0, y0R = 0, z0R = r0 sin i0. Γ is held constant, while r0 is decreased by 0.1 with each step down, and i0 is
increased by 15◦ with each step to the right. This choice of initial conditions, for some values of the inclination, may be impossible (i.e.,
the initial velocity would be imaginary, see equation 9); in such a case, we have left the corresponding panel empty (see five occurrences in
the top row). The initial parameters (r0, i0) for each orbit are given by the lower-left axis labels. The orbital trajectory in the non-rotating
frame is plotted in purple, with the axes labelled upper-right. The tidal radius is shown as a cyan circle, distorted slightly by the scaling

of the graphics. The classification of each orbit (as escaper or non-escaper) is determined empirically, as described in the text, where a
red background indicates an escape orbit and a lavender background indicates a non-escaper. Orbits with i0 = 165◦ and 180◦ are not
shown; they are escapers, and qualitatively similar to those in the last column. The integration time is 32π.

2.4 Full exploration at fixed Γ

While orbits may be expected to cross the x, z plane at some
point, there is no reason why they should do so orthogo-
nally. Therefore the results of the previous subsection by
no means provide full coverage of phase space, even if this
is restricted to a fixed value of Γ and orbits inside the Ja-
cobi radius. In Appendix D we therefore present a different
procedure to sample a Γ-hypersurface in phase space. It is
based on the microcanonical ensemble of statistical mechan-
ics, and therefore the distribution on a Γ-hypersurface would
be time-invariant if the hypersurface were finite. That is not
the case here, however, and so we also impose a condition

r < ric, where the threshold value ric is to be chosen. We
have explored values from rJ to 2rJ , but it will become clear
from Section 5.1.1 that the lower value would exclude a sig-
nificant number of non-escapers, while the higher value in-
cludes such a large proportion of escapers that the selection
of initial conditions would become very inefficient. Therefore
we have settled on a compromise of ric = 1.

It is clear that initial conditions chosen in this way are
still not an equilibrium distribution: the escaping popula-
tion evacuates certain regions of phase space which were
initially uniformly populated (in the sense of equation D1).
But we can suppose that a Γ-hypersurface is partitioned
into two regions: the region of escapers evolves to leave a
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Figure 4. Relative amplitude of the variation of angular momen-
tum for f -orbits, plotted against the maximum distance from the
origin. Both quantities are evaluated using the perturbation the-
ory in Appendix A. In that approximation the angular momentum
has a constant term and a single sinusoidal term, and the ordi-
nate is the ratio of the amplitude of the sinusoidal term to the
constant term. The orbits are planar, and so JN = |JzN |.

distribution function which is equal to zero; but the region
of non-escapers is indeed approximately time-invariant, as
we check in Section 4.1.

3 THE LOCATION OF NON-ESCAPERS IN

PHASE SPACE

In order to construct an equilibrium distribution func-
tion that includes the phase space contribution of “non-
escapers”, as defined in Section 2.3, one must identify orbits
for these stars in terms of integrals of motion. In an inte-
grable problem with three degrees of freedom we normally
require three integrals. Unfortunately, the only known rigor-
ous invariant is Γ, and so we must seek two further approx-
imate invariants. Both numerical results (from the previous
section) and analytic ideas will guide us.

In Section 3.1.1 we present some simple arguments
about approximate integrals, based on an approximate an-
alytic theory of perturbed Kepler motion, and these ideas
shape our discussion of some numerical evidence in Section
3.1.2. Having determined suitable approximate integrals, we
next perform a number of numerical explorations, as follows.
Generally, we will calculate orbits with given values of Γ by
sampling the initial conditions in the manner described in
Section 2.4 and Appendix D. In Sec.3.2.1 we begin to con-
struct a “training set” defined by six reference values of Γ,
which coarsely sample the range of interest of the energy
invariant Γ. We use these data to find a criterion (for each
of the basic six values of Γ) which approximately discrim-

inates escaping from non-escaping orbits, and then extend
it (by linear interpolation) to achieve the same aim for an
arbitrary value of Γ within a wide range. Then in Sec.3.2.2
the viability of the resulting criterion is tested on an inde-
pendent set of orbits, characterised by a finer, regular grid
of values of Γ within the range of interest (a 44-sample “vali-
dation set”). This test reveals that some enlargement of the
training set is required, and satisfactory results are found
with a training set containing data for 19 discrete values of
Γ. Further testing on an even larger, independent library
of orbits is incorporated into Section 4.1, where, however,
the focus is on the properties of the predicted non-escaping
population only.

3.1 Approximate integrals of motion

3.1.1 Analytic considerations

The numerical evidence which we are about to present be-
comes much more intelligible in the light of some analytic
ideas and calculations which we describe here. We begin
with the f -orbits which were discussed in Section 2.2. There
it was pointed out that, for large Γ, these are Keplerian or-
bits, mildly perturbed by the time-dependent tidal field. As
shown in Appendix A, their location is well described by a
first-order perturbation calculation, even down to Γ ≃ 0.5
or less. This work is also instructive about the issue of ap-
proximate integrals. Thus Fig. 4, which is based on the same
perturbation theory (equation A14), shows the variation in
JzN (i.e. the normal component of angular momentum in
the non-rotating frame) for the family of f -orbits, plotted
against a measure of the size of the orbit. Here, the orbits
are planar, and so JN = |JzN |. From this we conclude that
f -orbits which extend to the tidal radius show a variation
whose relative amplitude is less than approximately 16%.
Though this might seem an unreasonably high amplitude
of variation for an approximate integral of motion, it will
be seen in due course (Table 1 below) that the numbers of
non-escapers in the regime of small Γ are very small.

This result encourages us to consider the possibility that
invariants of perturbed Kepler motion in the non-rotating
frame could serve as the approximate integrals which we
seek. In this frame the energy is

EN ≡ 1

2
v
2
N − 1

r
+Φt. (14)

In our approximation, in which Φt is the tidal potential of
Hill’s problem (equation 13), this expression, regarded as a
Hamiltonian, is exactly the same as in quadrupole Lidov-
Kozai theory (see Merritt 2013, Section 4.8.2, for an intro-
duction). In this theory, after we have averaged over the fast
Keplerian motion and the slower motion of the perturber,
several invariants of the averaged problem emerge. Two of
these are the average Kepler energy (in the non-rotating
frame), i.e. the average of HK , defined in equation (11), and
the average of the z-component of the angular momentum
JzN (see equation 12).

In Lidov-Kozai theory there is a third important in-
variant, which is the average of the perturbation potential,
i.e. Φt in our notation. However, it is easy to see from equa-
tion (10) that 〈Φt〉 adds nothing to the set {Γ, 〈HK〉, 〈JzN 〉}.

Lidov-Kozai theory is usually presented as a perturba-
tion theory, the small parameter being the ratio of the semi-
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Figure 5. Time evolution of the vertical component of the angular momentum for the orbits shown in Fig. 3. The orbital stability is
characterised by the same colour code (red and lavender for escapers and non-escapers, respectively). For all orbits Γ = 3.0 and the
angular momentum is evaluated in the non-rotating frame. The initial parameters (r0,i0) for each orbit are given by the lower-left axis
labels. The evolution of JzN as a function of time is plotted as a blue solid line, with the axes labelled upper-right (the unit of time is
2π). For non-escapers, the key in each frame gives the maximum and time-average of JzN . See Fig. 3 for a discussion of the five empty
panels in the top row.

major axes of the “inner” and “outer” binaries. Here we
may measure the strength of the perturbation by the ratio
of the perturbing acceleration ∇Φt to the Kepler accelera-
tion, and this ratio is of order a3. Thus to apply Lidov-Kozai
theory we think of a as small. Also, Lidov-Kozai motion has
two basic frequencies, i.e. those of the two binaries, and in
our context these are a−3/2 (the Keplerian frequency) and 1
(the angular velocity of galactic motion). Then Lidov-Kozai
oscillations have a frequency which is approximately in ge-
ometric progression, i.e. of order a3/2.

One last point has to be made before we turn to the
numerical evidence. While 〈JzN 〉 is thought of as an invari-
ant in Lidov-Kozai theory, it differs from the usual angular
momentum by the removal of short-period oscillations, i.e.
those with the frequencies of the inner and outer binaries.
For this reason we also work, not with the instantaneous val-

ues of JzN and HK , but with perturbed values which correct
for the main short-period oscillations. These calculations are
described in Appendices B and C. The corrections are based
on perturbation calculations, and hence are not even approx-
imately correct when the perturbation is large, i.e. when a is
not small. Therefore for practical purposes we use the cor-
rected expressions of Appendices B and C only when HK

is smaller than some negative cutoff value, Hcrit. This gives
approximate invariants which we refer to below as Hopt and
Jz,opt.

The corrections are smaller, in order of magnitude, for
the Keplerian energy HK than for JzN , for the following
reason. When the equations for the rate of change of HK

are averaged over the short-period motion, no secular term
remains. But there is a secular term for the averaged rate
of change of JzN , which has also to be averaged over the
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Figure 6. Time evolution of the Kepler energy, as measured
in the non-rotating frame, for four representative cases of non-
escaping orbits selected among the numerical exploration pre-
sented in Fig. 3. We highlight these cases mostly to provide evi-
dence that the Kepler energy is an appropriate approximate con-
stant of the motion, but also because they display a typical range
of behaviour in the time variation of the magnitude of the total
angular momentum (as illustrated in Fig. 7). Values of r0 and i0
are given in the key of each frame, and Γ = 3. Time t is in units
of 2π.

long-period motion about the galaxy before no secular term
remains. Therefore it may be expected that variations in JzN

will be larger than those in HK , as the frequency of galactic
motion is generally smaller than that of Kepler motion in
the domain of interest.

3.1.2 Numerical evidence

We return to the two-parameter survey described in Sec-
tion 2.3. In Fig. 5 we show the time-dependence of the z-
component of the angular momentum in the non-rotating
frame corresponding to the orbits shown in Fig. 3 (Γ = 3.0).
Each panel again has the initial position specified by the
parameters (r0, i0) given by the lower left axes.

This tableau exhibits a number of interesting proper-
ties of the motions. For Γ = 3, the f -orbit would correspond
to starting conditions i0 = 0 and r0 ≃ 0.25 (Hénon 1969,
table 3, and our Fig. A1), and in a wide region of the di-
agram around this point the variation of JzN with time is
small, i.e. it is an approximate invariant. Towards the right-
hand side of the region of non-escaping orbits, for example at
r0 = 0.39, i0 = 75◦, JzN appears to exhibit an approximate
periodicity, with a period which is considerably longer than
the period of motion of the cluster around the galaxy (i.e. the
time unit in this figure). This is a symptom of Lidov-Kozai
cycling (Section 3.1.1), which is prevalent in high-inclination
orbits. The large variation of JzN for nearly-planar orbits far
from the f -orbit, i.e. towards the top and bottom of the first
two columns of the diagram, results from the short-period
perturbations referred to above in Section 3.1.1. Though this

t
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Figure 7. Time evolution of the magnitude of the total angular
momentum, as measured in the non-rotating frame, for the same
four non-escaping orbits depicted in Fig. 6. The time evolution of
the vertical component of the angular momentum of these four
cases may be found in the tableau depicted in Fig. 5.

might be surprising for the orbits which start at small val-
ues of r0 (which is the initial distance from the origin), Fig.3
shows that these are high-eccentricity orbits for which the
tidal perturbation will also be large.

We have also studied the Keplerian energy in the non-
rotating frame as defined in equation (11). For brevity we
do not display all the orbits of the two-parameter survey for
Γ = 3, but Fig.6 illustrates four examples of non-escaping or-
bits exhibiting typical behaviour. Though the Kepler energy
exhibits oscillations, their relative amplitude is generally
smaller than that of JzN , as forecast in Section 3.1.1, and
not significantly larger in orbits which exhibit the longer-
period oscillations to which attention was drawn in Fig.5.
This makes the Keplerian energy an especially satisfactory
quantity for inclusion in a distribution function (Section
5.1.3).

Finally, we have studied the time-evolution of the mag-
nitude of the angular momentum in the non-rotating frame,
|JN |. Fig.7 illustrates the same four cases as in Fig.6, and
exhibits clear Lidov-Kozai oscillations in all panels. The to-
tal angular momentum is not an approximate invariant of
Lidov-Kozai theory, and is unsuitable for the construction
of a distribution function.

3.2 A practical phase space criterion for

non-escapers

Our purpose in the remainder of this section is to explore the
distribution of motions, for a given Γ hypersurface, which
correspond to non-escapers, and to construct a criterion,
expressed in terms of approximate invariants, which sepa-
rates them from escapers. As in Section 2.3, our operational



10 Kathryne J. Daniel, Douglas C. Heggie, and Anna Lisa Varri

−1.0 −0.8 −0.6 −0.4 −0.2 0.0

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

−1.0 −0.8 −0.6 −0.4 −0.2 0.0

−1.2

−1.1

−1.0

−0.9

−0.8

−0.5 0.0 0.5

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1.0

−0.5 0.0 0.5

−2.2

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

Jz,opt

H
op

t

−0.5 0.0 0.5

−2.5

−2.0

−1.5

−1.0

−0.5 0.0 0.5

−2.5

−2.0

−1.5
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definition of a non-escaper is that, during a time of 8 revo-
lutions of the cluster around the galaxy (i.e. a time 8× 2π),
the maximum distance of the star from the origin, rmax, is
less than 2rJ . Both parts of this condition require a little
discussion, which we postpone to Section 5.1.1.

3.2.1 Construction of a basic criterion

We first considered a representative set of six values of Γ, viz.
Γ = 0, 1, 2, 3, 3.8, 4.3, and selected initial conditions accord-
ing to the recipe in Appendix D. For each sample, 10, 000
initial conditions were generated, the equations of motion
(Section 2.1) were integrated numerically for the stated time
interval, and orbits divided into escapers and non-escapers
according to the value of rmax. Overall, these 6 samples
constituted the core of the “training set” on which we have
defined the empirical discrimination criterion described be-
low (though it was subsequently enlarged as described in
Sec.3.2.2). The results for the basic six values of Γ are plot-
ted in Fig.8, which shows scatter-plots in the plane of two
putative, approximate invariants (Section 3.1.1).

Our next task was to find an empirical way of separat-
ing escapers from non-escapers from plots such as those in
Fig. 8, which illustrates our adopted solution. From visual

inspection of plots such as this, we concluded that there was
no obvious benefit in trying to demarcate the two kinds of
orbit by anything other than a straight line, and we chose
the orientation and position of this line so as to equalise the
number of mismatches, Nm, on either side, i.e. the number
of escaping orbits which lie below (or to the right of) this
line, Nm−, and the number of non-escapers which lie on the
other side, Nm+. The choice of optimisation criterion (i.e.
Nm, rather than, say, the fraction of mismatches, fm) re-
quires some justification, which will be taken up in Section
5.1.3.

For each value of Γ, the determination of the optimal di-
viding line was done automatically, by carrying out a search
on a relatively fine grid of values of the slope of the putative
optimal line (i.e., we considered 1000 evenly spaced values of
the parameter θ defined below, over the range [−π, π]); the
position of a line with this slope was then advanced until the
condition of equal mismatches, Nm− = Nm+, was first met.
Note, however, that it was also necessary to choose the value
of Hcrit discussed in Section 3.1.1; this was done manually,
giving Hcrit = −0.92. Results are also plotted in Fig. 8, and
numerical values are among those given in Table 1 , i.e. those
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Table 1. Properties of the optimal dividing line between escapers
and non-escapers, for the final 19 values of Γ.

Γ fesc Nm C θ

0 0.9995 5 0.811 -0.126
0.2 0.9994 4 1.000 0.214
0.3 0.9988 9 1.064 0.886
0.6 0.9975 14 1.092 0.679
0.7 0.9965 18 1.011 0.195
0.8 0.9953 20 0.920 -0.044
1 0.9935 16 0.953 -0.126
1.2 0.9903 36 0.932 -0.264
1.5 0.9832 57 1.109 -0.157
2 0.9561 78 1.246 -0.163
2.6 0.8826 126 1.346 -0.283
2.7 0.8672 128 1.304 -0.408
2.8 0.8500 140 1.315 -0.440
3 0.8052 152 1.324 -0.509
3.4 0.6683 287 1.319 -0.660
3.8 0.4615 251 1.414 -0.691
4.1 0.2518 173 1.479 -0.723
4.2 0.1694 126 1.552 -0.660
4.3 0.1025 37 1.486 -0.785

Notes: Boldface values of Γ denote the core training set
(Sec.3.2.1), while the remainder were added at the stage of re-
finement (Sec.3.2.2). fesc is the fraction of escaping orbits, Nm is
the number of mismatches in a sample of 10, 000 (see text), and

C, θ are the parameters of the optimal line (equation (15)) sepa-
rating escapers from non-escapers in a scatter-plot of Hopt, Jz,opt.
(These are, respectively, variants of the Keplerian energy and the
z-component of the angular momentum, both in the non-rotating
frame.)

with values of Γ in boldface. We write the optimal line as

C +Hopt cos θ + Jz,opt sin θ = 0, (15)

and values of C and θ are given in the last two columns of
the table.

3.2.2 Test and refinement of the criterion

To construct a criterion valid for arbitrary Γ in the range
[0, 44/3], we have opted for linear interpolation, as attempts
to construct simple fitting formulae were less successful. To
test the viability of the resulting criterion, we have con-
structed an independent set of orbit data, at intervals of 0.1
in Γ within the above range, i.e. 44 values; for each value,
10, 000 orbits were computed. (Overall, these 44 samples
represent our “validation set”, and they were not altered
in subsequent refinement of the escape criterion.) Then we
computed, for each of the 44 values of Γ, the number of
mismatches of both kinds, i.e. Nm− and Nm+, obtained
by comparing the actual number of escapers/non-escapers
with those predicted by the linear interpolation, and again
we judged the success of the criterion by considering the
magnitude of the difference |Nm− −Nm+|. At this point it
was not possible to arrange for equality of the two numbers
Nm− and Nm+, because we were no longer free to vary the
constants C and θ, but we used an approximate statistical
criterion based on Poisson statistics to gauge whether the
difference in the two numbers was acceptable.

By this measure, even with linear interpolation between
them, the original six values of Γ were insufficient: it was
clear that intermediate values of Γ were poorly predicted,
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Figure 9. Mismatches of the interpolated escaper criterion when
tested against the total of 440, 000 orbits of the validation set,
sampled independently at 44 evenly spaced values of Γ. For com-
parison the minimum of the number of escapers and non-escapers
(based on data in column 2 of Table 1) is plotted. Also included
is data from column 3 of Table 1. For the validation data the
numbers of mismatches (i.e. the Nm− escapers and the Nm+

non-escapers which were classified wrongly) need not be equal, as
they are in the data from Table 1.

especially in the range where the fraction of escapers (Ta-
ble 1, col. 2) is changing rapidly with Γ. For this reason
we extended the “training set” beyond the basic six val-
ues of Γ. The resulting refinement of the “training set” has
been performed iteratively upon revision of the resulting lin-
ear interpolation formula. This process was continued until
it was judged, by the approximate statistical criterion de-
scribed above2, that no further useful improvement could
be obtained.

The quality of the final result, based on the 19 values of
Γ in the final training set (Table 13), can be seen in Fig. 9,
which also presents the minimum value for either the num-
ber of escapers or the number of non-escapers for the 44
values of Γ in the validation set. From study of the numbers
of mismatches, it is clear that the interpolated escape crite-
rion is not markedly worse when tested on this independent
data, i.e. data which was not used in the creation of the in-
terpolated criterion. The maximum number of mismatches
is about 300, which is less than 10% of the maximum number

2 Incidentally, the statistical criterion was quite severe. The 44-
sample “validation set” included independent samples for all the
values of Γ which are present in Table 1, and in one case failed
to meet the criterion.
3 Inspection of the values in the table reveals a somewhat irregu-
lar dependence of C and θ on Γ. This is certainly associated with
the relatively small number of orbits (10, 000 in each sample), and
could be improved with much larger samples.
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Figure 10. Projected distribution in radius of non-escapers, from
a sample of 500,000 orbits. Three symbols give, for each radius,
the numbers of non-escapers in the given annulus at three times:
0, 8π and 16π. The fourth symbol gives the projected numbers of
initial conditions which are classified as non-escapers according
to the interpolated criterion of Section 3.2. The bin-width is 0.1,
and the line of sight is the y direction. The vertical dotted line
marks the Jacobi radius.

of either escapers or non-escapers. At each end of the range
of Γ the percentage of mismatches can be much greater,
but the total numbers are also much smaller; thus such mis-
matches can reasonably be ignored in terms of constructing
a sample of non-escapers.

4 A MODEL WITH PREDICTED

NON-ESCAPERS

Our final objective is the construction of a model of a star
cluster, and to reach this we proceed in two steps. First
we consider the observable properties of the predicted non-
escapers, as defined on the basis of the empirical discrimi-
nation criterion elaborated in Section 3.2, i.e. their surface
density and kinematics. Only then do we add on an underly-
ing bound population, to produce a synthetic approximate
model of a star cluster (Section 4.2).

4.1 Observable distributions of the predicted

non-escapers

In this section we study a third sample of numerical solu-
tions of Hill’s equations, this time 500, 000 orbits with val-
ues of Γ sampled randomly and uniformly from the range
[0, 44/3]. For given Γ, the phase space coordinates were se-
lected using the procedure described in Section 2.4 and Ap-
pendix D, including the restriction to initial positions such
that r < ric = 1. Such a sample represents an independent
data-set on which the criterion elaborated in Section 3.2 can
again be tested quantitatively. After numerical integration

the orbits were classified as escapers/non-escapers, again de-
pending on whether or not r exceeds 2rJ at any time up to
16π. By studying the distribution of the initial conditions of
the non-escapers, we obtained a sample of a phase-space dis-
tribution which is confined to the domain of non-escapers,
and uniform in this domain on each Γ-hypersurface.

In this sample there were 91, 597 non-escapers, and
91, 782 non-escapers were predicted by the empirical dis-
crimination criterion (Section 3.2). Their spatial distribu-
tion is summarised in Fig. 10. The first remark to be made
about this figure concerns the non-escapers, which are plot-
ted at three times. For most radii these three symbols closely
coincide, showing that the spatial distribution is almost sta-
tionary; it was for this purpose that the microcanonical dis-
tribution of Section 2.4 was adopted. The second remark is
that there are some differences between the distribution of
the non-escapers and those orbits predicted as non-escapers
by the criterion. However, inside the Jacobi radius, this dif-
ference is not larger than the 10% difference which is to be
expected from the results of Section 3.2, with the sole excep-
tion of the point just inside rJ . Outside the tidal radius, even
though the numbers are relatively small, it is not so clear
that the numbers of non-escapers are consistent with being
stationary in time; indeed in the outermost two bins there
are no non-escapers at t = 8π. A possible reason for the
non-stationarity is that the sample of non-escapers, defined
as in Section 1.3, includes some orbits that would escape in
a longer interval of time, and that such orbits tend to have
large radius. Incidentally, the scaling of the ordinate in the
figure is not physically meaningful, but numbers of actual
orbits are given in order that the sampling error of the points
can be estimated. An alternative scaling is presented in the
Section 4.2.

The distinctive feature of potential escapers is their
speed, which gives them an energy greater than the es-
cape energy. Therefore we consider next their kinematic
behaviour, in the non-rotating frame, beginning with the
line-of-sight velocity dispersion. In fact we show two results,
depending on whether the line of sight is in the direction of
x (Fig. 11) or y (Fig. 12). The first of these is the line of
sight towards the galactic centre at t = 0 and each interval
of 2π thereafter. Again there is little evidence of evolution
with time of the non-escapers, except possibly in the last
three bins. Even there, the apparent evolution with time
may not be significant, as the numbers of points are very
small, indeed comparable to those along the y line of sight
(Fig. 10). In the interior of the cluster (in projected radius)
the comparison with the results produced by the criterion
of Sec.3.2 suggests a mismatch of order 10% at most. In the
second diagram (Fig. 12), however, just inside rJ , i.e. the
bin at r = 0.65, the mismatch is larger. Fig. 12 gives data
for the line of sight along the direction of motion of the clus-
ter about the galaxy at the time of each evaluation shown.
This includes the region close to the Lagrange points in the
outermost bins, where the motions of would-be escapers are
particularly complicated.

The projected anisotropy, β = 1− σ2
t /σ

2
r , where the fi-

nal term is the ratio of the transverse to radial components
of the velocity dispersion, is shown in Figure 13. It has a
distinctive form, ranging from mild transverse anisotropy
(β < 0) near the centre to strong radial anisotropy around
the tidal radius. This is quite the opposite of what might
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be expected, as we have defined non-escapers by the prop-
erty that their maximum radius is bounded; therefore, near
the largest radii which they reach, one might expect that
they should exhibit mostly transverse motions. Nevertheless,
study of individual orbits shows that non-escapers which
reach radii close to rJ tend to have high eccentricity, at
least in projection, and this diminishes σt. The results for
the three largest radii are heavily affected by the very small
numbers of stars which contribute. Even so, at smaller radii
the agreement between non-escapers and predicted non-
escapers is little better than qualitative.

Finally we turn to an odd moment of the velocity dis-
tribution, with the mean rotational speed about the z-axis
(Fig. 14). Except at large r the agreement is remarkably
good. Again the outer three bins are based on small num-
bers of orbits, but still the discrepancies between the results
for non-escapers and predicted non-escapers around rJ are
too large to be explained by sampling error.

4.2 A complete model with predicted

non-escapers

4.2.1 Description of the model

In this subsection we describe the final goal of this paper:
a model of a star cluster in a tidal field with a population
of potential escapers. While the model is complete in this
sense, it is not self-consistent. Rather, we add the population
of predicted non-escapers, much as described in Section 4.1,
to a self-consistent model of the bound population, but we
do not include the contribution which the added population
make to the potential. Furthermore, we assume, as in all
previous parts of this paper, that the non-escapers are mov-
ing in a Keplerian potential, which we take as an adequate
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approximation to the potential of the bound population, at
least at radii where the non-escaper population (and tidal
effects generally) become significant.

Next, we assume that the value of the distribution func-
tion of the bound population, at energies just below the es-
cape energy, equals that of the non-escaper population just
above the corresponding energy. The reason for this assump-
tion is that the population of potential escapers must be cre-
ated from the bound population by any one of several pro-
cesses which take them across the critical energy for escape.
One such process is two-body relaxation, which we think of
as diffusive. Another is the slow decrease of the depth of
the potential well, caused by the escape of stars from the
cluster, which can be thought of as either a slow heating
mechanism, or a mechanism which simply lowers the criti-
cal escape energy. Both processes imply that the potential
escapers are created by drift or diffusion across the critical
energy.

These arguments rule out almost all of the familiar mod-
els for the bound population, such as King and Wilson mod-
els, in which the distribution function f tends to zero as the
critical energy is approached from below. Indeed the only
models that come to mind are the Woolley models (Woolley
1954; Woolley & Dickens 1961) and the n = 3/2 polytrope
(see, for example, Binney & Tremaine 2008), which has con-
stant f . We opt for the Woolley model.

Note that our approach, of combining a Woolley model
with our results on non-escapers, does further violence to the
dynamics in the following sense: Woolley models are built on
the assumption that the tidal field inside the cluster is zero,
whereas it plays a vital role in our theory of non-escapers.
Therefore the definition of “energy” in the two populations
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Figure 15. Surface density profile of a W0 = 7 Woolley model
with and without potential escapers. The units are those of Sec-
tion 2.1, i.e. the tidal radius is rJ = 3−1/3 (marked by a vertical
dotted line), the total mass (of the Woolley model) is 1, and
G = 1.

is different.4 A further elaboration of our approach would
be to use, for the bound population, a self-consistent model
including the tidal field (Heggie & Ramamani 1995; Bertin
& Varri 2008), but in the interest of simplicity we choose
the Woolley model, and assume it is Roche-lobe filling, i.e.
its edge radius equals the tidal (Jacobi) radius.

The Woolley model has a phase-space mass-density of
the form

fw(r,v) =

{

A exp (−2j2(E − EJ)) if E < EJ

0 otherwise
(16)

where E is the one-particle energy per unit mass assum-
ing the underlying potential for the Woolley model, EJ is
its value at the truncation radius (Rt), and A and j2 are
constants. We choose the corresponding distribution func-
tion for the potential escapers, and so sample the canonical

distribution

fcan(r,v) = A exp (j2(Γ− ΓJ )), (17)

since by equation (9) Γ = −2E, except for the tidal poten-
tial. We also impose the condition r < ric = 1, for consis-
tency with Section 2.4, and the condition 0 < Γ < ΓJ ≡ 34/3

introduced in Sec.2.3.

4.2.2 Practical procedure

(i) First we perform the usual numerical integrations
to construct the density profile, etc, for a self-consistent
Woolley model. This calculation adopts the units of King

4 Incidentally, because of this difference in the definition for “en-
ergy”, the final, combined distribution function in the model is
not continuous at the escape energy.
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(1966). For example, we introduce the scaled potential W =
−2j2V (r), where V (r) is the potential at radius r whose
zero-point is the truncation radius of the model, so that
EJ = 0 in eq.(16). Then we integrate Poisson’s equation in
the form of eq.(16) in King (1966) (but of course with ap-
propriate changes in his formulae for the density, because of
the different distribution function).

Next, the model must be scaled to the system of units used
in the remainder of our calculations, i.e. the units of Section
2.1. There the cluster potential is −1/r, corresponding to
a cluster of mass unity if we also set G = 1 (and so the
cluster mass is the unit of mass), and the tidal radius is
rJ = 3−1/3. King’s units can be scaled to a model of given
mass and radius by assigning values to the central density
ρ0 and the core radius rc. King (1966, equation (40)) writes
the total mass as

M = ρ0r
3
cµ, (18)

where µ is a constant depending on the scaled central poten-
tial W0. In his units King also denotes the truncation radius
as Rt, and the core radius is the unit of length. To carry
out the required scaling to the units of Section 2.1, then, we
choose

rc = 3−1/3/Rt (19)

ρ0 = r−3
c /µ. (20)

(ii) The second step in construction of the model is to
sample a sufficient number of stars from the Woolley model
and from the canonical distribution eq.(17). The procedure
for the latter is described in Appendix E, but in the present
context we sample the two parts of the model simultane-
ously, as follows.

To construct a single particle, the spherical polar coordi-
nates (r, θ, φ) are generated with uniform density on the in-
tervals (0, ric), (0, π), (0, 2π), respectively, where ric = 1 was

introduced in Sec.2.4. The joint density of r, θ, φ is given in
eq.(E5) for the canonical distribution, while for the Woolley
model the corresponding expression is

fw(r, θ, φ) =
2πA

j3
exp [j2(−2φw + 2φw(rt))]×

×
(∫ smax

0

s1/2e−sds

)

r2 sin θ, (21)

where φw is the potential of the Woolley model, and smax =
√

−2j2(φw − φw(rt)). The argument of the first exponential
is simply the scaled potential W in King’s notation.

Now let F be a bound for fw + fcan. (A bound for the
second contribution is easily obtained from eq.(E8), while
it is obvious that fw 6 2πAj−3 exp(W0)Γ(3/2), where Γ
is the gamma function.) Selecting a value of f uniformly
distributed in the interval (0, F ), we proceed as follows:

(a) if f < fw , the particle is a member of the Wool-
ley population, and its velocity is easily generated from a
normal distribution;

(b) if fw 6 f 6 fw + fcan, it is a member of the canon-
ical population, and its velocity is easily generated as de-
scribed at the end of Appendix E

(c) otherwise the point (r, θ, φ) is discarded, and a new
point is selected

(iii) At the end of the generation of the sample, the parti-
cles in the canonical distribution are tested against the crite-
rion in Sec.3.2. In other words the values of Hopt and Jz,opt

(introduced in Sec.3.1.1) are calculated. (To recap: the initial
values of HK and Jz are calculated; if HK > Hcrit = −0.92
(see Sec.3.2) these are adopted as Hopt and Jz,opt, respec-
tively; otherwise first-order perturbative corrections are cal-
culated, as described in Appendices B and C, respectively,
and then the corrected values are used as Hopt and Jz,opt.)
The value of the Jacobi integral is calculated, and values
of C and θ (not the spherical polar coordinate) are inter-
polated from Table 1. Points in the canonical sample such
that C+Hopt cos θ+Jz,opt sin θ > 0 are deleted, leaving the
predicted non-escapers.

(iv) The sample of Nw Woolley particles and Npne pre-
dicted non-escapers may then be used to construct projected
density profiles, etc. Since theWoolley models must give unit
mass, the mass in the population of predicted non-escapers
is Npne/Nw . As an alternative (which we adopt in the fol-
lowing example) one may now discard the Woolley sample,
and create the contribution of the Woolley model from the
first stage of the procedure, i.e. the numerically integrated
Woolley model, much as one would do if there were no pop-
ulation of predicted non-escapers.5

The above four steps (i)–(iv) complete the construction
of the model.

5 While this may seem to make the creation of the Woolley pop-
ulation unnecessary, it is used to normalise the mass of the popu-
lation of predicted non-escapers. Alternatively, this could be done
by integrating eq.(17) over the sphere r < ric, but this is a three-
dimensional integral, which might well be most conveniently es-
timated by a Monte Carlo integration. In effect, the construction
of the Woolley sample serves a comparable purpose.
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4.2.3 An example

Here we present results of the above procedure for one case:
a Woolley model with scaled central potential W0 = 7. The
complete sample prepared in step (ii) consisted of 100,000
particles, of which Nw = 47185 were Woolley particles and
the remainder made up the canonical sample. After deletion
of the predicted escapers in step (iii), 6667 predicted non-
escapers remained. Thus the mass of this population is ap-
proximately 0.1413, in units such that the mass of the Wool-
ley model is unity; i.e. the predicted non-escapers make up
a fraction of about 0.124 of the whole. This value lies below
the range of values of the relative mass in potential escapers
found in N-body simulations with N = 16384 particles in a
point-mass Galactic potential (Baumgardt 2001, his figs. 11
and 12, and Claydon et al. 2017). This smaller fraction is,
in fact, expected given that N-body studies include all sorts
of potential escapers, including several types of transients,
whereas this work focuses on non-escapers only.

As described briefly in step (iv) above, it is straightfor-
ward to combine the surface density (say) of the predicted
non-escapers with that of the underlying Woolley model.
An example is given in Fig. 15. Though the enhancement
in density is modest (though comparable at some radii with
the relative enhancement in mass), the effect on the veloc-
ity dispersion profile (Fig. 16) is more noticeable, especially
close to the tidal radius. The last bin lies entirely outside the
Jacobi radius; the value here is entirely due to the predicted
non-escapers, and would not be altered if their total mass
were to be reduced. Well inside rJ the effect of the predicted
non-escapers is a noticeable increase in the velocity disper-
sion, as those stars are more energetic than the members
of the Woolley model. This is illustrated in Fig. 17, which
displays the distribution of the line-of-sight velocities in the
two components at a line of sight close to half the tidal ra-
dius. The total rms line-of-sight velocity is σ = 0.652, and
the well-populated tails of the populations extend to about
2.4σ for the Woolley model, but there they are already dom-
inated by the predicted non-escapers, which extend to at
least 2.8σ.

5 DISCUSSION AND CONCLUSIONS

5.1 Discussion

5.1.1 The definition of escape and the choice of the

integration time

In Section 3.2 we have integrated orbits for a time of 16π
(which corresponds to approximately 1.8 Gyr at the Sun’s
distance from the Galactic centre), and have defined non-
escape by the condition that the maximum distance from
the origin, rmax, is less than 2rJ . We consider the second
point first.

We illustrate in Fig. 18 the distribution of the values of
rmax, for the cases considered as non-escapers (i.e. such that
rmax < 2rJ ) within the library of 500 000 orbits with values
of Γ sampled in the range [0, 44/3] (Section 4.1). We have
also verified that, by adopting the same integration time,
such a distribution of values does not depend significantly
on the choice of the radial range of the initial conditions
considered in our library of orbits (i.e., the value chosen for
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Figure 17. Distribution of line-of-sight velocities in a W0 = 7
Woolley model and in the population of predicted non-escapers.
The projected distance from the centre is 0.35, but for the pre-
dicted non-escapers includes all stars in our sample with a pro-
jected distance between 0.3 and 0.4 (as in the previous two fig-
ures). The sample for the Woolley model is normalised to unity,
and that for the predicted non-escapers is normalised in propor-
tion to their surface density (Fig. 15).

ric; see Section 2.4). In any case, it is clear that the limit
2rJ is generous, i.e. the value could be reduced considerably
with very little effect on the selection of escapers.

Now we discuss the time of integration. Clearly, some
non-escapers might well have escaped had we integrated for
longer, though in the sample of Fig. 5 it can be seen that
no escapes took place between t = 16π and t = 32π. Some
more general information relevant to this issue can be found
in the work of Fukushige & Heggie (2000), who integrated
orbits in equations like eqs.(1)-(3), but with King potentials
in place of our Keplerian cluster potential, and with a dif-
ferent distribution on an energy hypersurface. For a W0 = 3
King model, their fig. 3 gives the fraction of orbits remain-
ing as a function of time, for various values of their scaled
energy Ê. Ignoring the difference between the potentials,
the relation with our integral Γ is Ê = 1 − Γ/34/3. They
use Hénon units, in which the Jacobi radius of their King
model is approximately 3.145. Therefore their unit of time
is approximately 0.104 times our time unit, and our inte-
gration time of 16π converts to approximately 486 Hénon
units. Their figure then shows that approximately half of
orbits with Ê = 0.16 (Γ ≃ 3.6) will have escaped. Despite
the differences in the potential and in the distribution of
initial conditions, this compares well with the result which
would be inferred from the values of fesc in Table 1. Below a
transition value of Γ ≃ 3.4 most orbits have escaped, while
above this most have not done so.

Fukushige & Heggie go on to show that the time scale of
escape is approximately proportional to Ê−2. It follows that
the transition value of Γ varies with the integration time, T ,
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100 cells equally spaced in the range (0, 2rJ ), and the frequencies
have been normalised to the total number of non-escapers in the
sample (91597).

as (34/3−constant×T−1/2). Thus we can expect that the dis-
tribution of Γ in the population of potential escapers would
slowly become narrower if T were increased. In an actual
stellar system, potential escapers are continually produced,
with a range of Γ, and consequently a range of typical escape
times. Even as T → ∞, however, the results of Fukushige
& Heggie show that a significant fraction (of order 20%) do
not escape, if the potential remains fixed. The evolution of
the population of potential escapers is a complex interplay
of these processes, and beyond the scope of this paper. It
is, however, at least reasonable to presume that the orbits
of potential escapers are filled from high to low Γ (low to
high E), since these orbits are populated diffusively from
the bound population as the cluster relaxes (Sec.4.2.1), and
by the gradual filling-in of the potential well as stars escape.

One reassuring element regarding the appropriateness
of our choice of the integration time has been the a posteriori

realisation that we are able to observe (when applicable) at
least one full cycle of Lidov-Kozai oscillations even for orbits
near the threshold of stability against escape. This can be
inferred from Fig. 5, but it is particularly evident in the time
evolution of the amplitude of the angular momentum, and
can be seen in the selection of cases illustrated in Fig. 7.

5.1.2 The choice of the galactic and cluster potential

We have chosen to adopt a Keplerian profile for the galactic
potential in order to maintain consistency with the origi-
nal numerical explorations of Hill’s problem (Hénon 1969,
1970). In principle, other models may be considered within

the same order of approximation. Our choice of galactic po-
tential affects the expression for the energy (Jacobi) integral
through its contribution to the effective potential (see equa-
tions (9) and (13); for discussion of the effect of different an-
alytic models in the context of the three-dimensional Hill’s
problem, see, for example, Box 12.1 in Heggie & Hut 2003
or Section 2.1 in Bertin & Varri 2008). In turn, therefore,
the choice of potential affects the escape rate, and the size
and distribution of the escaper and non-escaper populations.
Consequently, the “practical criterion” for the characterisa-
tion of escapers in phase space (described in Section 3.2)
is defined under the assumption of our adopted potential.
N-body studies (Claydon et al. 2017), on the other hand,
show that the size of the potential escaper population can
differ by as much as a factor of two at comparable phases of
evolution of the cluster, depending on the chosen form for
the galactic potential.

One additional, although more theoretical, argument
supporting our choice to use a point-mass potential is re-
lated to the question of the existence of the generalised con-
cept of Lagrange points in the context of the elliptic Hill’s
problem. This is guaranteed only for the Keplerian case and
a small family of similar potentials (see Bar-Or et al., in
preparation). For other potentials, all that can be said is
that, at peri- and apo-galacticon, the effective potential has
two saddle points.

Lastly, we note that the the field of the cluster has been
approximated by that of a point mass at the cluster centre.
For most purposes this is an inessential approximation, for
we argue that it is appropriate for our goal of characterising
the population of potential escapers, which lie outside the
bulk of the cluster mass, where the potential is nearly Ke-
plerian. (In the Woolley model constructed in Sec.4.2.3 the
half-mass radius is approximately 0.16.) In addition, we em-
phasise that, in principle, the cluster potential will not even
be spherically symmetric because the tidal field is itself not
symmetric (see eqs. 1-3). Overall, partly motivated by the
numerical experiments performed by Claydon et al. (2017),
we consider the impact of these issues as second-order with
respect to the effects determined by the choice of the galactic
potential, at least outside the half-mass radius.

Predicted non-escapers do exist close to the singularity
of the assumed cluster potential at r = 0, and eq.(E8) and
its derivation suggest that their space density has a result-
ing r−1/2 singularity there. This would not, however, project
into a cusp in the surface density. More serious, perhaps, is
the fact that the velocity dispersion of these stars has a
singularity of order σ2 ∼ r−1, because stars in the popu-
lation of predicted non-escapers have “energy” Γ in a fixed
range. Their total kinetic energy, however, is finite. Further-
more, Figs.15 and 16 confirm that the singular behaviour of
predicted non-escapers at small radii do not have a notice-
able effect after projection and binning, but their existence
should be borne in mind.

5.1.3 The definition of a criterion for non-escapers

As mentioned in Section 3.2, there are various ways in which
one might try to distinguish escapers from non-escapers en-
tirely on the basis of initial conditions, and without numer-
ical integration. In the exploratory phase of our investiga-
tion we considered several methods, which were applied to
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selected “training” data-sets (associated with six reference
values of Γ as illustrated in Fig. 8). These methods were
based on various sets of criteria used for estimating either
the fraction or the total number of mismatches, i.e. data that
were wrongly classified according to those criteria. Since the
rankings generated by different methods have been consis-
tent with one another in all cases, the approach which we
have adopted as our figure of merit is one based on the ab-
solute number of mismatches. It was also judged that for
the purpose of the final goal of this study (Section 4) one
may tolerate a rather large fraction of mismatches at a given
value of Γ if the total number of mismatches is very small;
this happens in the case of small Γ (Section 3.2). Thus min-
imising the total number of mismatches is a better option.

As mentioned in Section 3.1, several dynamical vari-
ables (such as JzN and HK) were considered in our search
for a way to distinguish escapers from non-escapers. We
eventually settled on the pair of variables Jz,opt and Hopt.
We did also consider for some time some variables which
are based on Lidov-Kozai theory, which was already men-
tioned in Section 3.1.1. These are (i) the double-averaged
interaction potential HLK in Lidov-Kozai theory, which is
actually the same as the doubly-averaged tidal potential Φt

(equation 13), (ii) the apocentre distance in the Lidov-Kozai
approximation, as well as in the Keplerian approximation,
and (iii) the “libration constant” CKL (see Antognini 2015,
equation 21), which may be used to separate the libration
and rotation regimes in Lidov-Kozai theory. None appeared
to offer any distinct advantage.

We also used numerical averages of several variables,
such as JzN , i.e. averages derived from the full numerical
integration over the chosen integration time. We emphasise
that such averages do not have genuine predictive power.
They have been used exclusively to assess the intrinsic per-
formance of these more “traditional” integrals of the motion,
and to check the approximate analytic results in Appendices
B and C.

The first outcome of this exploratory phase of investi-
gation was to exclude any criterion based exclusively on a
single variable, as they all provided a number of mismatches
which was at least 20% higher than the criterion described
in Section 3.2. We then moved on to the exploration of
several two-variable criteria, from which the selected pair
Jz,opt and Hopt gave the best results overall, at the expense
of somewhat increased complexity in the expressions to be
evaluated. Finally, we have also considered a number of cri-
teria based on three variables. The best example in this class
actually outperformed our preferred two-variable criterion,
but we were guided by the idea that three integrals (i.e. Γ
and two others, for which Jz,opt and Hopt are proxy), should
suffice in a problem with three degrees of freedom.

Lastly, we wish to briefly discuss the rationale behind
the selected range of values for the energy invariant Γ. As
is visible from Fig. 1, Hénon’s family f extends to negative
values of Γ, therefore, in principle, in our study we could
have considered a wider range including negative values of
the energy invariant. None the less, there are two main rea-
sons why we have decided to take into consideration exclu-
sively positive values. First, stable orbits corresponding to
negative Γ values tend to have a significant radial extension
(for reference, see the last row of Fig. 2), which would have
required us to either exclude them on the basis of the op-

erational definition of escape we have adopted, or to relax
this definition. A rough quantitative assessment of the first
point is easily available by noting the small number of non-
escapers for Γ ≈ 0 within our “validation set”, as depicted in
Fig. 9. Second, even just on the basis of a relatively simple
tool such as the perturbation theory presented in Appendix
A, we have noticed that the validity of most of our analytic
arguments, being based on perturbative approaches, tend to
break down for negative values of Γ (see Fig. A1).

5.1.4 Limitations of our model with potential escapers

The dynamical model proposed in Section 4.2 has several
limitations. In this subsection we focus on two of these. First,
although we match the bound and predicted non-escaper
population profiles using a method based on an energy con-
tinuity argument, our definition of the complete model does
not include a well-posed analytic expression for the under-
lying distribution function. Though it is expressed in terms
of approximate integrals of the motion, the expression is es-
sentially numerical, i.e. interpolation in Table 1. Second, our
model (Section 4.2) is not based on a self-consistent solution
to the Poisson equation over the domain of definition. For
the model of Section 4.2.3, in which the proportion of pre-
dicted non-escapers rises to approximately 14% of that of the
bound population, this renders the results at best approxi-
mate. A self-consistent model might be achieved iteratively,
by adding the density of the predicted non-escapers and re-
solving for the potential, but then the next step would be the
laborious one of adjusting the criterion (which distinguishes
escapers from non-escapers) in order to take the altered po-
tential into account.

Despite such limitations, we consider this investigation
as a first proof-of-concept, mostly in response to the prac-
tical need for a theoretical model of the potential escapers’
contribution to the kinematics of the outer regions of ide-
alised star clusters (see Küpper et al. 2010; Claydon et al.
2017), and to provide a theoretically-based understanding
of their behaviour, in contrast to a purely empirical one.

5.2 Conclusions

We have reported the results of a study devoted to the con-
struction of a dynamical model of a star cluster, in which
a population of potential escapers is approximately taken
into account. The starting point of this investigation is the
numerical exploration of the two-dimensional Hill’s problem
performed by Hénon (1969, 1970), and, in particular, the in-
spiration provided by the family f of stable periodic orbits
(see Section 2.2 and Fig. 1).

We have extended Hénon’s picture by performing an
exploration of the three-dimensional problem, through the
integration of orbits starting from a much enlarged set of
initial conditions (see Section 2.3 and Figs. 3 and 5). This
numerical study has guided our intuition for the develop-
ment of a number of results on the approximate integrals
of the motions which may be identified in this problem
(see Section 3.1). In this respect, a guiding principle of our
search emerged from the realisation that, within a rather
large range of energies, Hénon’s periodic orbits are well de-
scribed as first-order perturbations of Keplerian orbits in
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the non-rotating frame (see Appendix A and Fig. A1). In
particular, this approach then suggested quadrupole Lidov-
Kozai theory as an appropriate interpretative framework for
the determination of suitable approximate integrals of the
motion. The subsequent numerical phase of our investiga-
tion was based on a Monte Carlo exploration of the relevant
energy hypersurface for selected values of the main (Jacobi)
invariant (Section 2.4).

A fundamental step of our study has then been the de-
velopment of a simple practical criterion for the character-
isation of the potential escapers in phase space, or, loosely
speaking, for determining whether an orbit is “stable” or
not (Section 3.2). (Strictly, however, this criterion aims to
identify “non-escapers”, in a sense described in Sec.1.3, as
a proxy for the potential escapers.) For a given value of the
Jacobi integral, we have designed this criterion as a func-
tion of two approximate invariants developed from those of
Lidov-Kozai theory: the average of the Kepler energy and
the normal component of angular momentum. The function
is linear , with coefficients tabulated in Table 1. This con-
dition has been determined numerically, as a result of an
optimisation process to minimise the number of “unstable”
orbits mislabelled as “stable” (see Fig. 8). We have then
tested our criterion over a large library of orbits integrated
from a random sampling of initial conditions within the en-
tire range of energies of interest, and we have provided a
characterisation of the population of predicted non-escapers
in terms of several observable quantities of astronomical in-
terest (Section 4.1 and Figs. 10-14).

Lastly, we have reached the final goal of this study: the
construction of a complete dynamical model in which the
previously identified population of predicted non-escapers
has been taken into account, together with a population of
bound stars, described, as a proof of concept, by a Woolley
model (Section 4.2 and Figs. 15 and 16). We believe that
such a dynamical model, although marred by a number of
limitations, is the first of its kind.

Our investigation was motivated by a number of intrigu-
ing results, mostly based on N-body simulations, which have
emphasised the role played by potential escapers in shaping
the structural and kinematic properties of idealised star clus-
ter models (see especially the work by Küpper et al. 2010
and Claydon et al. 2017). With the advent of the “era of
precision astrometry” for Galactic astronomy, with exquisite
phase space information provided by Gaia and HST proper
motion studies, potential escapers may finally become iden-
tifiable in selected Galactic globular clusters, and the avail-
ability of tools to model their dynamics will be of crucial
importance.
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APPENDIX A: PERTURBATION THEORY OF

f-ORBITS

We assume that an f -orbit is a planar, tidal perturbation of
a retrograde, circular Keplerian orbit in the x, y plane. We
work in the non-rotating frame, and use equation (8) as the
equation of motion, but ignore the z-component. At lowest
order we ignore the tidal perturbation, and the zero-order
solution is

r0N = a(cosωt,− sinωt), (A1)

where

ω = a−3/2. (A2)

is the orbital frequency for a Keplerian orbit. Since the tidal
acceleration is of order a3 smaller than the Keplerian accel-
eration, a3 takes on the role of a perturbation parameter,
though we do not write it explicitly in the first-order per-
turbation expansion rN = r0N + r1N .

Expanding equation (8) to first order, where we ignore
r1N in the tidal terms, we find that the equation satisfied

 0
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Figure A1. Family f (from Hénon 1969) compared with a Kep-
lerian approximation and with the first-order perturbation result
derived in this Appendix. For consistency with Hénon’s original
study, it is assumed that the star is launched from the negative
x-axis in the positive y-direction.

by r1N is

r̈1N = −ω2(r1N − 3(r̂0N .r1N )r̂0N )

+ 2x0RexR − y0ReyR, (A3)

where we have used equation (A2). To solve this we resolve
r1N along and orthogonal to r0N , writing

r1N = ξr̂0N + ηˆ̇r0N , (A4)

where the two boldface vectors on the right are orthogo-
nal unit vectors which rotate (in the non-rotating frame)
with angular frequency −ω. They form a left-handed frame.
Thus the unit vectors of the original rotating frame (the “R-
frame”) are expressible as exR = cos[(ω+1)t]r̂0N − sin[(ω+
1)t]ˆ̇r0N and eyR = − sin[(ω+1)t]r̂0N−cos[(ω+1)t]ˆ̇r0N . Also,
r0R is expressed like equation (A1) but with ω replaced by
ω + 1. Routine calculations now lead to

ξ̈ − 2ωη̇ − ω2ξ =

− ω2ξ + 3ω2ξ + 2a cos2(ω + 1)t− a sin2(ω + 1)t (A5)

η̈ + 2ωξ̇ − ω2η =

− ω2η + (−2a− a) cos(ω + 1)t sin(ω + 1)t, (A6)

where we have avoided final simplifications to make the
source of the terms clearer.

Simplifying and integrating equation (A6) gives

η̇ + 2ωξ =
3

4

a

ω + 1
cos 2(ω + 1)t+ α, (A7)

where α is a constant. Substituting into equation (A5) and
simplifying gives

ξ̈ + ω2ξ =
3

2

2ω + 1

ω + 1
a cos 2(ω + 1)t+ 2ωα+

1

2
a, (A8)
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with solution

ξ = −3

2

(2ω + 1)a cos 2(ω + 1)t

(ω + 1)(ω + 2)(3ω + 2)
+

2α

ω
+

a

2ω2
. (A9)

We have ignored the kernel (complementary) function,
which just moves the unperturbed motion from one circular
motion to a neighbouring one.

Substituting this result into equation (A7) and integrat-
ing gives

η =
3

8

(11ω2 + 12ω + 4)a sin 2(ω + 1)t

(ω + 1)2(ω + 2)(3ω + 2)
−

−
(

3α+
a

ω

)

t, (A10)

though we have ignored a constant of integration, assuming
that the perturbed solution, like the unperturbed one, starts
on the x-axis at t = 0. We choose α so that the secular
term (proportional to t) vanishes. Our unperturbed motion
starts at radius a with angular frequency ω, but the f -orbit
starting at this radius has a slightly different frequency, and
this is responsible for the secular term. The role of α is to
shift the starting point to compensate. The orbit is now a
periodic orbit in the rotating frame, with angular frequency
ω + 1.

The initial conditions of the orbit are now easily calcu-
lated by using equations (A7), (A9) and (A10), which, after
transformation to the rotating frame at t = 0, easily give

xR = a− a

6ω2
− 3

2

a(2ω + 1)

(ω + 1)(ω + 2)(3ω + 2)
(A11)

ẋR = yR = 0 (A12)

ẏR = −xR − ωa+
a

6ω

− 3a

4

7ω2 + 10ω + 4

(ω + 1)(ω + 2)(3ω + 2)
. (A13)

Then Γ is easily calculated. Fig. A1 plots the results in com-
parison with the numerical data from Hénon (1969) and the
unperturbed (circular Keplerian) approximation.

Two further results needed in Section 3.1.1 are the an-
gular momentum in the non-rotating frame, whose magni-
tude to first order is

|JN | = ωa2 + a(2ωξ + η̇), (A14)

which may be evaluated with the aid of equation (A7), and
the radius (which is r = a+ξ to first order), whose maximum
value is easily obtained from equation (A9).

APPENDIX B: APPROXIMATE FIRST-ORDER

PERTURBATION THEORY OF THE KEPLER

ENERGY

In the non-rotating frame the total energy is

EN = HK + Φt, (B1)

where HK is the Kepler energy and Φt is the tidal potential
(see eqs. (11) and (13)). If we neglect the time-dependence of
Φt (a point to which we return at the end of this appendix),
EN is constant. Also, in first-order perturbation theory, Φt

can be evaluated using the Keplerian approximation of the
motion, which is periodic. Averaging over this period we
obtain the time-averaged Keplerian energy from

〈HK〉 = HK(0) + Φt(0)− 〈Φt〉. (B2)

Our task in this appendix is to evaluate the last term in the
right-hand side.

Since

Φt(x, y, z) = −3

2
x2 +

1

2
r2, (B3)

where we omit the subscript R for the duration of this
Appendix, it is convenient to refer the Kepler orbit to the
y, z-plane, so that i (for instance) is the inclination of the
plane of Kepler motion to the y, z-plane. For example we
now have

x = sin i(ξ sinω + η cosω), (B4)

where ω is the argument of pericentre, measured from the
y, z plane, and ξ, η are the coordinates in the plane of Kepler
motion along and orthogonal to the line of apsides, respec-
tively. The time averages are easily calculated as

〈ξ2〉 = a2

(

1

2
+ 2e2

)

(B5)

〈ξη〉 = 0 (B6)

〈η2〉 =
1

2
a2(1− e2) (B7)

〈r2〉 = 〈ξ2〉+ 〈η2〉, (B8)

where a, e are, respectively, the semi-major axis and eccen-
tricity. Then it follows that

〈Φt〉 =
1

2
a2

(

1

2
+ 2e2

)

(1− 3 sin2 i sin2 ω) +

+
1

4
a2(1− e2)(1− 3 sin2 i cos2 ω). (B9)

In practical terms, the calculation of i and ω proceeds
quite easily from the angular momentum JN and the eccen-
tric vector

e = −JN × vN − rN/r. (B10)

For example, it is easily seen that

cosω =
e.(exN × JN )

e|JN | sin i , (B11)

where exN is the unit vector along the x-axis in the N frame.
Note, however, that it is being assumed that the N frame
instantaneously coincides with the R frame, so that the xN -
axis points towards the galactic centre.

The approximation that the tidal potential is static may
be expected to hold for a few orbits, provided that the Keple-
rian frequency is much larger than unity (the angular veloc-
ity of the tidal potential in the N frame), i.e. if a ≪ rt, where
rt is the tidal radius. For longer intervals of time the motion
can be approximated by Lidov-Kozai theory, in which the
mean Keplerian energy is constant. Thus 〈HK〉 is an approx-
imate integral of the problem in this limit. Unfortunately,
we are often obliged to adopt these approximations even for
values of a which are comparable to rt.
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APPENDIX C: APPROXIMATE FIRST-ORDER

PERTURBATION THEORY OF THE

z-COMPONENT OF ANGULAR MOMENTUM

From equations (12) and (8) we deduce that

J̇zN = xN ÿN − yN ẍN =

= (xNeyN − yNexN).(2xRexR − yReyR − zRezR),(C1)

where exN , eyN are unit vectors of the non-rotating frame.
At first we neglect the relatively slow rotation of the R-
frame, and assume (as at t = 0) that the two frames coincide.
In this approximation

J̇zN = −3xNyN . (C2)

Since the period of a Keplerian orbit is of order a3/2, where
a is the semi-major axis, it follows that short-period oscilla-
tions in JzN will be of order a7/2.

Now we average over this “fast” motion, following much
the same route as in Appendix B, except that we refer the
Keplerian orbit to the axes of xN , yN , zN in the conventional
way. Thus, for example,

xN = ξ(cosω cosΩ− sin ω sinΩ cos i) +

+ η(− sinω cosΩ− cosω sinΩ cos i), (C3)

where ξ, η do have the same meaning as in Appendix B,
i.e. coordinates in the Keplerian plane. After averaging and
simplifying, we obtain the result that

J̇zN = A cos 2Ω +B sin 2Ω, (C4)

where

A = −3 sin ω cosω cos i(〈ξ2〉 − 〈η2〉) (C5)

B = −3

2
〈ξ2〉(cos2 ω − sin2 ω cos2 i) −

− 3

2
〈η2〉(sin2 ω − cos2 ω cos2 i), (C6)

and the averages are exactly as in equations (B5) and (B7);
we have also made use of equation (B6).

Now we reinstate the rotation of the R-frame. For a Ke-
plerian orbit fixed in space, this is easily achieved by noting
that the rotation of the axes corresponds to a decrease of Ω,
also with unit angular velocity. Thus Ω = Ω0 − t, where Ω0

is the initial value. Integration of equation (C4), with initial
value JzN (0) = JzN0, gives

JzN = JzN0 +
1

2
(A sin 2Ω0 −B cos 2Ω0)−

− 1

2
(A sin 2Ω−B cos 2Ω). (C7)

Thus the average of JzN , which is what we require, is given
by the first half of the right-hand side (the terms with zero
subscripts). The second half consists of oscillating terms
with zero average. Their amplitude is of order a2, and thus
much bigger (for small semi-major axis) than the high-
frequency terms which we have ignored.

APPENDIX D: SAMPLING OF THE

Γ-HYPERSURFACE

In the present Appendix we consider a Γ-hypersurface in
phase space, but the only other restriction we apply is to

the initial radius. Bearing in mind also our aim of construct-
ing an equilibrium distribution in phase space, we note from
Jeans Theorem that this can be done by choosing any func-
tion of Γ.

For these reasons we begin by considering the invariant
distribution (the “microcanonical” distribution)

f(rR,vR) = δ

(

Γ + v
2
R − 2

r
− 3x2

R + z2R

)

, (D1)

where δ denotes the Dirac delta, and we have used equa-
tion (9). It follows that the marginal distribution of rR is

f(rR) = 2π

√

−Γ +
2

r
+ 3x2

R − z2R (D2)

when the argument of the square root is non-negative. Thus
in spherical polar coordinates the space distribution is

f(r, θ, φ) = 2π

√

−Γ+
2

r
+ 3x2

R − z2R r2 sin θ (D3)

where xR = r sin θ cosφ and zR = r cos θ.
Clearly this distribution function is non-zero for arbi-

trarily large |xR|, and cannot be normalised. We also expect
that non-escapers (at fixed Γ) will be confined to a bounded
region in configuration space, and this is checked numerically
in Section 5.1.1 and Fig.18. For these reasons we impose a
further restriction on the domain of f(rR), which is the con-
dition r < ric, where ric is to be chosen. It is true that there
are non-escaping orbits at arbitrarily large radii (Fig. 1),
but these require arbitrarily negative values of Γ, which we
are excluding by the restriction to Γ > 0. It follows from
equation (D3) that, in the domain r < ric,

f(r, θ, φ) 6 2π
√

2 + 3r3ic r
3/2
ic . (D4)

Thus the spherical polar coordinates can be found from
a simple rejection procedure, and then vR has magnitude
given by the square root expression in equation (D2) and
uniformly distributed direction.

APPENDIX E: SAMPLING THE CANONICAL

DISTRIBUTION

Here we present a procedure for sampling the canonical
phase-space density

fcan(r,v) = A exp (j2(Γ− ΓJ )) (E1)

in the domain

r < 1, 0 < Γ ≡ −v2 +
2

r
+ 3x2 − z2 < ΓJ , (E2)

where A, j2 are constants. Note that the limit on r means
that we assume ric = 1 in Sec.2.4. As for the microcanonical
distribution discussed in Section 2.4 and Appendix D, we
begin with the marginal distribution

fcan(r) = 4π

∫ vmax

vmin

A exp(j2(−v2 − 2Φ− ΓJ ))v
2dv, (E3)

where Φ = −1/r−3x2/2+z2/2, vmin =
√

max(0,−2Φ− ΓJ)
and vmax =

√
−2Φ. (Note that Φ < 0 if r < 1.) With the

substitution s = j2v2 we find that

fcan(r) =
2πA

j3
exp{j2(−2Φ−ΓJ )}

∫ smax

smin

s1/2e−sds, (E4)
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where the limits have their obvious meaning. Thus in spher-
ical polar coordinates we have

fcan(r, θ, φ) =
2πA

j3
exp{j2(−2Φ− ΓJ )}

×
(
∫ smax

smin

s1/2e−sds

)

r2 sin θ. (E5)

In general the integral is easily evaluated in terms of an
incomplete gamma function. In cases where |Φ| is very large,
however, (near the origin), smin and smax are also large, and
care needs to be taken in the evaluation of the integral, for
instance by introducing a variable of integration t = s−smin,
and developing a suitable simple asymptotic form.

To use this to select r by an acceptance-rejection proce-
dure, we need to estimate a bound for fcan. In fact, returning
to equation (E3), we have

fcan(r) = 2π

∫ min(−2Φ,ΓJ )

0

Aej
2(Γ−ΓJ)(−Γ− 2Φ)1/2dΓ(E6)

6 2π

∫ ΓJ

0

A(−2Φ)1/2dΓ (E7)

= 2πAΓJ

√

2

r
+ 3x2 − z2. (E8)

Then we proceed to spherical polar coordinates, as in Ap-
pendix D.

The position vector r having been obtained, it is
straightforward to sample the speed v from the distribution
v2 exp(−j2v2) in the range (vmin, vmax). Then the direction
of v is chosen isotropically.
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