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Double-resonance laser spectroscopy via the EF 1Σ+g , v
′ = 6, J ′ = 0–2 state was used to probe the high

vibrational levels of the B′′B̄ 1Σ+u state of molecular hydrogen. Resonantly enhanced multiphoton
ionization spectra were recorded by detecting ion production as a function of energy using a time of
flight mass spectrometer. New measurements of energies for the v = 51–66 levels for the B′′B̄ state of
H2 are reported, which, taken with previous results, span the v = 46–69 vibrational levels. Results for
energy levels are compared to theoretical close-coupled calculations [L. Wolniewicz, T. Orlikowski,
and G. Staszewska, J. Mol. Spectrosc. 238, 118–126 (2006)]. The average difference between the
84 measured energies and calculated energies is −3.8 cm−1 with a standard deviation of 5.3 cm−1.
This level of agreement showcases the success of the theoretical calculations in accounting for the
strong rovibronic mixing of the 1Σ+u and 1Π+u states. Due to the ion-pair character of the outer well, the
observed energies of the vibrational levels below the third dissociation limit smoothly connect with
previously observed energies of ion-pair states above this limit. The results provide an opportunity for
testing a heavy Rydberg multi-channel quantum defect analysis of the high vibrational states below
the third dissociation limit. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4939079]

I. INTRODUCTION

The B′′B̄ 1Σ+u double-well state is the third in a series
of ungerade sigma states of the hydrogen molecule, H2. As
shown in Fig. 1, at small internuclear distances, the B′′ well
corresponds to the (1sσ,4pσ) molecular state. The outer B̄
well is formed by an avoided crossing with the (2sσ,2pσ)
doubly excited state at an internuclear distance of around
5.7 a0 and an avoided crossing with the ion-pair H+H−

potential around 12 a0.1,3–6 At 36 a0, the potential energy
curve experiences another avoided crossing and converges to
the n = 3 dissociation threshold. This work focuses on the
high vibrational levels, which lie above the n = 2 dissociation
threshold and the ionization potential of the molecule, as well
as above the double-well barrier. The outer well extends over
a long range of internuclear distances such that its highest
vibrational levels have turning points in the range of 25–30
a0. The above-barrier rovibrational levels of this state provide
an excellent system to probe the accuracy of long-range, high
energy calculations of H2.

Previous studies by our group and others have reported
energies for the v = 24–45 states (v = 17–35 of the outer well)
which lie below the double-well barrier.8,9 More recently, we
have reported energy values for the v = 46–50 states8 and
the v = 67–69 states,10 all of which lie above the barrier.
These results were obtained by using resonantly enhanced
multiphoton ionization spectroscopy. In a vacuum ultraviolet
(VUV) spectroscopy study, Glass-Maujean et al.6 measured
energies for the above-barrier v = 46–63 vibrational levels
with a precision of ∼8 cm−1. The most recent theoretical study
of the B′′B̄ 1Σ+u state is that of Wolniewicz, Orlikowski, and

a)achartrand@brynmawr.edu

Staszewska,11 where they calculate term energies and mixing
matrix elements of the six lowest 1Σu states, shown in Fig. 1
and the four lowest 1Πu states, shown in Fig. 2, by taking into
account nonadiabatic corrections and electronic mixing of the
1Σu and 1Πu states. For the B′′B̄ 1Σ+u state in particular, they
report mixing coefficients for each rovibrational level.

Here, we report measured term energies obtained by
using resonantly enhanced, multiphoton ionization and time-
of-flight mass spectroscopy. The results include values for
the v = 46–66 rovibrational levels of the B′′B̄ 1Σ+u state,
with energy uncertainties averaging ∼0.5 cm−1. Based on
these measurements, we have made many new and some
revised assignments. We also confirm several examples of
unusual rotational structure predicted by the calculations of
Wolniewicz, Orlikowski, and Staszewska11 and discuss the
opportunity to model the high v states using a multi-channel
quantum defect theory approach.12

II. EXPERIMENT

Double resonance spectroscopy via the J ′ = 0–2 rota-
tional levels of the EF 1Σ+g , v

′ = 6 state was used to probe
the energy region between 131 100 and 133 700 cm−1 above
the X 1Σ+g , v ′′ = 0, J ′′ = 0 ground state of H2. Ionization
spectra were obtained by monitoring the production of atomic
hydrogen ions using a time of flight mass spectrometer.
The experimental arrangement has been described in detail
previously.13 Two pulsed Nd:YAG-pumped dye lasers and
a vacuum chamber housing a pulsed-valve molecular beam
source and a time of flight mass spectrometer were used to
obtain double-resonance ionization spectra. Pump light with a
wavelength near 193 nm is used to excite the EF 1Σ+g , v ′ = 6,

0021-9606/2016/144(1)/014307/6/$30.00 144, 014307-1 © 2016 AIP Publishing LLC
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FIG. 1. Ab initio potential energy curves of the six lowest 1Σu states (Ref. 1)
of H2 and the ion-pair H+H− potential (Ref. 2).

J ′ = 0–2 ← X 1Σ+g , v
′′ = 0, J ′′ = 0–2 two-photon transitions.

This light was generated by sum-frequency mixing in a beta
barium borate (BBO) crystal the fourth harmonic of Nd:YAG
laser light at 266 nm with the output of a pumped dye laser
operated at ∼705 nm. Probe laser output at 663–710 nm from
the second dye laser was frequency doubled in a BBO and
then used to excite single photon transitions from the EF 1Σ+g
state to the states of interest as depicted in Fig. 3.

A collision-free beam of molecular hydrogen was
produced by using a supersonic expansion of pure H2 from a
solenoid-driven pulsed valve. Counter-propagating pump and
probe light pulses crossed the molecular beam in an interaction
region located between two electric field plates. The pump
light pulses were typically on the order of 30 µJ and focused
into the chamber with a 50-cm lens. Probe light pulses were
focused into the chamber with a 30-cm lens to a spot size
of ∼100 µm. Ions generated by the two-colour process were
accelerated into the time of flight mass spectrometer by a
pulsed electric field of 125 V/cm applied across the plates.
A time delay of 40 ns was introduced between the pump
and probe laser pulses to distinguish ions produced by the
pump beam alone and those produced by two-colour resonant
excitation. Spectra are produced by scanning the frequency of
the probe light while monitoring the production of H+ ions by
using a boxcar integrator with a timed gate set to collect the

FIG. 2. Ab initio potential energy curves (Ref. 7) of the four lowest 1Πu states
of H2.

FIG. 3. Probe excitation scheme and generation of H+ ions.

ions. The optogalvanic effect in argon provides reference
transitions at known energies and an etalon provides an
independent measure of the linearity of the wavelength scans.
Both are used to provide calibrated probe laser wavelengths.
The energy uncertainties reported in Sec. III are standard
deviations observed from data taken from multiple scans. They
reflect the uncertainty associated with the calibration peaks,
the statistical uncertainties of peak fits to the spectral features
and remaining scan nonlinearities in the spectra. Reported
total energies are referenced to the X 1Σ+g , v

′′ = 0, J ′′ = 0
ground state by using the known EF 1Σ+g , v

′ = 6 transition
energies.14

III. RESULTS AND DISCUSSION

Table I lists the observed term energies of the B′′B̄ 1Σ+u
state. The results for v = 67–69 from Ref. 10 are included
for completeness. The assignments listed were guided by the
calculations of Wolniewicz, Orlikowski, and Staszewska.11 In
cases where states are strongly mixed, assignments are labeled
by the dominant mixed-state characteristic. In addition,
supplemental computations of rovibrational energies made
in L 8.015 using previously published potential energy
curves of other valence states1,7 also guided assignments.
Measured spectra are shown in Figs. 4 and 5, with labels of
transitions to levels of the B′′B̄ 1Σ+u state. Assignments to the
4 1Σ+u state are also shown to aid the discussion. Details about
the 4 1Σ+u state and other unlabeled features corresponding to
other known states in this energy region will be discussed in
a future publication.

Figs. 6–8 are plots of measured and theoretically
predicted term energies of the B′′B̄ 1Σ+u state vs. J(J + 1).
These plots highlight deviations from the linear depen-
dence predicted by a simple rigid rotor model of the
molecule. These deviations arise from couplings among the
various rovibronic states. There are notable agreements and
discrepancies.

Fig. 9 shows a histogram of the differences between
our observed energies for levels of the B′′B̄ 1Σ+u state and
those of the theoretical calculations.11 The histogram shows
an average difference of −3.8 cm−1 and a standard deviation
of 5.3 cm−1. As discussed in Ref. 11, this systematic shift
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TABLE I. B′′B̄ 1Σ+u state term energies in cm−1. ∆ denotes the difference between current observed values and
previous calculated values (Ref. 11). Uncertainties in the last digit are noted in parentheses.

v J Term energy ∆ v J Term energy ∆ v J Term energy ∆

46 0 131 187.6(4) −6.5 53 0 62 0 132 953.5(3) +0.0
1 131 197.5(2) −4.2 1 1 132 962.7(6) −1.2
2 131 207.1(3) −2.4 2 2 132 971.7(2) −32
3 131 214.4(5) −2.2 3 3
4 131 222.3(2) −1.9 54 0 132 143.6(1) −2.5 63 0 133 049.1(3) −2.5

47 0 131 246.3(6) +2.5 1 132 147.5(3) −3.7 1 133 055.2(4) −2.8
1 2 132 148.7(2) −2.0 2
2 131 295.3(2) −5.0 3 132 157.3(7) −13 3 133 111.3(3) −7.3
3 131 340.0(6) −4.0 55 0 64 0
4 131 360(1) −3.1 1 132 260.2(3) −2.2 1 133 151.1(5) −1.8

48 0 131 356.6(2) −2.2 2 132 264.9(2) −2.4 2 133 163.0(1) −1.5
1 131 359.3(7) −2.1 3 132 270.2(5) −1.5 3
2 131 365.7(3) −3.3 56 0 132 369.7(1) −2.2 65 0
3 131 391.7(2) −7.5 1 132 371.7(2) −2.2 1 133 244.5(4) −2.9
4 131 462.3(1) −7.0 2 132 376.2(2) −2.2 2 133 253.4(2) −2.9

49 0 131 493(1) −1.5 3 132 384.0(3) −2.0 3 133 295.7(2) +18
1 131 494.3(2) −2.1 57 0 66 0 133 334.6(2) −2.9
2 131 498.3(5) −2.0 1 1 133 337.4(2) −2.6
3 131 504.5(6) −3.0 2 2 133 343.5(3) −2.9
4 131 522.2(1) −5.1 3 3 133 360.4(2) −0.0

50 0 131 632.7(2) −5.1 58 0 67 0 133 425.7(4) −2.9
1 131 629.7(3) −2.1 1 132 570.4(3) −3.7 1 133 427.4(2)
2 131 633.0(1) −2.1 2 132 574.7(7) −4.5 2 133 433.0(4) −3.0
3 131 637.9(5) −2.7 3 132 584.3(3) −5.9 3 133 442.2(2) −3.3
4 131 647.0(2) −2.3 59 0 68 0 133 514.0(3) −3.0

51 0 131 755.6(1) −5.5 1 132 654.6(4) −4.7 1 133 515.0(2)
1 131 757.8(2) −2.5 2 132 655.9(2) −6.6 2 133 518.8(2) −3.4
2 131 761.4(2) −3.9 3 132 662.4(3) −10 3 133 526.6(2)
3 131 768.2(4) −2.6 60 0 132 754.3(5) −3.5 69 0 133 595.4(2)
4 131 776.1(1) −2.1 1 132 743.7(8) −5.6 1 133 596.3(2)

52 0 131 875(3) −3.8 2 132 742.9(4) −6.9 2 133 597.2(3)
1 131 889.2(2) +1.0 3 132 738.7(2) −14 3 133 601.4(2)
2 131 885.3(1) −4.5 61 0 132 849.7(4) −4.4
3 131 895.8(2) −2.0 1 132 891.1(6) −4.9

2 132 909.0(5) −22
3

may be attributed to the limited number of electronic states
included in the calculations as well as residual convergence
errors in the Born-Oppenheimer potential of the B′′B̄ 1Σ+u
state.

Notably, Wolniewicz, Orlikowski, and Staszewska11

predict several instances of what we are calling rotational
inversions which are confirmed by our measurements. A
rotational energy inversion is where a rotational series for
a given vibrational state experiences a decrease in term
energy with increasing rotational quantum number J due
to electronic coupling with nearby states. The calculated and
observed inversions are most easily seen in Figs. 6–8. The
v = 60 rovibrational levels are an extreme example of such
an inversion. The perturber in this case is presumably the
nearby 4 1Σ+u, v = 10 state, which mixes with the v = 60 state
with coefficients ranging from 10%–18% for J = 0–3. In
addition to the predicted inversions for v = 50 and 60, we
also observe a rotational inversion in the v = 52 state; our
measured value for the J = 1 level is higher than the J = 2
level. The confirmation of the predicted rotational inversions

is a testament to the success of the theoretical treatment in
accounting for rovibronic mixing.

Exceptions are the three major outliers shown in Fig. 9,
located in the histogram at −22, −32, and +18 cm−1. We have
assigned the observed energies of these outliers to v = 61,
J = 2; v = 62, J = 2; and v = 65, J = 3, respectively. In all
three cases, Wolniewicz, Orlikowski, and Staszewska11 predict
significant mixing: in the first two cases with the V 1Π+u , v = 9
state and in the latter case with the 4 1Σ+u, v = 10 state. The
challenge of accurately predicting the mixing may account
for the larger discrepancies between measured and calculated
energies of these states.

In our previous work,8 we assigned several spectral
features that, in light of the calculations by Wolniewicz,
Orlikowski, and Staszewska,11 should be reassigned. First, as
pointed out in Refs. 6 and 11, features that were assigned to
the v = 48 level of the B′′B̄ 1Σ+u state should be reassigned to
the D 1Π+u , v = 12 state. In addition, the measured energies
attributed to the v = 47 vibrational level in our previous work
and that of Glass-Maujean et al.6 should be reassigned to
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FIG. 4. Spectra of the B′′B̄ 1Σ+u spanning the v = 51–58 energy region. From bottom to top are the J ′= 0 (red), J ′= 1 (green), and J ′= 2 (blue) pump lines.

the v = 48 level, in agreement with Wolniewicz, Orlikowski,
and Staszewska.11 Finally, our previously assigned v = 50,
J = 0 level has been reassigned to a 4 1Σ+u level, and a
new assignment has been made for v = 50, J = 0 in good
agreement with the theoretical prediction for this level. These
updated assignments are reflected in Table I.

We note that in this work and that of Glass-Maujean
et al.,6 the v = 47, J = 1 level is unobserved. According to
the theoretical predictions,11 this state is highly mixed with
the n = 2 continuum of the B 1Σ+u (16.4%) and B′ 1Σ+u (19.8%)

states, which would cause it to rapidly predissociate. The
J = 0, 2, and 3 levels of the v = 47 state, however, are not
strongly mixed with the continuum (<5%), and transitions to
these levels are observed in our spectra.

In Table I, we do not report energies for levels of the
v = 53 and 57 vibrational states. The v = 53 state is strongly
mixed with several other states including the 4 and 5 1Σ+u
and D′ 1Π+u states. In the spectra shown in Fig. 4, the broad
linewidth of the transition to the 4 1Σ+u, v = 9 vibrational level
obscures the energy region of the v = 53 state such that we

FIG. 5. Same as Fig. 4 spanning the v = 59–66 energy region.
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FIG. 6. Plots of term energy vs. J (J +1) for the v = 46–50 energy region.
Solid data points are B′′B̄ 1Σ+u vibrational levels, whereas open symbols are
other valence states. Connected black dots are theoretically calculated values
from Ref. 11.

are unable to assign features to it. Instead, markers are placed
at the theoretical values of the v = 53 rovibrational levels for
reference.

The lack of observations of transitions to the v = 57
state may be explained by the Franck-Condon (FC) overlap
with the EF 1Σ+g , v ′ = 6 state. When plotting the Franck-
Condon factor (FCF) output obtained by using L 8.0, as
a function of the B′′B̄ 1Σ+u vibrational quantum number, there
is a minimum at v = 57. There, the FCF is lower than the
neighboring vibrational levels by a factor of between 10 and
100, depending on rotational level.

Finally, the connection between these high vibrational
states and the ungerade ion-pair series is interesting to note.
For the high vibrational levels of the B′′B̄ 1Σ+u state below the
third dissociation threshold, the outer turning points lie on the
ion-pair potential curve, so we expect that these states possess
ion-pair character. Above the third dissociation threshold, ion-
pair states have been studied experimentally by our group13

and theoretically using multi-channel quantum defect theory
(MQDT) by Kirrander and Jungen.12

Fig. 10 shows a plot of the measured energy spacing of the
B′′B̄ 1Σ+u vibrational levels and ion-pair energy levels, defined
as ∆E = Ev+1,n+1 − Ev,n, where v and n are the vibrational
and energy quantum numbers, respectively. The ion-pair n
values were assigned with the assistance of a MQDT model

FIG. 7. Same as Fig. 6 for the v = 51–58 energy region.

FIG. 8. Same as Fig. 6 for the v = 59–66 energy region.

of the ion-pair states.16 The dashed line in Fig. 10 represents
the spacing one obtains from the ion-pair, heavy Rydberg
formula,5,12,17

En

hc
= DH+H− −

R∞(M/me)
(n − µ)2 , (1)

where DH+H− is the dissociation limit of H+ + H−, R∞ is the
infinite-mass Rydberg constant, µ is the quantum defect, M is
the reduced mass of the ion-pair configuration of H2, and me

is the electron mass.
A connection between the two sets of quantum numbers,

n and v , has been established by Pan and Mies5,17 to be

n ↔ v + J + 1 (2)

by relating the number of nodes in a vibrational wavefunction
to those of a Rydberg state wavefunction. As seen in Fig. 10,
the spacing trend observed between high vibrational levels of
the B′′B̄ 1Σ+u state and ion-pair states decreases with increasing
term energy, connecting smoothly through the dissociation
threshold. At high energies, the heavy Rydberg model (Eq. (1))
accounts for the observed energy spacings well. Approaching
the dissociation limit, the high v levels of the B′′B̄ 1Σ+u state
begin to deviate from the heavy Rydberg model, indicating that
the strictly ion-pair configuration is beginning to break down.

FIG. 9. Histogram of the discrepancy ∆ (current observations — previous
calculations) from Table I. The average is −3.8 cm−1 with a standard devia-
tion of 5.3 cm−1.
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FIG. 10. Plot of observed energy spacing vs. observed term energy of
B′′B̄ 1Σ+u, v = 51–68, J = 0 levels (solid green squares) and ion-pair energy
levels (open red circles). The dashed blue line is the theoretical spacing
obtained from the ion-pair Rydberg formula (Eq. (1)) with a quantum de-
fect of zero. Unobserved B′′B̄ 1Σ+u levels are included using the theoretical
predictions with the systematic offset included.

In addition, the larger, periodic deviations can be explained
by perturbations due to the 4 1Σ+u v = 9–11 states.

IV. CONCLUSION

Double-resonance laser spectroscopy via the
EF 1Σ+g , v

′ = 6, J ′ state was used to probe an energy region
of 2000 cm−1 containing the high-vibrational states of the
B′′B̄ 1Σ+u state below the third dissociation threshold and above
the double-well barrier. Energies of the v = 46–69 levels of
the B′′B̄ 1Σ+u of H2 are reported and, given the challenges with
calculating highly mixed, long-range, high vibrational levels
of this light molecule, compare favorably to the theoretical
calculations of Wolniewicz, Orlikowski, and Staszewska.11

We also compare the observed high vibrational series to
the above-threshold observed ion-pair series of states. In
principle, it should be possible to extend the MQDT treatment
of Kirrander and Jungen12 through the third dissociation
threshold to calculate energies for the high-v B′′B̄ 1Σ+u states.
Such a calculation would provide an opportunity to compare
the results of the MQDT approach to those of the close-
coupled approach for these long-range, high energy states of
H2.
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