
Bryn Mawr College Bryn Mawr College 

Scholarship, Research, and Creative Work at Bryn Mawr College Scholarship, Research, and Creative Work at Bryn Mawr College 

Computer Science Faculty Research and 
Scholarship Computer Science 

9-2018 

Type Variables in Patterns Type Variables in Patterns 

Richard A. Eisenberg 
Bryn Mawr College, rae@cs.brynmawr.edu 

Joachim Breitner 
Dfinity Foundation 

Simon Peyton Jones 
Microsoft Research Cambridge 

Follow this and additional works at: https://repository.brynmawr.edu/compsci_pubs 

 Part of the Programming Languages and Compilers Commons 

Let us know how access to this document benefits you. 

Citation Citation 
Eisenberg, R.A, Breitner, J., and Simon Peyton Jones. 2018. "Type variables in patterns." SIGPLAN Not. 
53.7: 94–105. 

This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College. 
https://repository.brynmawr.edu/compsci_pubs/81 

For more information, please contact repository@brynmawr.edu. 

https://repository.brynmawr.edu/
https://repository.brynmawr.edu/compsci_pubs
https://repository.brynmawr.edu/compsci_pubs
https://repository.brynmawr.edu/compsci
https://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/open-access-feedback.html
https://repository.brynmawr.edu/compsci_pubs/81
mailto:repository@brynmawr.edu


Type Variables in Patterns
Richard A. Eisenberg

Bryn Mawr College

Bryn Mawr, PA, USA

rae@cs.brynmawr.edu

Joachim Breitner

University of Pennsylvania

Philadelphia, PA, USA

joachim@cis.upenn.edu

Simon Peyton Jones

Microsoft Research

Cambridge, UK

simonpj@microsoft.com

Abstract
For many years, GHC has implemented an extension to

Haskell that allows type variables to be bound in type sig-

natures and patterns, and to scope over terms. This exten-

sion was never properly specified. We rectify that oversight

here. With the formal specification in hand, the otherwise-

labyrinthine path toward a design for binding type vari-

ables in patterns becomes blindingly clear. We thus extend

ScopedTypeVariables to bind type variables explicitly, obvi-

ating the Proxy workaround to the dustbin of history.

CCS Concepts • Software and its engineering → Pat-
terns; Functional languages; Data types and structures;

Keywords Patterns, type variables, polymorphism, Haskell

ACM Reference Format:
Richard A. Eisenberg, Joachim Breitner, and Simon Peyton Jones.

2018. Type Variables in Patterns. In Proceedings of the 11th ACM
SIGPLAN International Haskell Symposium (Haskell ’18), September
27–28, 2018, St. Louis, MO, USA. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3242744.3242753

1 Introduction
Haskell allows the programmer to write a type signature for a
definition or expression, both as machine-checked documen-

tation, and to resolve ambiguity (Section 2.1). For example,

prefix :: a→ [[a]]→ [[a]]
prefix x yss = map xcons yss
where xcons ys = x : ys

Sadly, it is not always possible to write such a type signature.

For example, to give a signature for xcons we might try:

prefix :: a→ [[a]]→ [[a]]
prefix x yss = map xcons yss
where xcons :: [a]→ [a]

xcons ys = x : ys

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

Haskell ’18, September 27–28, 2018, St. Louis, MO, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5835-4/18/09. . . $15.00

https://doi.org/10.1145/3242744.3242753

But Haskell98’s scoping rules specify that the a in the signa-

ture for xcons is locally quantified, thus: xcons :: ∀a. [a] →
[a]. That is not what we want! We want the a in the sig-

nature for xcons to mean “the universally quantified type

variable for prefix”, and Haskell98 provides no way to do that.
The inability to supply a type signature for xcons might

seem merely inconvenient, but it is just the tip of an iceberg.

Haskell uses type inference to infer types, and that is a won-

derful thing. However, insisting on complete type inference—
that is, the ability to infer types for any well-typed program

with no help from the programmer—places serious limits

on the expressiveness of the type system. GHC’s version of

Haskell has gone far beyond these limits, and fundamentally

relies on programmer-supplied annotations to guide type

inference. As some examples, see the work of Peyton Jones

et al. [2007], Vytiniotis et al. [2011], or Eisenberg et al. [2016].

So the challenge we address is this: it should be possible
for the programmer to write an explicit type signature for any
sub-term of the program. To do so, some type signatures must

refer to a type that is already in the static environment, so we

need a way to name such types. The obvious way to address

this challenge is by providing language support for lexically
scoped type variables. GHC has long supported scoped type

variables: the ScopedTypeVariables extension is very popular,
and 29% of Haskell packages on Hackage use it. But it has

never been formally specified! Moreover, as we shall see, it

is in any case inadequate to the task. In this paper we fix

both problems, making the following contributions:

• In the days of Haskell98, scoped type variables were

seldom crucial. Through a series of examples we show

that, as Haskell’s type system has grown more sophis-

ticated, the need for scoped type variables has become

acute (Section 2), while GHC’s existing support for

them has become more visibly inadequate (Section 3).

• To fix these inadequacies, we describe visible type ap-
plication in patterns, a natural extension to GHC’s ex-

isting visible type applications from terms to patterns

(Section 4).

• We give the first formal specification of scoped type

variables for Haskell, formalizing the folklore, and pro-

viding a firm foundation for both design and imple-

mentation (Section 5).

• As part of this specification, we offer a new and simpler

typing judgment for GADT pattern matching (Sec-

tion 5.3), which treats uniformly the universal and

existential variables of a data constructor.

https://doi.org/10.1145/3242744.3242753
https://doi.org/10.1145/3242744.3242753


Haskell ’18, September 27–28, 2018, St. Louis, MO, USA Richard A. Eisenberg, Joachim Breitner, and Simon Peyton Jones

show :: Show a⇒ a→ String
read :: Read a⇒ String → a
(++) :: [a]→ [a]→ [a]
concat :: [[a]]→ [a]

Figure 1. Types of standard functions

2 Motivation and Background
2.1 The Need for Type Annotations
One of the magical properties of ML-family languages, in-

cluding Haskell, is that type inference allows us to write

many programs with no type annotations whatsoever. In

practice, however, Haskell programs contain many user-

written type signatures, for two main reasons.

First, the type of a function can be extremely helpful as doc-

umentation, with the advantage that it is machine-checked
documentation. Almost all programmers regard it as good

practice to provide a signature for every top-level function.

Indeed, GHC has a warning flag, -Wmissing-signatures,
which enforces this convention.

Second, as Haskell’s type system becomes increasingly

expressive, complete type inference becomes intractable, and

the type system necessarily relies on programmer-supplied

type annotations. Here are some examples:

• Type-class ambiguity is present even in Haskell 98.

Consider
1
:

normalize :: String → String
normalize s = show (read s)

This function parses a string to a value of some type,

and then turns that value back into a string. But noth-

ing in the code specifies that type, so the programmer

must disambiguate. One way to do so is to provide

a type signature that specifies the result type of the

read s call, thus:

normalize s = show (read s :: Int )

• Polymorphic recursion. In ML, recursive calls to a func-

tion must be at monomorphic type, but Haskell has

always supported polymorphic recursion, provided

the function has a type signature. For example:

data T a = Leaf a | Node (T [a]) (T [a])

leaves :: T a→ [a]
leaves (Leaf x ) = [x ]
leaves (Node t1 t2) = concat (leaves t1 ++ leaves t2)

• Higher-rank types [Peyton Jones et al. 2007]. Consider

f :: (∀a. [a]→ [a]) → ([Char ], [Bool ])
f g = (g "Hello", g [True, False])

1
Figure 1 gives the types of standard functions, such as read and show .

Here the type of g is polymorphic, so it can be applied

to lists of different type. The type signature is essential

to specify the type of the argument g; without it, f will
be rejected.

• Generalized algebraic data types [Schrijvers et al. 2009].
The popular GADTs extension to GHC allows pattern

matching to refine the type information available in

the right hand side of an equation. Here is an example:

data G a where
MkInt :: G Int
MkFun :: G (Int → Int )

When we learn that a value g :: G a is actually the

constructor MkInt , then we simultaneously learn that

a really is Int . GHC can use this fact during type check-

ing the right-hand side of a function, like this:

matchG :: G a→ a
matchG MkInt = 5

matchG MkFun = (+10)

Again, however, matchG will only type-check if it is

given a signature; see Schrijvers et al. [2009] for details.

• Ambiguous types. Consider

type family F a
ambig :: Typeable a⇒ F a→ Int

test :: Char → Int
test x = ambig x

In test GHC must decide at what type to call ambig;
that is, what type should instantiate the a in ambig’s
type. Any choice a = τ must ensure that F τ ∼ Char
but, because F might not be injective, that does not tell

us what a should be. A type signature is not enough to

resolve this case; we need a different form of type an-

notation, namely visible type application (Section 2.3).

There is a general pattern here: as the type system becomes

more expressive, the type inference needs more guidance.

Moreover, that guidance is extremely informative to the

programmer, as well as to the compiler.

2.2 Support for Scoped Type Variables
Given the increasing importance of type annotations, a good

principle is this: it should be possible to specify, via a type

signature, the type of any sub-expression or any let-binding.

Alas, as shown in the introduction, Haskell98 supports only

closed type signatures, so there are useful type signatures

that we simply cannot write.

The key deficiency in Haskell98 is that it provides no way

to bring type variables into scope. GHC has recognized this

need for many years, and the ScopedTypeVariables extension
offers two ways to bring a type variable into scope:

• Binding in a declaration signature. Since 2004 GHC

allows you to write



Type Variables in Patterns Haskell ’18, September 27–28, 2018, St. Louis, MO, USA

prefix :: ∀a. a→ [[a]]→ [[a]]
prefix x yss = map xcons yss
where xcons :: [a]→ [a]

xcons ys = x : ys

The explicit “∀” brings a into scope in the rest of the

type signature (of course), but it also brings a into

scope in the body of the named function, prefix in this

case. The rule is a bit strange, because the definition

of prefix is not syntactically “under” the ∀, and indeed

the signature can be written far away from the actual

binding. But in practice the rule works well, and we

take it as-is for the purposes of this paper.

• Pattern signatures: binding a type variable in a pattern.

For even longer, since 1998, GHC has allowed you to

write this:

prefix (x :: b) yss = map xcons yss
where xcons :: [b]→ [b]

xcons ys = x : ys

Here, we bind the type variable b in the pattern (x ::b),
and this binding scopes over the body of the binding.

We describe pattern signatures in much more detail in

Section 3.

2.3 Visible Type Application
The TypeApplications extension provides a relatively new

form of type annotation: explicit type applications, first de-

scribed by Eisenberg et al. [2016]. The idea is that an ar-

gument of the form @ty specifies a type argument. This

can often be used more elegantly than a type signature. For

example, a hypothetical unit-test for the function isJust ::
Maybe a→ Bool,

testIsJust1 = isJust (Just (2018 :: Int )) == True
testIsJust2 = isJust (Nothing ::Maybe Int ) == False

can equivalently be written more elegantly using explicit

type annotations

testIsJust1 = isJust (Just @Int 2018) == True
testIsJust2 = isJust (Nothing @Int ) == False

Visible type application solves the awkward case of ambig
in Section 2.1: we can disambiguate the call with a type

argument. For example:

type family F a
type instance F Bool = Char

ambig :: Typeable a⇒ F a→ Int

test :: Char → Int
test x = ambig @Bool x

Here we specify that ambig should be called at Bool, and
that is enough to type-check the program.

It is natural to wonder whether we can extend visible type

application to patterns, just as we extended type signatures to

patterns. Doing so is the main language extension suggested

in this paper: Section 4.

3 Pattern Signatures and Their
Shortcomings

We see above that ScopedTypeVariables enables the user to
bind type variables in patterns, by providing a pattern signa-
ture, that is, a type signature in a pattern. We explore pattern

signatures and their shortcomings in this section.

3.1 The Binding Structure of a Pattern Signature
A pattern signature may bind a type variable, but it may also

mention a type variable that is already in scope. For example,

we may write

prefix (x :: a) yss = map xcons yss
where xcons (ys :: [a]) = x : ys

Here, the pattern signature (x :: a) binds a (as well as x), but
the pattern signature (ys :: [a]) simply mentions a (which is

already in scope), as well as binding ys. The rule is this: a use
of a type variable p in a pattern signature is an occurrence
of p if p is already in scope; but binds p if p is not already in

scope.

It is entirely possible to have many different type vari-

ables in scope, all of which are aliases for the same type. For

example:

prefix :: ∀a. a→ [[a]]→ [[a]]
prefix (x :: b) (yss :: [[c ]]) = map xcons yss

where xcons (ys :: [d ]) = x : ys

Here a, b, c, and d are all in scope in the body of xcons, and
are all aliases for the same type.

The current implementation of ScopedTypeVariables al-
lows such lexically-scoped type variables to stand only for

other type variables, and not for arbitrary types, a point we
return to in Section 3.5.

3.2 Pattern Signatures Are Useful
Pattern signatures have merit even if there are no type vari-

ables around. Consider this Haskell program:

main = do x ← readLn
if null x then putStrLn "Empty"

else putStrLn "Not empty"

The types of the program are ambiguous: Clearly, x is some

type that has a Read instance, and because it is passed to

null, is a list2, but the compiler needs to know the precise

type, and rejects the program.

To fix this in Haskell98, the programmer has two options:

2
Or, with a recent version of the standard library, it is something with a

Foldable instance.



Haskell ’18, September 27–28, 2018, St. Louis, MO, USA Richard A. Eisenberg, Joachim Breitner, and Simon Peyton Jones

• They can wrap the call to readLn in a type annotation:

main = do x ← (readLn :: IO [Int ])
if null x then putStrLn "Empty!"

else print x

but this is infelicitous because there is no question that

readLn is in the IO, and with larger types this can get

very verbose.

• They can wrap an occurrence of x in a type annotation:

main = do x ← readLn
if null (x :: [Int ]) then putStrLn "Empty"

else print x

but again this is unsatisfying, because it feels too late.

Both variants are essentially work-arounds for the natural

way of specifying the type of x , namely at its binding site:

main = do (x :: [Int ]) ← readLn
if null x then putStrLn "Empty"

else print x

which is precisely what the PatternSignatures language ex-
tension provides

3
—the ability to write a type annotation in

a pattern.

Users, especially beginners, who have to track down a

confusing type error in their code, can now exhaustively

type annotate not just their terms, but also their patterns,

until they have cornered the bug.

3.3 Pattern Signatures Are Essential
Pattern signatures become more crucial when we consider

existential types. The ExistentialQuantification extension al-

lows users to bind existential variables in their data con-

structors. These are type variables whose values are “stored”

by a constructor (but not really, because types are erased)

and made available during pattern matching. Here are two

examples:

data Ticker where
MkTicker :: ∀a. a→ (a→ a) → (a→ Int ) → Ticker

data Showable where
MkShowable :: ∀a. Show a⇒ a→ Showable

A Ticker contains an object of some type (but we do not know

what type), along with an update function of type a → a
and a way to convert an a into an Int . The Showable type
packs a value of an arbitrary type that has a Show instance

along with its Show dictionary. Here are some functions that

operate on these types:

-- Updates a ticker, returning whether or not the ticker

-- has reached a limit

tick :: Ticker → Int → (Ticker,Bool)

3
Modern GHC actually folds PatternSignatures into ScopedTypeVariables,
giving both extensions the same meaning. However, it is expositionally

cleaner to separate the two, as we do throughout this paper.

tick (MkTicker val upd toInt ) limit
= (newTicker, toInt newVal ⩾ limit )
where newVal = upd val

newTicker = MkTicker newVal upd toInt

showAll :: [Showable]→ String
showAll [ ] = ""

showAll (MkShowable x : ss) = show x ++ showAll ss

We see that the tick function can unpack the existential in the
Ticker value and operate on the value of type a without ever
knowing what a is. Similarly, the showAll function works

with data of type a knowing only that a has a Show instance.

(The Show a constraint is brought into scope by the pattern

match.)

However, existentials can never escape, forbidding the

following function:

jailbreak (MkTicker val ) = val

What should the type of jailbreak be? There is no answer to

this question (jailbreak :: Ticker → a is clearly too polymor-

phic), and so GHC rejects this definition, correctly stating

that type variable ’a’ would escape its scope.
We naturally wish to name the existential type variable

sometimes. For example, suppose we wanted to give newVal
(in thewhere clause of tick) a type signature. Saying newVal ::
a would hardly do, because there is not yet a connection

between the name a and the type unpacked fromMkTicker .
We have to do this:

tick (MkTicker (val :: b) upd toInt ) limit = ...
where newVal :: b

newVal = upd val

The val :: b in the pattern binds the type variable b, so we

can refer back to it later.

3.4 Pattern Signatures Are Clumsy
Pattern signatures can be clumsy to use, when the type vari-

able is buried deep inside an ornate type. Here is a contrived

example:

data Elab where
MkElab :: Show a⇒ [Maybe (Tree (a, Int )) ]→ Elab

getE :: Elab → Int
getE (MkElab (xs :: [Maybe (Tree (a, Int )) ])) = ...a ...

To bring a into scope in f ’s right-hand side, we have to repeat
the MkElab’s elaborate argument type.

More seriously, it may be impossible, rather than merely

clumsy, to bind the variable we need. Consider the following

GADT:

data GM a where
MkMaybe :: GM (Maybe b)

matchGM :: a→ GM a→ Bool
matchGM x MkMaybe = isJust x



Type Variables in Patterns Haskell ’18, September 27–28, 2018, St. Louis, MO, USA

This definition works just fine: GHC learns that x’s type
is Maybe b (for some existential b) and the call to isJust is
well typed. But what if we want to bind b in this definition?

Annoyingly, MkMaybe has no argument to which we can

apply a pattern signature. Nor does it work to wrap a pattern

signature around the outside of the match, thus:

matchGM :: a→ GM a→ Bool
matchGM x (MkMaybe :: GM (Maybe b)) = isJust @b x

This definition is rejected. The problem is that the type anno-

tation on theMkMaybe pattern is checked before the pattern
itself is matched against

4
. Before matching the MkMaybe,

we do not yet know that a is really Maybe b. Nor can we

put the type annotation on x , as that, too, occurs before the
MkMaybe pattern has been matched. A possible solution is

this monstrosity:

matchGM :: a→ GM a→ Bool
matchGM x gm@MkMaybe = case gm of

( :: GM (Maybe b)) → isJust @b x

This is grotesque. Of course, in this case, we can simply flip

the argument order tomatchGM, but we should not be forced

to change argument order just because of clumsy syntax. We

must do better, and we will in Section 4.

3.5 Pattern Signatures Resist Refactoring
In Section 3.1, we explained that a scoped type variable may

refer only to another type variable. This means that the

definition

prefix :: a→ [[a]]→ [[a]]
prefix (x :: b) yss = map xcons yss
where xcons ys = x : ys

is accepted, because b stands for the type variable in the type

of prefix . But suppose, for example, we specialize the type

signature of prefix without changing its definition:

prefix :: Int → [[Int ]]→ [[Int ]]
prefix (x :: b) yss = map xcons yss
where xcons ys = x : ys

Now this definition is rejected with the error message

“Couldn’t match expected type b with actual type Int”, be-
cause b would have to stand for Int .

Since the design of ScopedTypeVariables, GHChas evolved,

and with the advent of type equalities, the restriction itself

becomes confusing. Should GHC accept the following defi-

nition?

prefix :: a ∼ Int ⇒ Int → [[a]]→ [[a]]
prefix (x :: b) yss = map xcons yss
where xcons ys = x : ys

4
This ordering arises because any type variable in a pattern signature is

bound within the pattern.

Is b an alias for a (legal) or for Int (illegal)? Since a and Int are
equal, the question does not really make sense. We therefore

propose to simply drop this restriction (Section 4.3).

3.6 Pattern Signatures Are Inadequate
We end our growing list of infelicities with a case in which

there is no way whatsoever to bind the type variable, short

of changing the data type definition.

Type families [Chakravarty et al. 2005; Eisenberg et al.

2014] allow users to write type-level functions and encode

type-level computation. For example, we might write this:

type family F a where
F Int = Bool
F Char = Double
F Float = Double

Naturally, we can use a type family to define the type of an

argument to an existential data constructor:

data TF where
MkTF :: ∀a. Typeable a⇒ F a→ TF

The MkTF constructor stores a value of type (F a); it also
stores a dictionary for a Typeable a constraint [Peyton Jones

et al. 2016]—that is, we can use a runtime type test to discover

the choice for a. We would thus like to write the following

function:

toDouble :: TF → Double
toDouble (MkTF x ) -- We expect x :: F a
| Just HRefl ← isType @Int = if x then 1.0 else − 1.0
| Just HRefl ← isType @Char = x
| Just HRefl ← isType @Float = x
| otherwise = 0.0

where
isType :: ∀ty . Typeable ty ⇒ Maybe (a :≈: ty )
isType = eqTypeRep (typeRep @a) (typeRep @ty )

The specifics of this function are not important here (see

[Peyton Jones et al. 2016]). For our present purposes, the cru-

cial point is this: the existentially-bound type a is mentioned

in both the definition of isType and its type signature—but
there is no way to bring a into scope. We might try using a

pattern signature at the binding of x , thus:

toDouble (MkTF (x :: F a)) = ...

but that does not quite work. The problem is that F is not in-

jective. The a in that pattern type annotation need not be the

same one packed into the existential type variable by MkTF ,
and GHC rightly considers such an a to be ambiguous

5
.

The only workaround available today is to change MkTF
to take a proxy argument:

5
If F were an injective type family, we could label it as such to fix the

problem [Stolarek et al. 2015]. But here we assume that it is not.



Haskell ’18, September 27–28, 2018, St. Louis, MO, USA Richard A. Eisenberg, Joachim Breitner, and Simon Peyton Jones

data Proxy a = Proxy -- in GHC’s Data.Proxy
data TF where
MkTF :: ∀a. Typeable a⇒ Proxy a→ F a→ TF

toDouble (MkTF ( :: Proxy a) x ) = ...

The Proxy type stores no runtime information (at runtime,

it is isomorphic to ()), but the type Proxy a carries the all-
important type variable a. All datatypes are injective, so we

can use this proxy argument to bind the type variable a in a

way that we could not do previously.

As with many other examples, this is once again unsatisfy-

ing: it is a shame that we have to modify the data constructor

declaration just to deal with type variable binding.

3.7 Conclusion
In this section we have seen that pattern signatures allow

us to bring into scope the existentially-bound type variables

of a data constructor, but that doing so can be clumsy, and

occasionally impossible. We need something better.

4 Visible Type Application in Patterns
Consider again Elab from Section 3.4:

data Elab where
MkElab :: Show a⇒ [Maybe (Tree (a, Int )) ]→ Elab

and suppose we want to build a value of type Elab containing
an empty list. We cannot write justMkElab [ ] because that

is ambiguous: we must fix the type at whichMkElab is called
so that the compiler can pick the right Show dictionary. We

can use a type signature, but it is clumsy, just as the pattern

signature was clumsy in Section 3.4:

MkElab ([ ] :: [Maybe (Tree (Bool, Int )) ])

It is much nicer to use visible type application and write

MkElab @Bool [ ]. So it is natural to ask whether we could

do the same in patterns, like this:

getE :: Elab → Int
getE (MkElab @a xs) = ...a ...

Here, we bind a directly6, as a type-argument pattern all by

itself, rather than indirectly via a pattern signature.

We call this visible type application in patterns, a dual of
visible type application in the same way that a pattern sig-

natures are a dual of type signatures. This section describes

visible type application in patterns informally, while the next

formalizes it.

6
One might reasonably wonder how we can steal @ in a pattern in this way.

After all, Haskellers can also write, e.g., f list@(x : xs) = ... to alias list to
the pattern (x : xs). The new syntax is not actually ambiguous, however: an

as-pattern always has a variable on its left, while our new form is always

headed by a data constructor with all type patterns preceding value-level

patterns.

This feature was first requested more than two years ago.
7

Furthermore, binding type variables like this is useful for

more than just disambiguation, as we will shortly see.

4.1 Examples
Visible type application in patterns immediately fixes the

other problems of pattern signatures identified above. For

example, in the GADT example of Section 3.4 we can write

matchGM :: a→ GM a→ Bool
matchGM x (MkMaybe @b) = isJust @b x

and for the type-family example of Section 3.6 we write

toDouble (MkTF @a x ) = ...

4.2 Universal and Existential Variables
Visible type applications in patterns can be used for all the
type arguments of a data constructor, whether existential or

universal. As an example of the latter we may write

main = do (Just @Int x ) ← readMaybe ‘fmap‘ getLine
putStrLn "Input was " ++ show x

as an alternative to

main = do (Just (x :: Int )) ← readMaybe ‘fmap‘ getLine
putStrLn $ "Input was " ++ show x

Visible type application in patterns considers the type of

data constructor, exactly as written by the user. For example

data G a b where
G1 :: ∀b.Char → G Int b
G2 :: ∀p q b. p→ q → b → G (p, q) b
G3 :: ∀p q a b. (a ∼ (p, q)) ⇒ p→ q → b → G a b

f :: G a Bool → Int
f (G1 @Bool y ) = ord y
f (G2 @p @q x y z ) = 0

f (G3 @p @q @a @Bool x y z ) = 1

In this definition

• G1 has one type argument.

• G2 has three type arguments, but we have chosen to

match only the first two.

• G3 is morally identical to G2, because of the equality,
but it is written with four type arguments, and visible

type application in patterns follows that specification.

4.3 Type Aliases
In Section 3.5 we have seen that GHC currently restricts type

variables to refer to type variables, but that this does not

have to be the case. Similar questions arise in our function f
above. Could we write this for G3?

f (G3 @p @q @(p, q) @b x y z ) = 1

7https://ghc.haskell.org/trac/ghc/ticket/11350

https://ghc.haskell.org/trac/ghc/ticket/11350


Type Variables in Patterns Haskell ’18, September 27–28, 2018, St. Louis, MO, USA

Term variables ∋ x, y, z, f , g, h

Internal type vars ∋ a, b
User type vars ∋ c
Data constructors ∋ K

Atoms ν F K | x

Expressions e F ν | λx .e | e1 e2 | case e of {p → e}

| let x :: τ = e1 in e2
Patterns p F x | K p

Polytypes σ F ∀a. τ

Monotypes τ ,υ F tv | Tτ | . . .
Type variables tv F a | c
Type env Γ F ϵ | Γ,ν : σ

Substitutions θ F [tv 7→ τ ]

Types of data cons Γt = K : ∀a. σ → T a

Figure 2. The initial grammar

Instead of a we have written (p, q), which is equal to a. And
instead of Bool we have written b, thereby binding b to Bool.
Given the ubiquity of equalities, it no longer seems to

make sense to restrict what a scoped type variable can stand

for, so we propose simply to drop the restriction. Doing so

simplifies the specification and the implementation of both

pattern signatures and visible type application in patterns.

A GHC proposal by one of the authors [Breitner 2018] is

underway. Relaxing the requirement also allows the user to

use type variables as “local type synonyms” that stand for

possibly long types:

processMap ::Map Int (Maybe (Complex Type)) → ...
processMap (m ::Map key value) = ...

5 Formal Specification
We give the first formal specification of a number of exten-

sions to Haskell related to pattern matching and the scoping

of type variables: annotations in patterns, scoped type vari-

ables, and type application syntax in patterns. This section

builds up these specification step by step, starting with a

specification of the language without these features.

Our specification does not cover let-bindings and declara-
tion type signatures. We focus instead on pattern signatures,

which is where our new contribution lies. The scoping of

forall-bound type variables from declaration type signatures

would be straightforward to add.

5.1 The Baseline
We begin with a reduced model of Haskell98 terms, which

knows nothing yet about scoped type variables nor type

equalities (i.e., no GADTs). We also removed type class con-

straints. The syntax is given in Fig. 2, and the typing rules are

in Fig. 3. In the typing rules, we use a convention where an

over-bar indicates a list, optionally with a superscript index

to indicate the iterator. Iterators are additionally annotated

with length bounds, where appropriate.

The grammar includes separate metavariables for internal

type variables a and user type variables c. The former are

type variables as propagated by the compiler, while the latter

are type variables the user has written. It is as if internal type

variables a are spelled with characters unavailable in source

Haskell. This distinction becomes important in Section 5.5.

The language also includes only annotated let-bindings; no
let-generalization here. (The “generalization” youmight spot

in Rule Let is simply quantifying over the variables the user

has lexically written in the type signature.) This keeps our

treatment simple and avoids the challenges of type infer-

ence. Allowing full let-generalization and un-annotated lets
changes none of the conclusions presented here.

The judgment Γ ⊢ e : τ indicates that the term e has type τ
in the context Γ, where Γ is a list of term variables and their

(possibly polymorphic) types. Data constructors are globally

fixed in an initial top-level context Γt ; it is assumed that any

context Γ contains the global Γt binding data constructors.

The type-checking of possibly nested patterns, as they

occur in a case statement, is offloaded to the judgment Γ ⊢p p :

σ ⇒ Γ′, which checks that p is a pattern for a value of type σ
and possibly binds new term variables, which are added to Γ
and returned in the extended environment Γ′. The auxiliary

judgment Γ ⊢∗p pi : σi
i
⇒ Γ′ straightforwardly threads the

environment through a list of such pattern typings.

These rules should be unsurprising, but provide a baseline

from which to build.

5.2 Support for GADTs
Now we extend this language with support for GADTs, with

their existential type variables and equality constraints. See

Fig. 4. The term syntax is unchanged, but polytypes now can

mention constraints, which can either be empty (and elided

from this text), an equality between two monotypes, or a

conjunction of constraints. We leave the possibility open for

additional constraints, as indicated by the ellipsis.

The environment Γ is extended with two new forms. First,

we track the scope of type variables by adding a : ∗ to

Γ8. Second, we add constraints Q to Γ, to indicate which

constraints (bound by a GADT pattern match) are in scope.

Conversely, constraints are proved by the Γ ⊩ Q entailment

relation. As type inference and entailment is not the subject

of this paper, we leave this relation abstract. The concrete

instantiation of this judgment by, e.g., that of Vytiniotis et al.

8
Haskell supports higher kinds, but we elide that here for simplicity, and

assume that all type variables have kind ∗.



Haskell ’18, September 27–28, 2018, St. Louis, MO, USA Richard A. Eisenberg, Joachim Breitner, and Simon Peyton Jones

Γ ⊢ e : τ Expression typing

Γ, x : τ1 ⊢ e : τ2
Γ ⊢ λx .e : τ1 → τ2

Abs

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ2
Γ ⊢ e1 e2 : τ2

App

Γ ⊢ e : υ c = ftv (υ)
Γ, x : ∀c.υ ⊢ e2 : τ
Γ ⊢ let x :: υ = e in e2 : τ

Let

(ν : ∀tv.υ) ∈ Γ

Γ ⊢ ν : [tv 7→ τ ]υ
VarCon

Γ ⊢ e : υ Γ ⊢p pi : υ ⇒ Γ′i Γ′i ⊢ ei : τ
i

Γ ⊢ case e of {pi → ei
i
} : τ

Case

Γ ⊢p p : σ ⇒ Γ′ Pattern typing

Γ ⊢p x : σ ⇒ Γ, x : σ
PatVar

(K : ∀ai i . σk k
→ T ai i ) ∈ Γ Γ ⊢∗p pk : [ ai 7→ τi

i
]σk

k
⇒ Γ′

Γ ⊢p K pk
k
: Tτi

i
⇒ Γ′

PatCon98

Γ ⊢∗p pi : σi
i
⇒ Γ′ Pattern sequence typing

Γi−1 ⊢p pi : σi ⇒ Γi
i∈1..n

Γ0 ⊢
∗
p pi : σi

i∈1..n
⇒ Γn

PatSeq

Figure 3. Typing of Haskell98 patterns

Updates to grammar:

Constraints Q F ϵ | Q1 ∧ Q2 | τ1 ∼ τ2 | . . .

Polytypes σ F ∀a.Q ⇒ τ

Type env Γ F ϵ | Γ,ν : σ | Γ, a : ∗ | Γ,Q

Types of data cons Γt = K : ∀a.Q ⇒ σ → Tτ

Constraint entailment Γ ⊩ Q
Γ ⊢ e : τ Expression typing

(ν : ∀a.Q ⇒ υ) ∈ Γ
Γ ⊩ [a 7→ τ ]Q
Γ ⊢ ν : [a 7→ τ ]υ

VarConQ

Γ ⊢ e : τ1
Γ ⊩ τ1 ∼ τ2

Γ ⊢ e : τ2
Eq

Γ ⊢p pi : υ ⇒ Γ′i Γ′i ⊢ ei : τ
i

Γ ⊢ e : υ ftv (τ ) ⊆ dom(Γ)

Γ ⊢ case e of {pi → ei
i
} : τ

CaseTv

Γ, a : ∗ ⊢ e : [c 7→ a]υ
c = ftv (υ) a # dom(Γ)
Γ, x : ∀c.υ ⊢ e2 : τ
Γ ⊢ let x :: υ = e in e2 : τ

LetTv

Γ ⊢p p : σ ⇒ Γ′ Pattern typing

(K : ∀a.Q ⇒ σi
i
→ Tυj

j ) ∈ Γ a # dom(Γ)

Γ, a : ∗,υj ∼ τj
j,Q ⊢∗p pi : σi

i
⇒ Γ′

Γ ⊢p K pi
i
: Tτj

j
⇒ Γ′

PatCon

Figure 4. Adding support for GADTs

[2011] would be appropriate in an implementation of this

type system.

Support for GADTs can be seen in the new form of data

constructor types, listed in Fig. 4. Note that the arguments to

T in the return type are no longer confined to be a, the quanti-
fied type variables; instead they can be arbitrary monotypes.

In addition, a constructor can include a constraint Q.
When a data constructor is used in an expression, then the

type equalities must be satisfied in the current environment,

as expressed by the new premise of Rule VarConQ in Fig. 4.

We see also that the type equalities in the environment can

be used for implicit coercion, as expressed in the Rule Eq.

When pattern-matching a data constructor, Rule PatCon

brings the type variables a into scope, by extending Γ. We

require that these bound variables are fresh with respect to

other variables in scope, a requirement we can satisfy by

α-renaming if necessary. We also add the type equalities that

we have learned to the environment—that is, the equivalence

between the υj
j
from the data constructor’s type and the τj

j

from the pattern type.

Finally, we update Rule CaseTv to prevent skolem escape

and Rule LetTv to track the internal variables brought into

scope. Note that these variables are internal only—the user
cannot write them in a program.

At this point, our type system is comparable in expres-

siveness to the specification given by Vytiniotis et al. [2011].

A notable difference is that we explicitly handle nested pat-

terns. This is important, as in the presence of GADTs, the

precise formulation of how nested pattern are type-checked

matters. For example, consider:



Type Variables in Patterns Haskell ’18, September 27–28, 2018, St. Louis, MO, USA

data G a where
G1 :: G Bool
G2 :: G a

f :: (G a, a,G a) → Bool
f (G1, True, ) = False
f ( , True,G1) = False

Here the first equation for f is fine, but the second is not,

because the pattern True cannot match against an argument

of type a until after the constructor G1 has been matched—

and matching in Haskell is left-to-right.

5.3 Treating Universals and Existentals Uniformly
A technical contribution of this paper is that Rule PatCon is

simpler and more uniform than the one usually given [e.g.

by Vytiniotis et al. 2011], in that it does not distinguish the
universal and existential type variables of the data constructor.
Instead, all the type variables are freshly bound, with the

equalities υj ∼ τj
j
linking them to the context. In particular,

these equalities take the place of the substitution written in

the previous Rule Con98.

However, there is a worry: pattern-matching involving

GADTs lacks principal types, and hence usually requires

a type signature (see Section 2.1). If we treat vanilla, non-

GADT Haskell98 data types in the same way as GADTs, do

we lose type inference for ordinary Haskell98 definitions?

Specifically, Vytiniotis et al. [2011, Section 5.6.1] describe

how assumed local constraints can interfere with type in-

ference, essentially by making certain unification variables

“untouchable” (that is, unavailable for unification). That sec-

tion also describes how to make more unification variables

touchable in the non-GADT case, when the constraints entail

no equalities. But our typing rule introduces equalities even
in the non-GADT case, so this mechanism fails for us.

Let us investigate Rule PatCon specialized to the case of

an ordinary, non-GADT constructor, which binds no context

Q and does not constrain its result type arguments:

(K : ∀aj j . σi i → T aj j ) ∈ Γ a # dom(Γ)

Γ, aj : ∗ j, aj ∼ τj
j
⊢∗p pi : σi

i
⇒ Γ′

Γ ⊢p K pi
i
: Tτj

j
⇒ Γ′

PatCon98’

We see that all of its assumed equality constraints take the

form aj ∼ τj , where aj is freshly bound. We can view such

equalities not as true assumed equalities (which lead to the

type inference problems for GADTs), but instead as a form

of local let-binding: the context simply gives us the defi-

nition of these type variables. In this interpretation, it is

critical that the type variable in the equality assumption is

freshly bound—that is, we are not referring to a type variable

from a larger scope. Viewing the equalities in Γ′ as let-like,
it is sensible to extend the ad-hoc extension of Vytiniotis

et al. [2011] to include such forms. Indeed, doing so is an

independently-useful improvement to type inference, and

Patterns p F . . . | p :: σ

ftv (σ ′) = ∅ Γ ⊩ σ ≤ σ ′ Γ ⊢p p : σ ′ ⇒ Γ′

Γ ⊢p (p :: σ ′) : σ ⇒ Γ′
PatSig

Figure 5. Syntax and typing rule for pattern signatures

Expressions e F . . . | let x :: σ = e1 in e2

σ = ∀c.Q ⇒ υ ftv (σ ) ⊆ dom(Γ)
Γ, c : ∗,Q ⊢ e : υ Γ, x : σ ⊢ e2 : τ

Γ ⊢ let x :: σ = e in e2 : τ
LetForall

c = ftv (σ ′) \ dom(Γ) Γ′ = Γ, c : ∗, c ∼ τ

isInternalTypeVar (τ )
Γ′ ⊩ σ ≤ σ ′ Γ′ ⊢p p : σ ′ ⇒ Γ′′

Γ ⊢p (p :: σ ′) : σ ⇒ Γ′′
PatSigTv

Figure 6. Typing with scoped type variables

GHC has already adopted it, in response to a request
9
from

one of this paper’s authors. Thus, despite the addition of

equalities in Rule PatCon, we do not have a negative effect

on type inference.

5.4 Closed Pattern Signatures
Our next step is to formalize PatternSignatures, which allows
the user to annotate patterns with type signatures, but for

nowwewill only handle closed pattern signatures.We simply

add one new typing rule PatSig, shown in Fig. 5. Note that

the user is allowed to give the pattern a more specific type,

as in this example, which requires RankNTypes:

f :: (∀a. a→ a) → Int
f (x :: Int → Int ) = x 42

The typing rule expresses this through the premise Γ ⊩ σ ≤
σ ′, an appeal to the subtype relation on polytypes. This sub-

type relationship checks that the expected type of the pattern

σ is more general than the annotated type σ ′. Note that this
relationship is backwards from the usual expected/actual

relationship in typing because patterns are in a negative po-

sition. The subtleties of polytype subtyping are well explored

in the literature
10
and need not derail our exploration here.

However, note that Rule PatSig checks pattern p with the

annotated type σ ′, not the more general σ—after all, the user
has asked us to use σ ′.

5.5 Scoped Type Variables
Next, we add support for two features that can bring type

variables into scope: open pattern signatures and let with
an explicit ∀. The grammar now allows a polytype σ as the

9https://ghc.haskell.org/trac/ghc/ticket/15009
10
GHC’s current implementation of subtyping is described by Eisenberg

et al. [2016], who also cite other relevant publications on the subject.

https://ghc.haskell.org/trac/ghc/ticket/15009


Haskell ’18, September 27–28, 2018, St. Louis, MO, USA Richard A. Eisenberg, Joachim Breitner, and Simon Peyton Jones

annotation to a let-bound identifier. We additionally replace

PatSig with PatSigTv and add LetForall in Fig. 6.

The LetForall rule allows programmers to bring vari-

ables c into scope when an explicit ∀ is mentioned in the

source. Note that this rule does not do any implicit lexical

generalization: echoing GHC’s behavior, if the user writes a

∀, all new variables to be used in the type signature must be

bound explicitly.

In Rule PatSigTv, the last two premises are identical to

those of its predecessor PatSig. The first premise extracts

the type variables c that are free in the user-written type

signature σ ′, but not already in scope in Γ. The “not already
in scope” part reflects the discussion of Section 3.1.

But what if Γ contains a binding, introduced by rule Pat-

Con, for a type variable that just happens to have the same

name as one of the c in a user-written signature? After all,

the names of the type variables in PatCon are arbitrary inter-

nal names; they just need to be fresh. Our solution is simple:

we take advantage of the difference between internal type

variables and external ones. The user cannot accidentally

capture an internal variable.

The second (top-right) premise of Rule PatSigTv is the

most unusual. It brings the variables c into scope, but then

also assumes that each variable c equals some other type

τ ; the following premise asserts that each τ is, in fact, just

an internal type variable b. Strikingly, the τ are mentioned

nowhere else in the rule. This setup essentially says that

the c are merely a renaming of existing in-scope internal

variables. In practice, the τ are chosen in order to make the

subtyping relationship Γ′ ⊩ σ ≤ σ ′ hold; GHC checks this

subtyping relationship, unifying the c with internal variables
b as necessary. Because the subtyping relationship is checked
with respect to a context that contains the c ∼ τ equalities,

the τ do not need to be explicitly mentioned again in the

rule. For example, consider

data ExIntegral where -- packs an Integral value
MkEx :: ∀a. Integral a⇒ a→ ExIntegral

getInt :: ExIntegral → Integer
getInt (MkEx (x :: c)) = toInteger @c x

The pattern match on MkEx brings an internal existential

variable a into scope, via the PatCon rule. Recall that the user

cannot type the name of such a variable. Instead, the user

annotates the pattern x with the user-written type variable

c. This annotation triggers Rule PatSigTv, which must find

a type τ such that a : ∗, c : ∗, c ∼ τ ⊩ a ≤ c. The answer is
that we must choose τ to be equal to the variable a, and the

rule succeeds. We have thus renamed the internal variable a
to become the user-written variable c and can successfully

use c in the pattern’s right-hand side.

Contrast that behavior with this (failing) example:

notAVar :: Int → Int
notAVar (x :: c) = x

Patterns p F x | K@τ p | p :: σ

(K : ∀aj j .Q ⇒ σk
k
→ Tυi

i ) ∈ Γ

cl l = ftv (τ ′j
j
) \ dom(Γ) aj j # dom(Γ)

Γ′ = Γ, aj : ∗ j, cl : ∗ l, cl ∼ τ ′′l
l
,υi ∼ τi

i,Q

Γ′ ⊩ τ ′j ∼ aj
j

isInternalTypeVar (τ ′′l )
l

Γ′ ⊢∗p pk : σk
k
⇒ Γ′′

Γ ⊢p K@τ ′j
j
pk

k
: Tτi

i
⇒ Γ′′

PatConTyApp

Figure 7. Typing of type applications in patterns

Here, we are trying to bind a user-written type variable c to
Int . GHC rejects this function, saying that c does not match

with Int . In terms of Rule SigPatTv, there exists no τ such

that c : ∗, c ∼ τ ⊩ Int ≤ c and isInternalTypeVar (τ ) holds.
There is a free design choice embodied in Rule SigPatTv:

the rule asserts that each c must be a renaming of a type vari-
able. Instead, we could simply drop the isInternalTypeVar (τ ),
allowing each type variable to rename a type. Nothing else
in the system would have to change. Indeed, understanding

this very fact is one of the primary motivators for writing

this specification in the first place.

5.6 Type Applications in Patterns
Having nailed down the status quo, it is now easy to specify

what it should mean to use type applications in patterns.

This version supports type applications only in constructor
patterns; we study pattern synonyms in the appendix of

the extended version
11
. The syntax and new typing rule are

shown in Fig. 7. Rule PatConTyApp looks scary, but it just

integrates the concepts seen in Rule PatSigTv into Rule

PatCon. We have kept all the iteration indices to help the

reader match up which lists are expected to have the same

size.

Let us look at each premise separately:

• Once again, the type variables cl l are those that occur
in the explicit type patterns but are not yet in scope.

These are treated like type variables in a pattern sig-

nature: they are brought into scope here, each as a

short-hand for some type τ ′′l , as long as that type is

an internal type variable.

• The environment Γ is extended to Γ′ and contains

now the (internal) type variables aj j , the user-written
scoped type variables cl l , the type equations equat-

ing each cl to its internal type variable bl , the GADT
equalities υi ∼ τi

i
, and the constraint Q captured by K.

• The type patterns are checked against the types they

match against. In contrast to pattern signatures, we

use type equality here (∼), not the subtyping relation

11https://arxiv.org/abs/1806.03476

https://arxiv.org/abs/1806.03476


Type Variables in Patterns Haskell ’18, September 27–28, 2018, St. Louis, MO, USA

(≤): no types involved can be polytypes, and so the

subtyping relation degenerates to type equality.

As written here, the rule requires a type application for

each type variable (note that the @τ ′j
j
use the same indices

as the quantified type variables aj j in K’s type). However,

we can weaken this requirement simply by dropping some

τ ′j s from both the conclusion and the relevant premises.

Just as in Rule SigPatTv:

• The τ ′′l
l
are mentioned nowhere else in the rule; in-

stead, they are fixed such that the equality constraints

for the τ ′j
j
are entailed by Γ′.

• The rule requires that each user-written type variable

stands for an internal variable, but we can once again

simply drop the isInternalTypeVar (τ ′′l ) premise to relax

this restriction.

5.7 Type Safety
At this point, after developing a set of inference rules defining

a type system, one would normally prove that the language

is type safe. We do not do so here. Not only would defining

an operational semantics and writing out a proof distract us

from our main point (the precise description and specifica-

tion of the use of type variables in patterns), but it is also

largely unnecessary. Let us assume that GHC/Haskell, with-

out our new extension, is type safe. (See, e.g., Sulzmann et al.

[2007] for a related proof.) If we compare PatCon to our new

PatConTyApp, we see that the difference is only the new

type variables brought into scope. Yet this same rule insists

that these type variables are equal to existing types. In other

words, the type variables are merely abbreviations or renam-

ings of other types. Furthermore, the changes have no effect

on operational behavior: the changes are all at compile-time.

There appears to be no way that introducing such variables

can cause a type system to lose safety—everything we have

done here amounts only to syntactic convenience
12
, thus

obviating the need for a full-blown proof.

5.8 Conclusion
Through the incremental building of rules, we can see pre-

cisely how the new feature of explicit binding sites for type

variables fits into the existing typing framework. We have

also explored two further extensions
13
:

• Allowing type application in patterns headed by pat-
tern synonym [Pickering et al. 2016]. Our framework

extends well in this new context, offering no surprises.

• Incorporating explicit binding sites for type variables

in the patterns of a λ-expression. This is slightly subtler

12
In the case that a variable is ambiguous, such as the example in Section 3.6,

our new features indeed change what is possible. However, this should be

seen more as an infelicity of the way the previous binding structure worked

than a new feature we are introducing.

13
In the appendix of the extended version at https://arxiv.org/abs/1806.03476

(though the end result adds only one, simple typing

rule), but is relegated to the appendix because it re-

quires reasoning about bidirectional type checking.

Bringing all the necessary context into scope would

take us too far afield here.

6 Alternative Approaches
6.1 Universals vs. Existentials
Type theorists are wont to separate quantified type vari-

ables in data constructors into two camps: universals and
existentials. Here is a contrived but simple example:

data UnivEx a where
MkUE :: ∀a b. a→ b → UnivEx a

matchUE :: ∀a.UnivEx a→ ...
matchUE (MkUE x y ) = ...

In the constructor MkUE , the variable a is universal (it is

fixed by the return type UnivEx a) while b is existential (it is

not fixed by the result type). When we match on MkUE in

matchUE , we might want to bind b, as it is first brought into
scope by the match. However, we never need to match a, as
it is already in scope from matchUE ’s type signature.
An alternative design for type applications in patterns is

to allow matching only existentials in pattern matches, thus:

matchUE :: ∀a.UnivEx a→ ....
matchUE (MkUE @b x y ) = ...

Indeed, this forms the main payload of the original GHC pro-

posal for binding type variables [Suarez 2017]. This design is

attractive because the bindings would be concise: only those

variables that need to be bound would be available. However,

there are two distinct drawbacks:

Universals and existentials are hard to differentiate.
Given the complexity of Haskell, the line between these two

is blurry. Clearly, a is universal in the constructor MkUE
above. But what if its type were MkUE :: ∀a b. a → b →
UnivEx (Id a), where Id is a type synonym? An injective

type family? If we add a ∼ b to the constraints of MkUE ,
then b is also fixed by the result type—does that make it a

universal?

The question of whether the value of a type variable is

fixed by the return type depends on how smart the compiler

is, and any specification would have to draw an arbitrary line.

In the end, this would leave our users just very confused.

Universals can be instantiated in expressions. When us-

ing a data constructor in an expression, the caller is free to in-
stantiate both universals and existentials. Indeed, universals

and existentials are utterly indistinguishable in expressions.

That means that one might writeMkUE @Int @Bool 5 True
in an expression. If we could match against only existentials

in patterns, though, we would write a patternMkUE @b x y ,
remembering to skip the universal a. This would both be

confusing to users and weaken the ergonomics of patterns,

https://arxiv.org/abs/1806.03476


Haskell ’18, September 27–28, 2018, St. Louis, MO, USA Richard A. Eisenberg, Joachim Breitner, and Simon Peyton Jones

whose chief virtue is that deconstructing a datatype resem-

bles closely the syntax of constructing one.

We thus prefer not to differentiate universals and existen-

tials in this way.

6.2 The Type-Lambda Approach
A plausible alternative approach to adding scoped type vari-

ables is to take a hint from System F, the explicitly-typed

polymorphic lambda calculus [Girard 1990]. In System F, a

type lambda, written “Λ”, binds a type variable, just as a term
lambda, written “λ”, binds a term variable. For example:

id : ∀α . α → α
id = Λα . λx : α . x

A term Λα .e has type ∀α .τ , for some type τ , just as a term
λx .e has type τ1 → τ2. Hence, a very natural idea is to bind a
source-language type variable with a source-language type

lambda. This “the type-lambda approach” is the one adopted

by SML 97 [Milner et al. 1997]. In SML one can write:

fun 'a prefix (x : 'a) yss =
let fun xcons (ys : 'a list) = x :: ys in
map xcons yss

Here, “’a” following the keyword fun is the binding site of

an (optional) type parameter of prefix; it scopes over the
patterns of the definition and its right hand side.

Just as Haskell has implicit quantification in type signa-

tures, SML allows the programmer to introduce implicit type
lambdas. This definition is elaborated into the previous one:

fun prefix (x : 'a) yss =
let fun xcons (ys : 'a list) = x :: ys in
map xcons yss

The language definition gives somewhat intricate rules to

explain how to place the implicit lambdas. For example:

fun f x = ....(fun (y:’a) => y)....

Where is the type lambda that binds the type variable ’a?
In SML one cannot answer that question without knowing

both what the “....” is, and the context for the definition fun f.
Roughly speaking, the type lambda for an implicitly-scoped

type variable ’a is placed on the innermost function defi-

nition that encloses all the free occurrences of ’a. The rule
[Milner et al. 1997] is only one informal, albeit carefully

worded, paragraph; the formal typing rules assume that a

pre-processing pass has inserted an explicit binding for every

type variable that is implicitly bound by the above rule.

The type-lambda approach explicitly connects lexical scop-
ing and quantification. In contrast, our approach presented

here decouples the two, by treating a lexically scoped type

variable merely as an alias for a type (or type variable). The

appendix, included in the extended version of this paper,

additionally has the details of an extension of this work to

include explicit binding of type variables in λ-expressions,
providing a similar experience to what we see in SML above.

Acknowledgments
This material is based upon work supported by the Na-

tional Science Foundation under Grant No. 1319880, Grant

No. 1521539, and Grant No. 1704041.

References
Joachim Breitner. 2018. Allow ScopedTypeVariables to refer to types. GHC

proposal. https://github.com/ghc-proposals/ghc-proposals/pull/128
Manuel M. T. Chakravarty, Gabriele Keller, Simon L. Peyton Jones, and

Simon Marlow. 2005. Associated types with class. In POPL. ACM, 1–13.

https://doi.org/10.1145/1040305.1040306
Richard A. Eisenberg, Dimitrios Vytiniotis, Simon L. Peyton Jones, and

Stephanie Weirich. 2014. Closed type families with overlapping equa-

tions. In POPL. ACM, 671–684. https://doi.org/10.1145/2535838.2535856
Richard A. Eisenberg, Stephanie Weirich, and Hamidhasan G. Ahmed. 2016.

Visible Type Application. In ESOP (LNCS), Vol. 9632. Springer, 229–254.
https://doi.org/10.1007/978-3-662-49498-1_10
Extended version at https://cs.brynmawr.edu/~rae/papers/2016/
type-app/visible-type-app-extended.pdf.

J-Y Girard. 1990. The System F of variable types: fifteen years later. In Logical
Foundations of Functional Programming, G Huet (Ed.). Addison-Wesley.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. 1997.

The Definition of Standard ML (Revised). MIT Press, Cambridge, Mas-

sachusetts. xii+114 pages.

Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark

Shields. 2007. Practical type inference for arbitrary-rank types. Journal
of Functional Programming 17, 1 (2007), 1–82. https://doi.org/10.1017/
S0956796806006034

Simon L. Peyton Jones, Stephanie Weirich, Richard A. Eisenberg, and Dim-

itrios Vytiniotis. 2016. A Reflection on Types. In A List of Successes
That Can Change the World - Essays Dedicated to Philip Wadler on
the Occasion of His 60th Birthday (LNCS), Vol. 9600. Springer, 292–317.
https://doi.org/10.1007/978-3-319-30936-1_16

Matthew Pickering, Gergo Érdi, Simon L. Peyton Jones, and Richard A.

Eisenberg. 2016. Pattern synonyms. In Haskell Symposium. ACM, 80–91.

https://doi.org/10.1145/2976002.2976013
Tom Schrijvers, Simon L. Peyton Jones, Martin Sulzmann, and Dimitrios

Vytiniotis. 2009. Complete and decidable type inference for GADTs. In

ICFP. ACM, 341–352. https://doi.org/10.1145/1596550.1596599
Jan Stolarek, Simon L. Peyton Jones, and Richard A. Eisenberg. 2015. In-

jective type families for Haskell. In Haskell Symposium. ACM, 118–128.

https://doi.org/10.1145/2804302.2804314
Emmanuel Suarez. 2017. Binding existential type variables. GHC proposal.

https://github.com/ghc-proposals/ghc-proposals/pull/96
Martin Sulzmann, Manuel M. T. Chakravarty, Simon L. Peyton Jones, and

Kevin Donnelly. 2007. System F with type equality coercions. In TLDI.
ACM, 53–66. https://doi.org/10.1145/1190315.1190324

Dimitrios Vytiniotis, Simon L. Peyton Jones, Tom Schrijvers, and Martin

Sulzmann. 2011. OutsideIn(X) Modular type inference with local as-

sumptions. Journal of Functional Programming 21, 4-5 (2011), 333–412.

https://doi.org/10.1017/S0956796811000098

https://github.com/ghc-proposals/ghc-proposals/pull/128
https://doi.org/10.1145/1040305.1040306
https://doi.org/10.1145/2535838.2535856
https://doi.org/10.1007/978-3-662-49498-1_10
https://cs.brynmawr.edu/~rae/papers/2016/type-app/visible-type-app-extended.pdf
https://cs.brynmawr.edu/~rae/papers/2016/type-app/visible-type-app-extended.pdf
https://doi.org/10.1017/S0956796806006034
https://doi.org/10.1017/S0956796806006034
https://doi.org/10.1007/978-3-319-30936-1_16
https://doi.org/10.1145/2976002.2976013
https://doi.org/10.1145/1596550.1596599
https://doi.org/10.1145/2804302.2804314
https://github.com/ghc-proposals/ghc-proposals/pull/96
https://doi.org/10.1145/1190315.1190324
https://doi.org/10.1017/S0956796811000098

	Type Variables in Patterns
	Citation

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 The Need for Type Annotations
	2.2 Support for Scoped Type Variables
	2.3 Visible Type Application

	3 Pattern Signatures and Their Shortcomings
	3.1 The Binding Structure of a Pattern Signature
	3.2 Pattern Signatures Are Useful
	3.3 Pattern Signatures Are Essential
	3.4 Pattern Signatures Are Clumsy
	3.5 Pattern Signatures Resist Refactoring
	3.6 Pattern Signatures Are Inadequate
	3.7 Conclusion

	4 Visible Type Application in Patterns
	4.1 Examples
	4.2 Universal and Existential Variables
	4.3 Type Aliases

	5 Formal Specification
	5.1 The Baseline
	5.2 Support for GADTs
	5.3 Treating Universals and Existentals Uniformly
	5.4 Closed Pattern Signatures
	5.5 Scoped Type Variables
	5.6 Type Applications in Patterns
	5.7 Type Safety
	5.8 Conclusion

	6 Alternative Approaches
	6.1 Universals vs. Existentials
	6.2 The Type-Lambda Approach

	Acknowledgments
	References

