
Bryn Mawr College Bryn Mawr College

Scholarship, Research, and Creative Work at Bryn Mawr College Scholarship, Research, and Creative Work at Bryn Mawr College

Computer Science Faculty Research and
Scholarship Computer Science

2017

Levity Polymorphism (extended version) Levity Polymorphism (extended version)

Richard A. Eisenberg
Bryn Mawr College, rae@cs.brynmawr.edu

Simon Peyton Jones
Microsoft Research Cambridge

Follow this and additional works at: https://repository.brynmawr.edu/compsci_pubs

 Part of the Programming Languages and Compilers Commons

Let us know how access to this document benefits you.

Citation Citation
R.A. Eisenberg and S. Peyton Jones 2017. "Levity Polymorphism." Proceeding PLDI 2017 Proceedings of
the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation: 525-539.

This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College.
https://repository.brynmawr.edu/compsci_pubs/79

For more information, please contact repository@brynmawr.edu.

https://repository.brynmawr.edu/
https://repository.brynmawr.edu/compsci_pubs
https://repository.brynmawr.edu/compsci_pubs
https://repository.brynmawr.edu/compsci
https://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/open-access-feedback.html
https://repository.brynmawr.edu/compsci_pubs/79
mailto:repository@brynmawr.edu

Levity Polymorphism (extended version)

Richard A. Eisenberg
Bryn Mawr College

Bryn Mawr, PA, USA
rae@cs.brynmawr.edu

Simon Peyton Jones
Microsoft Research

Cambridge, UK
simonpj@microsoft.com

Abstract
Parametric polymorphism is one of the lynchpins of modern typed
programming. A function that can work seamlessly over a variety
of types simplifies code, helps to avoid errors introduced through
duplication, and and is easy to maintain. However, polymorphism
comes at a very real cost, one that each language with support
for polymorphism has paid in different ways. This paper describes
this cost, proposes a theoretically simple way to reason about the
cost—that kinds, not types, are calling conventions—and details
one approach to dealing with polymorphism that works in the
context of a language, Haskell, that prizes both efficiency and a
principled type system.

This approach, levity polymorphism, allows the user to abstract
over calling conventions; we detail and verify restrictions that are
necessary in order to compile levity-polymorphic functions. Lev-
ity polymorphism has opened up surprising new opportunities for
library design in Haskell.

1. The cost of polymorphism
Consider the following Haskell function:

bTwice :: ∀ a. Bool → a→ (a→ a)→ a
bTwice b x f = case b of True → f (f x)

False → x

The function is polymorphic1 in a; that is, the same function works
regardless of the type of x , provided f and x are compatible. When
we say “the same function” we usually mean “the same compiled
code for bTwice works for any type of argument x”. But the type of
x influences the calling convention, and hence the executable code
for bTwice! For example, if x were a list, it would be passed in a
register pointing into the heap; if it were a double-precision float,
it would be passed in a special floating-point register; and so on.
Thus, sharing code conflicts with polymorphism.

A simple and widely-used solution is this: represent every value
uniformly, as a pointer to a heap-allocated object. That solves the
problem, but it is terribly slow (Section 2.1). Thus motivated, most
polymorphic languages also support some form of unboxed values
that are represented not by a pointer but by the value itself. Our

1 We use the term polymorphism to refer exclusively to parametric poly-
morphism.

[Copyright notice will appear here once ’preprint’ option is removed.]

context is the Glasgow Haskell Compiler (GHC), a state of the
art optimizing compiler for Haskell. It has had unboxed values for
decades, but not without the inevitable tensions that arise between
unboxed values and polymorphism (Section 3). Other languages
deal differently with this challenge (Section 8).

In this paper we describe an elegant new approach to reconciling
high performance with pervasive polymorphism. Our contributions
are as follows:

• We present (Section 4) a principled way to reason about compil-
ing polymorphic functions and datatypes, by categorizing types
into kinds. Each kind describes the memory layout of its types,
thus determining the calling convention of functions over those
types.
• Having a principled way to describe memory layout and call-

ing convention, we go one step further and embrace levity poly-
morphism, allowing functions to be abstracted over choices of
memory layout provided that they never move or store data with
an abstract representation (Section 5). We believe we are the
first to describe and implement levity polymorphism.
• It is tricky to be sure precisely when it is, and is not, OK

to permit levity polymorphism. We give a formal proof that
our rules are sufficient to guarantee that levity-polymorphic
functions can indeed be compiled into concrete code (Section
6).
• With levity polymorphism in hand, a range of new possibilities

open up—including the ability to write an informative kind for
(→) and to overload operations over both boxed and unboxed
types in a principled way. We explore these in Section 7.

Levity polymorphism is implemented in GHC, version 8.0.1,
released early 2016. We are not the first to use kinds in this way—
Cyclone [5] uses a similar approach Section 8.1—but we take the
idea much further than any other compiler we know, with happy
consequences. Remember: it’s all about performance. If you don’t
care about performance, life is much simpler!

2. Background: performance through unboxed
types

We begin by describing the performance challenges that our paper
tackles. We use the language Haskell2 and the compiler GHC as a
concrete setting for this discussion, but many of our observations
apply equally to other languages supporting polymorphism. We
discuss other languages and compilers in Section 8.

2.1 Unboxed values
Consider this loop, which computes the sum of the integers 1 . . n:

2 GHC extends Haskell in many ways to better support high-performance
code, so when we say “Haskell” we will always mean “GHC Haskell”

1 2016/11/17

Boxed Unboxed

Lifted Int
Bool

Unlifted ByteArray#
Int#

Char#

Figure 1. Boxity and levity, with examples

sumTo :: Int → Int → Int
sumTo acc 0 = acc
sumTo acc n = sumTo (acc + n) (n − 1)

GHC represents a values of type Int as a pointer to a two-word
heap-allocated cell; the first word is a descriptor, while the second
has the actual value of the Int. If sumTo used this representation
throughout, it would be unbearably slow. Each iteration would eval-
uate its second argument,3 follow the the pointer to get the value,
and test it against zero; in the non-zero case it would allocate thunks
for (acc + n) and (n − 1), and then iterate. In contrast, a C com-
piler would use a three-machine-instruction loop, with no memory
traffic whatsoever. The performance difference is enormous.

GHC therefore provides a built-in data type Int# of unboxed
integers [12]. An Int# is represented not by a pointer but by the
integer itself. Now we can rewrite sumTo like this4

sumTo# :: Int# → Int# → Int#

sumTo# acc 0# = acc
sumTo# acc n = sumTo# (acc +# n) (n −# 1#)

We had to use different arithmetic operations and literals, but apart
from that the source code looks just the same. But the compiled
code is very different; we get essentially the same code as if we
had written it in C.

GHC’s strictness analyzer and other optimizations can often
transform sumTo into sumTo#. But it cannot guarantee to do
so, so performance-conscious programmers often program with
unboxed values directly. As well as Int#, GHC provides a solid
complement of other unboxed types, such as Int#, Char#, and
Double#, together with primitive operations that operate on them.
Given these unboxed values, the boxed versions can be defined in
Haskell itself; GHC does not treat them specially. For example:

data Int = I# Int#

plusInt :: Int → Int → Int
plusInt (I# i1) (I# i2) = I# (i1 +# i2)

Here Int is an ordinary algebraic data type, with one data construc-
tor I#, that has one field of type Int#. The function plusInt simply
pattern matches on its arguments, fetches their contents (i1 and i2,
both of type Int#), adds them using (+#), and boxes the result
with I#.

2.2 Boxed vs. unboxed and lifted vs. unlifted
In general, a boxed value is represented by a pointer into the heap,
while an unboxed value is represented by the value itself. It follows
that an unboxed value cannot be a thunk; arguments of unboxed
type must be passed by value.

Haskell also requires consideration of levity—that is, the choice
between lifted and unlifted. A lifted type is one that is lazy. It is
considered lifted because it has one extra element beyond the usual

3 Remember, Haskell is a lazy language, so the second argument might not
be evaluated.
4 The suffix “#” does not imply any special treatment by the compiler; it is
simply a naming convention that suggests to the reader that there may be
some use of unboxed values going on.

ones, representing a non-terminating computation. For example,
Haskell’s Bool type is lifted, meaning that three Bools are possible:
True, False, and ⊥. An unlifted type, on the other hand, is strict.
The element ⊥ does not exist in an unlifted type.

Because Haskell represents lazy computation as thunks at run-
time, all lifted types must also be boxed. However, it is possible
to have boxed, unlifted types. Figure 1 summarizes the relationship
between boxity and levity, providing examples of the three possible
points in the space.

2.3 Unboxed tuples
Along with the unboxed primitive types (such as Int# and Double#),
Haskell has support for unboxed tuples. A normal, boxed tuple—of
type, say, (Int,Bool)—is represented by a heap-allocated vector
of pointers to the elements of the tuple. Accordingly, all elements
of a boxed tuple must also be boxed. Boxed tuples are also lazy,
although this aspect of the design is a free choice.

Originally conceived to support returning multiple values from
a function, an unboxed tuple is merely Haskell syntax for tying
multiple values together. Unboxed tuples do not exist at runtime, at
all. For example, we might have

divMod :: Int → Int → (# Int, Int #)

that returns two integers. A Haskell programmer might use divMod
like this,

case divMod n k of (# quot, rem #)→ ...

using case to unpack the components of a tuple. However, during
compilation, the unboxed tuple is erased completely. The divMod
function is compiled to return two values, in separate registers, and
the case statement is compiled simply to bind quot and rem to
those two values. This is more efficient than an equivalent version
with boxed tuples, avoiding allocation for the tuple and indirection.

Modern versions of GHC also allow unboxed tuples to be used
as function arguments: (+) :: (# Int, Int #)→ Int compiles to the
exact same code as (+) :: Int → Int → Int; the unboxed tuple
is used simply to represent multiple arguments passed via multiple
registers.

An interesting aspect of unboxed tuples, important to the story
in this paper, is that nesting is computationally irrelevant. That
is, while (# Int, (# Float#,Bool #) #) is a distinct type from
(# Int,Float#,Bool #), the two are identical at runtime; both
represent three values to be passed or returned via three registers.

3. Unboxed types and polymorphism
Recall the function bTwice from the introduction:

bTwice :: ∀ a. Bool → a→ (a→ a)→ a
bTwice b x f = case b of True → f (f x)

False → x

Like many other compilers for a polymorphic language, GHC as-
sumes that a value of polymorphic type, such as x :: a, is repre-
sented uniformly by a heap pointer. So we cannot call bTwice with
x :: Int# or x :: Float#, or indeed with x :: (# Int, Int#). Actually,
bTwice cannot even be used on a boxed unlifted value, such as a
ByteArray#. Why not? Because if a is unlifted the call (f (f x))
should be compiled using call-by-value, whereas if a is a lifted type
the call should to be compiled with call-by-need.

GHC therefore adopts the following principle:

• The Instantiation Principle. You cannot instantiate a polymor-
phic type variable with an unlifted type.

That is tiresome for programmers, but in return they get solid
performance guarantees. (An alternative would be some kind of

2 2016/11/17

auto-specialization, as we discuss in Section 8.) However, adopting
the instantiation principle turns out to be much less straightforward
than it sounds, as we elaborate in the rest of this section. These are
the challenges that we solve in the rest of the paper.

3.1 Kinds
How can the compiler implement the instantiation principle? For
example, how does it even know if a type is unlifted?

Haskell classifies type by kinds, much the same way that terms
are classified by types. For example,5 Bool :: Type, Maybe ::
Type → Type, and Maybe Bool :: Type. So it is natural to use
the kind to classify types into the lifted and unlifted forms, thus
Int# :: #, Float# :: #, where “#” is a new kind that classifies
unlifted types6.

In contrast, Type classifies lifted types and, because of laziness,
a value of lifted type must be represented uniformly by a pointer
into the heap. So the Instantiation Principle can be refined to this:
all polymorphic type variables have kind Type. For example, here
is bTwice with an explicitly-specified kind:

bTwice :: ∀ (a :: Type). Bool → a→ (a→ a)→ a

Now we attempt to instantiate it at type Float# :: #, we will get a
kind error because Type and # are different kinds.

3.2 Sub-kinding
Haskell has rich language of types. Of particular interest is that the
function arrow: (→) is just a binary type constructor with kind

(→) :: Type → Type → Type

Partial applications of (→) are often useful:

instance Monad ((→) env) where
-- note that env is the left argument to (→)

return x = λenv → x
ma>>= fmb = λenv → fmb (ma env) env

Given the above kind for (→), the type Monad ((→) env) is well-
kinded. We have (→) env :: Type → Type, and that is the kind
that Monad expects.

But now we have a serious problem: a function over unlifted
types, such as sumTo# :: Int# → Int# → Int#, becomes ill-
kinded! Why? Because (→) expects a Type, but Int# :: #. This
problem has dogged GHC ever since the introduction of unboxed
values. For many years its “solution” was to support a sub-kinding
relation, depicted here:

OpenKind

Type #

That is, GHC had a kind OpenKind , a super-kind of both Type and
#. We could then say that

(→) :: OpenKind → OpenKind → Type

To avoid the inevitable complications of sub-kinding and kind
inference, GHC also stipulated that only fully-saturated uses of
(→) would have this bizarre kind; partially applied uses of (→)

5 The Haskell Report [9] uses the symbol “?” as the kind of ordinary
types, but the community seems to be coalescing around this new spelling
of Type, which is available in GHC 8. We use Type rather than “?”
throughout this paper.
6 Do not be distracted by the inconsistent notation here; “#” really is what
GHC used in the past, but the rest of the paper shows a more uniform way
forward.

would get the far saner kind Type → Type → Type as we have
seen above.

Haskellers paid for this sleight-of-hand, of course:

• Keen students of type theory would, with regularity, crop up
on the mailing lists and wonder why, when we can see that
(→) :: Type → Type → Type, GHC accepts types like
Int# → Double#.
• It is well known that the combination of (a) type inference, (b)

polymorphism, and (c) sub-typing, is problematic. And indeed
GHC’s implementation of type inference was riddled with awk-
ward and unprincipled special cases caused by sub-kinding.
• The introduction of kind polymorphism [17] made this situation

worse, and the subsequent introduction of kind equalities [16]
made it untenable.
• The kind OpenKind would embarrassingly appear in error mes-

sages.

All in all, the sub-kinding solution was never satisfactory and was
screaming to us to find something better.

3.3 Functions that diverge
Consider this function

f :: Int# → Int#

f n = if n <# 0# then error "Negative argument"

else n /# 2#

Here error ::∀ a. String → a prints the string and halts execution.7

But under the Instantiation Principle, this call to error should be
rejected, because we are instantiating a with Int#. But in this case,
it is OK to break the Instantiation Principle! Why? Because error
never manipulates any values of type a—it simply halts execution.
It is tiresome for a legitimate use of error to be rejected in this way,
so GHC has given error a magical type

∀ (a :: OpenKind). String → a

Now, using the sub-kinding mechanism described above, the call
can be accepted. Alas, the magic is fragile. If the user writes a
variant of error like this:

myError :: String → a
myError s = error ("Program error " ++ s)

then GHC infers the type ∀ (a ::Type). String → a, and the magic
is lost.

4. Key idea: polymorphism, not sub-kinding
We can now present the main idea of the paper: replace sub-kinding
with kind polymorphism. As we shall see, this simple idea not only
deals neatly with the awkward difficulties outlined above, but it
also opens up new and unexpected opportunities (Section 7). Using
polymorphism as a replacement for a sub-typing system is not a
new idea; for example see Finne et al. [2], where Section 5 is
entitled “Polymorphism expresses single inheritance”. However,
even starting down this road required the rich kinds that have only
recently been added to GHC [16, 17]; this new approach was not
properly conceivable earlier.

4.1 Runtime-representation polymorphism
Here is the design, as implemented in GHC 8.8 We introduce a new,
primitive type-level constant, TYPE

7 More precisely, it throws an exception
8 The design presented here is actually evolved in a few ways from what has
been released. For example, GHC 8 defines Rep as the enumeration instead
of a list of unary representations.

3 2016/11/17

TYPE :: Rep → Type

with the following supporting definitions:9

type Rep = [UnaryRep] -- A type-level list
data UnaryRep = PtrRep -- Boxed, lifted

| UPtrRep -- Boxed, unlifted
| IntRep -- Unboxed ints
| FloatRep -- Unboxed floats
| DoubleRep -- Unboxed doubles
| . . . etc . . .

type Lifted = ’[PtrRep]
type Type = TYPE Lifted

Rep is a type that describes the runtime representation of values
of a type. Type, the kind that classifies the types of values, was
previously treated as primitive, but now becomes a synonym for
TYPE Lifted , where Lifted :: Rep. It is easiest to see how these
definitions work using examples:

Int :: Type
Int :: TYPE Lifted -- Expanding Type
Int :: TYPE ’[PtrRep] -- Expanding Lifted
Int# :: TYPE ’[IntRep]
Float# :: TYPE ’[FloatRep]
(Int,Bool) :: Type
Maybe Int :: Type
Maybe :: Type → Type

Any type that classifies values, whether boxed or unboxed, lifted
or unlifted, has kind TYPE r for some r :: Rep. The type Rep
specifies how a value of that type is represented, by giving a list of
UnaryRep. Typically this list has exactly one element; we will see
why a list is useful in Section 4.2.

A UnaryRep specifies how a single value is represented, where
by “a single value” we mean one that can be stored in a typical
machine register and manipulated by a single machine instruction.
Such a values include: a heap pointer to a lifted value (PtrRep);
a heap pointer to an unlifted value (UPtrRep); an unboxed fixed-
precision integer value (IntRep); an unboxed floating-point value
(FloatRep), and so on. Where we have multiple possible precisions
we have multiple constructors in UnaryRep; for example we have
DoubleRep as well as FloatRep.

The type UnaryRep is not magic: it is a perfectly ordinary alge-
braic data type, promoted to the kind level by GHC’s DataKinds
extension [17]. Similarly, Rep, Lifted , and Type are all perfectly
ordinary type synonyms. Only TYPE is primitive in this design. It
is from these definitions that we claim that a kind dictates a type’s
representation, and hence its calling convention. For example, Int
and Bool have the same kind, and hence use the same calling con-
vention. But Int# belongs to a different kind, and uses a different
calling convention.

There are, naturally, several subtleties, addressed in the subsec-
tions below.

4.2 Representing unboxed tuples
Why did we define Rep as a list of UnaryRep? It is so that we can
represent the kinds of unboxed tuples:

(# Int,Bool #) :: TYPE ’[PtrRep,PtrRep]
(# Int#,Bool #) :: TYPE ’[IntRep,PtrRep]
(# #) :: TYPE ’[]

9 In GHC Haskell, you can use lists at the type level, with a tick-mark to
identify a type-level list. Here [UnaryRep] is the type of lists containing
elements of type UnaryRep, while ’[PtrRep] is a list containing one
element, PtrRep.

An unboxed pair is represented by two registers, an unboxed triple
by three, and so on. An unboxed empty tuple is represented by no
registers, a surprisingly useful value in practice.

Note that this format respects the computational irrelevance of
nesting of unboxed tuples. For example these three types all have
the same kind, here written PFP for short:

type PFP = TYPE ’[PtrRep,FloatRep,PtrRep]
(# Int, (# Float#,Bool #) #) :: PFP
(# Int,Float#,Bool #) :: PFP
(# (# Int, (# #) #),Float#,Bool #) :: PFP

A value of any of these three types is represented by two pointers
to boxed lifted values, and an unboxed float. That does not that the
three types are equal or interchangeable — after all, Int ::Type and
Bool :: Type but that does not mean that Int and Bool are equal!
— but all three are represented in the same way, and share the same
calling convention.

4.3 Levity polymorphism
We can now give proper types to (→) and error :

(→) :: ∀ (r1 :: Rep) (r2 :: Rep).
TYPE r1 → TYPE r2 → Type

error :: ∀ (r :: Rep) (a :: TYPE r). String → a

These types are polymorphic in r :: Rep. We call such abstraction
“levity polymorphism”, a name owing to its birth as an abstraction
over only the levity (lifted vs. unlifted) of a type. It might now
properly be called representation polymorphism, but we prefer the
original terminology as briefer and more recognizable—that is,
easier to search for on a search engine.

Levity polymorphism adds new, and useful, expressiveness to
the language (Section 7), but it needs careful handling as we discuss
in Section 5.

4.4 The kind of TYPE
Above, we gave the type of TYPE as Rep → Type. That look
suspicious because Type is short for TYPE Lifted , so the kind of
TYPE involves TYPE . Is that OK?

Yes it is. Unlike other dependently typed languages, GHC does
not stratify the universes of types, and instead supports the axiom
Type ::Type [16]. While this choice of design makes the language
inconsistent when viewed as a logic, it does not imperil type safety.
The type safety point is addressed in other work [1, 16]; we do not
revisit it here.

You might also wonder whether why TYPE returns a TYPE Lifted .
Why not return TYPE ’[IntRep], or one of the other possibilities?
What does it even mean to talk of the representation of a type?

We choose TYPE :: Rep → Type because it supports a future
extension to a full-spectrum dependently-typed language in which
types are first-class values and can be passed at runtime. What
would it mean to pass a type at runtime? Presumably it would
mean passing a pointer to a heap-allocated syntax tree describing
the type; so Type would be the appropriate return kind.

5. Taming levity polymorphism
In its full glory, levity polymorphism is un-compilable, at least
not without runtime code generation. Let us return to our initial
example of bTwice. Would this work?

bTwice :: ∀ (r :: Rep) (a :: TYPE r).
Bool → a→ (a→ a)→ a

Sadly, no. We cannot compile a levity-polymorphic bTwice into
concrete machine code, because its calling convention depends on
r.

4 2016/11/17

One possibility is to generate specialized versions of bTwice,
perhaps at runtime. That choice comes with significant engineering
challenges, albeit less so in a JIT-based system. (See Section 8.5
for one setting where this has been done.) Here we explore the
alternative: how to restrict the use of levity polymorphism so that it
can be compiled.

5.1 Rejecting un-compilable levity polymorphism
The fundamental requirement is this:

Never move or store a levity-polymorphic value. (*)

Note that it is perfectly acceptable for a machine to store a value of
a polymorphic type, as long as it is not levity-polymorphic. In the
implementation of bTwice where a ::Type, this is precisely what is
done. The second argument is passed in as a pointer, and the result
is returned as one. There is no need to know a concrete type of
the data these pointers refer to. Yet we do need to know the kind
of these types, to fix the calling conventions of the arguments and
return value.

We now turn our attention to ensuring that (*) holds, a property
we attain via two restrictions:

1. Disallow levity-polymorphic binders. Every bound term vari-
able in a Haskell program must have a type whose kind is fixed
and free of any type variables.10 This rule would be violated had
we implemented bTwice with the type as given in this section:
we would have to bind a variable of type a :: TYPE r .

2. Disallow levity-polymorphic function arguments. Arguments
are passed to functions in registers. During compilation, we
need to know what size register to use.

These checks can be easily performed after type inference is com-
plete. Any program that violates these conditions is rejected. We
prove that these checks are sufficient to allow compilation in Sec-
tion 6.

5.2 Type inference and levity polymorphism
Phrasing the choice between the concrete instantiations of TYPE
as the choice of a Rep is a boon for GHC’s type inference mech-
anism. When GHC is checking an expression (λx → e), it must
decide on a type for x . The algorithm naturally invents a unifica-
tion variable11 α. But what kind does α have? Equipped with levity
polymorphism, GHC invents another unification variable ρ :: Rep
and chooses α :: TYPE ρ. If x is used in a context expecting a
lifted type, then ρ is unified with Lifted—all using GHC’s existing
unification machinery. In terms of GHC’s implementation, this is
actually a simplification over the previous sub-kinding story.

However, we must be careful to enforce the restrictions of Sec-
tion 5.1. For example, consider defining f x = x . What type should
we infer for f ? If we simply generalized over unconstrained unifi-
cation variables in the usual way, we would get

f :: ∀ (r :: Rep) (a :: TYPE r). a→ a

but, as we have seen, that is un-compilable because its calling
convention depends on r . We could certainly track all the places
where the restrictions of Section 5.1 apply; but that is almost
everywhere, and results in a great deal of busy-work in the type

10 Care should be taken when reading this sentence. Note that the kind
polymorphism in f :: ∀ k (a :: k). Proxy k → Int is just fine: the kind of
f ’s type is Type! No variables there.
11 Also called an existential variable in the literature. A unification variable
stands for an as-yet-unknown type. In GHC, unification variables contain
mutable cells that are filled with a concrete type when discovered; see [13]
for example.

Metavariables:
x Variables α Type variables
n Integer literals r Representation variables

υ ::= P | I Concrete reps.
ρ ::= r | υ Runtime reps.
κ ::= TYPE ρ Kinds
B ::= Int | Int# Base types
τ ::= B | τ1 → τ2 | α | ∀α:κ. τ | ∀r . τ Types
e ::= x | e1 e2 | λx :τ. e | Λα:κ. e | e τ | Λr . e | e ρ | I#[e]
| case e1 of I#[x]→ e2 | n | error Expressions

v ::= λx :τ. e | Λα:κ. v | Λr . v | I#[v] | n Values
Γ ::= ∅ | Γ, x :τ | Γ, α:κ | Γ, r Contexts

Figure 2. The grammar for L

inference engine. So instead we never infer levity polymorphism;12

but we can for the first time check the declared uses of levity
polymorphism. Thus, we can write

myError :: ∀ (r :: Rep) (a :: TYPE r). String → a
myError s = error ("Program error " ++ s)

to get a levity-polymorphic myError . Alternatively, we can omit
the signature in which case GHC will infer a levity-monomorphic
type thus: any levity variable that in principle could be generalized
is instead defaulted to Type.

Finally, any attempt to declare the above levity-polymorphic
type signature for f will fail the check described in Section 5.1.

6. Correctness of levity polymorphism
We claim above (Section 5.1) that restricting the use of levity
polymorphism in just two ways means that we can always compile
programs to concrete machine code. Here, we support this claim
by proving that a levity-polymorphic language with exactly these
restrictions is compilable. First, we define L, a variant of System
F [4, 14] that supports levity polymorphism. Second, we define a
lower-level languageM, a λ-calculus in A-normal form (ANF) [3].
Its operational semantics works with an explicit stack and heap
and is quite close to how a concrete machine would behave. All
operations must work with data of known, fixed width; M does
not support levity polymorphism. Lastly, we define type-erasing
compilation as a partial function from L to M. We prove our
compilation function correct via two theorems: that compilation is
well-defined whenever the source L-expression is well-typed and
that theM operational semantics simulates that for L.13

6.1 The L language
The grammar for L appears in Figure 2. Along with the usual Sys-
tem F constructs, it supports the base type Int# with literals n; data
constructor I# to form Int; case expressions for unboxing integers;
and error. Most importantly, L supports levity polymorphism via
the novel forms Λr . e and e ρ, abstractions over and applications to

12 Refusing to generalize over type variables of kind Rep is quite like
Haskell’s existing monomorphism restriction, where certain unconstrained
type variables similarly remain ungeneralized. Both approaches imperil
having principal types. In the case of levity polymorphism, the most general
type for f is un-compilable, so the loss of principal types is inevitable.
However, all is not lost: a program that uses boxed types (as most programs
do) retains principal types within that fragment of the language.
13 As we explore in Section 6.4, there is one lemma in this proof that we
assume the correctness of. This lemma would be necessary for any proof
that a compilation to ANF is sound in a lazy language and is not at all
unique to our use of levity polymorphism.

5 2016/11/17

Γ ` e : τ Term validity

x :τ ∈ Γ

Γ ` x : τ
E VAR

Γ ` e : Int#

Γ ` I#[e] : Int
E CON

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1
Γ ` τ1 : TYPE υ

Γ ` e1 e2 : τ2
E APP

Γ, x :τ1 ` e : τ2 Γ ` τ1 : TYPE υ

Γ ` λx :τ1. e : τ1 → τ2
E LAM

Γ, α:κ ` e : τ Γ ` κ kind
Γ ` Λα:κ. e : ∀α:κ. τ

E TLAM

Γ ` e : ∀α:κ. τ1 Γ ` τ2 : κ

Γ ` e τ2 : τ1[τ2/α]
E TAPP

Γ, r ` e : τ

Γ ` Λr . e : ∀r . τ E RLAM
Γ ` e : ∀r . τ

Γ ` e ρ : τ [ρ/r]
E RAPP

Γ ` e1 : Int Γ, x :Int# ` e2 : τ

Γ ` case e1 of I#[x]→ e2 : τ
E CASE

Γ ` error : ∀r . ∀α:TYPE r . Int → α
E ERROR

Γ ` n : Int#
E INTLIT

Γ ` τ : κ Type validity

Γ ` Int : TYPE P
T INT

Γ ` Int# : TYPE I
T INTH

Γ ` τ1 : κ1 Γ ` τ2 : κ2

Γ ` τ1 → τ2 : TYPE P
T ARROW

α:κ ∈ Γ

Γ ` α : κ
T VAR

Γ, α:κ1 ` τ : κ2 Γ ` κ1 kind

Γ ` ∀α:κ1. τ : κ2
T ALLTY

Γ, r ` τ : κ κ 6= TYPE r

Γ ` ∀r . τ : κ
T ALLREP

Γ ` κ kind Kind validity

Γ ` TYPE υ kind
K CONST

r ∈ Γ

Γ ` TYPE r kind
K VAR

Figure 3. Typing judgments for L

runtime representations. Typing rules and operational semantics for
L appear in Figure 3 and Figure 4. For the most part, these rules are
straightforward. In particular, note that L has a stratified type sys-
tem, with distinct types and kinds. While this differs from the most
recent GHC, the stratification greatly simplifies this presentation;
L still captures the essence of levity polymorphism in GHC.

The main payload of L is in its E APP and E LAM rules: note
the highlighted premises. We see (Figure 2) that a kind TYPE υ
must be fully concrete, as υ stands for only P or I—never r , a
representation variable. Thus rules E APP and E LAM implement
the levity-polymorphism restrictions of Section 5.1.

We wish L to support type erasure. For this reason, the kind
(that is, runtime representation) of a type abstraction must match

Γ ` e2 : τ Γ ` τ : TYPE P
Γ ` e1 −→ e ′1

Γ ` e1 e2 −→ e ′1 e2
S APPLAZY

Γ ` τ : TYPE P

Γ ` (λx :τ. e1) e2 −→ e1[e2/x]
S BETAPTR

Γ ` e2 : τ Γ ` τ : TYPE I
Γ ` e2 −→ e ′2

Γ ` e1 e2 −→ e1 e ′2
S APPSTRICT

Γ ` v2 : τ Γ ` τ : TYPE I
Γ ` e1 −→ e ′1

Γ ` e1 v2 −→ e ′1 v2
S APPSTRICT2

Γ ` τ : TYPE I

Γ ` (λx :τ. e) v −→ e[v/x]
S BETAUNBOXED

Γ ` e −→ e ′

Γ ` e τ −→ e ′ τ
S TAPP

Γ ` e −→ e ′

Γ ` e ρ −→ e ′ ρ
S RAPP

Γ, α:κ ` e −→ e ′

Γ ` Λα:κ. e −→ Λα:κ. e ′
S TLAM

Γ ` (Λα:κ. v) τ −→ v [τ/α]
S TBETA

Γ, r ` e −→ e ′

Γ ` Λr . e −→ Λr . e ′
S RLAM

Γ ` (Λr . v) ρ −→ v [ρ/r]
S RBETA

Γ ` e1 −→ e ′1
Γ ` case e1 of I#[x]→ e2 −→

case e ′1 of I#[x]→ e2

S CASE

Γ ` case I#[n]of I#[x]→ e2 −→ e2[n/x]
S MATCH

Γ ` e −→ e ′

Γ ` I#[e] −→ I#[e ′]
S CON

Γ ` error −→ ⊥ S ERROR

Figure 4. Operational semantics for L

that of the underlying expression. We can see this in the fact that
T ALLTY results in a type of kind κ2, not TYPE P, as one might
expect in a language without type erasure. Support for type erasure
is also why L-expressions are evaluated even under Λ and why the
definition for values v must be recursive under Λ. Representation
abstraction, also erased, is similar to type abstraction.

Following Haskell, L’s operational semantics supports both
lazy and strict functions. The choice of evaluation strategy is type-
directed.

Language L is type-safe:

Theorem (Preservation). If Γ ` e : τ and Γ ` e −→ e ′, then
Γ ` e ′ : τ .

Theorem (Progress). Suppose Γ has no term variable bindings. If
Γ ` e : τ , then either Γ ` e −→ e ′ or e is a value.

The proofs appear in the appendix.

6.2 TheM language
We compileL intoM, whose grammar appears in Figure 5 and op-
erational semantics appears in Figure 6. TheM language requires
expressions to be in A-normal form, where a function can be called

6 2016/11/17

Metavariables:

p Lifted (pointer) variables i Integer variables

y ::= p | i Variables
t ::= t y | t n | λy .t | y | let p = t1 in t2
| let! y = t1 in t2 | case t1 of I#[y]→ t2 | error
| I#[y] | I#[n] | n Expressions

w ::= λy .t | I#[n] | n Values
S ::= ∅ | Force(p),S | App(p),S | App(n),S
| Let(y , t),S | Case(y , t),S Stacks

H ::= ∅ | p 7→ t ,H Heaps
µ ::= 〈t ;S ;H 〉 Machine states
V ::= ∅ | x 7→ y ,V | y ,V Variable envs.

Figure 5. The grammar forM

〈t p;S ;H 〉 −→ 〈t ;App(p),S ;H 〉 PAPP
〈t n;S ;H 〉 −→ 〈t ;App(n),S ;H 〉 IAPP

〈p;S ; p 7→ w ,H 〉 −→ 〈w ;S ; p 7→ w ,H 〉 VAL
〈p;S ; p 7→ t ,H 〉 −→ 〈t ;Force(p),S ;H 〉 EVAL

〈let p = t1 in t2;S ;H 〉 −→ 〈t2;S ; p 7→ t1,H 〉 LET
〈let! y = t1 in t2;S ;H 〉 −→ 〈t1; Let(y , t2),S ;H 〉 SLET

〈case t1 of I#[y]→ t2;S ;H 〉 −→ 〈t1;Case(y , t2),S ;H 〉 CASE
〈error;S ;H 〉 −→ ⊥ ERR

〈λp1.t1;App(p2),S ;H 〉 −→ 〈t1[p2/p1];S ;H 〉 PPOP
〈λi .t1;App(n),S ;H 〉 −→ 〈t1[n/i];S ;H 〉 IPOP
〈w ;Force(p),S ;H 〉 −→ 〈w ;S ; p 7→ w ,H 〉 FCE
〈n; Let(i , t),S ;H 〉 −→ 〈t [n/i];S ;H 〉 ILET

〈I#[n];Case(i , t),S ;H 〉 −→ 〈t [n/i];S ;H 〉 IMAT

Figure 6. Operational semantics forM

only on variables or literals. We accordingly need to be able to let-
bind variables so that we can pass more complex expressions to
functions. Corresponding to the two interpretations of application
in L,M provides both lazy let and strict let!. As in L, the case
expression inM serves only to force and unpack boxed numbers.
In order to be explicit that we must know sizes of variables inM,
we use two different metavariables forM variables (p and i), each
corresponding to a different kind of machine register.

TheM language is given an operational semantics in terms of
machine states µ. A machine state is an expression under evalua-
tion, a stack, and a heap. Stacks are an ordered list of stack frames,
as explored below; heaps are considered unordered and contain
only mappings from pointer variables to expressions. The upper
group of rules in Figure 6 apply when the expression is not a value;
the rule to use is chosen based on the expression. The lower group
of rules apply when the expression is a value; the rule to use is
chosen based on the top of the stack.

The first two rules push an argument onto the stack. In the first
rule, PAPP, notice that the argument is a variable p and may not be a
value. Evaluating the function first is therefore lazy application. In
IAPP, on the other hand, the argument must be a literal and therefore
fully evaluated. The stack frames are popped in the first two value
rules, which apply when we have fully evaluated the function to
expose a λ-expression. In these rules, we use substitution to model
function application; in a real machine, of course, parameters to
functions would be passed in registers. However, notice that the
value being substituted is always of a known width; this substitution
is thus implementable.

The VAL rule applies when we are evaluating a variable p bound
to a value in the heap. It does a simple lookup. In contrast, the EVAL

JeKVΓ t Compilation

x 7→ y ∈ V

JxKVΓ y
C VAR

Γ ` e2 : τ Γ ` τ : TYPE P
p # V V ′ = V , p

Je1KV
′

Γ t1 Je2KV
′

Γ t2

Je1 e2KVΓ let p = t2 in t1 p
C APPLAZY

Γ ` e2 : τ Γ ` τ : TYPE I
i # V V ′ = V , i

Je1KV
′

Γ t1 Je2KV
′

Γ t2

Je1 e2KVΓ let! i = t2 in t1 i
C APPINT

i # V V ′ = V , i

Γ ` e : Int# JeKV
′

Γ t

JI#[e]KVΓ let! i = t in I#[i]
C CON

p # V V ′ = V , x 7→ p

Γ ` τ : TYPE P JeKV
′

Γ,x :τ t

Jλx :τ. eKVΓ λp.t
C LAMPTR

i # V V ′ = V , x 7→ i

Γ ` τ : TYPE I JeKV
′

Γ,x :τ t

Jλx :τ. eKVΓ λi .t
C LAMINT

JeKVΓ,α:κ t

JΛα:κ. eKVΓ t
C TLAM

JeKVΓ t

Je τKVΓ t
C TAPP

JeKVΓ,r t

JΛr . eKVΓ t
C RLAM

JeKVΓ t

Je ρKVΓ t
C RAPP

Je1KVΓ t1 i # V

Je2KV ,x 7→i
Γ,x :Int#

 t2

Jcase e1 of I#[x]→ e2KVΓ case t1 of I#[i]→ t2
C CASE

JnKVΓ n
C INTLIT

JerrorKVΓ error
C ERROR

Figure 7. Compilation of L intoM

rule applies when p is mapped to a non-value t (we consider trying
VAL before EVAL when interpreting Figure 6). In this case, we
proceed by evaluating t . Upon completion (FCE), we then store the
value t reduced to back in the heap; this implements thunk sharing,
as performed by GHC.

Lazy let simply adds a mapping to the heap (LET). Strict let!,
on the other hand, starts evaluating the let!-bound expression t1,
pushing a continuation onto the stack (SLET). This continuation is
then entered when t1 has been reduced to a value (ILET). The case
expression is similar (CASE), pushing a continuation onto the stack
and popping it after evaluation (IMAT).

Finally, ERR processes error by aborting the machine.

6.3 Compilation
The languages L and M are related by the compilation opera-
tion, in Figure 7. This type-directed algorithm is parameterized
over a variable environment V , containing both mappings from
L-variables x to M-variables y as well as a listing of fresh M-
variables used to compile applications. The # operator is an asser-
tion that a variable does not appear in V .

7 2016/11/17

Applications are compiled into either lazy or strict let expres-
sions, depending on the kind of the argument—this behavior is
just as in Haskell and conforms to the two different application
rules in L’s operational semantics. Applications of I# are similarly
compiled strictly. Other compilation rules are unremarkable, but
we note that compiling an abstraction requires knowing a concrete
width for the bound variable.

This compilation algorithm is partial, as it cannot compile, for
example, an L-expression that uses levity polymorphism in a vari-
able bound by a λ. The type system of L rules out this possibility.
Indeed, L’s type system guarantees that an L-expression can be
compiled:

Theorem (Compilation). If Γ ` e : τ and Γ ∝ V , then JeKVΓ t .

The condition Γ ∝ V requires that V has suitable mappings for
the variables bound in Γ; the full definition appears in the appendix.

The compilation algorithm also critically preserves operational
semantics, as proved in this theorem:

Theorem (Simulation). Suppose Γ has no term variable bindings.
If Γ ` e : τ and Γ ` e −→ e ′, then JeK∅Γ t , Je ′K∅Γ t ′, and
t ⇔ t ′.

This theorem statement requires the notion of joinability ofM-
expressions. While the full definition appears in the appendix, intu-
itively, twoM-expressions t1 and t2 are joinable (that is, t1 ⇔ t2)
when they have a common reduct for any stack and heap. We can-
not quite say that t steps to t ′ in the Simulation Theorem because of
the possibility of applications that compile to let-bindings, which
must be evaluated before we can witness the commonality between
t and t ′.

6.4 A missing step
The proof of the Simulation Theorem requires the following tech-
nical fact, relating a substitution in L to a substitution inM:

Assumption (Substitution/compilation). If:

1. Γ, x :τ,Γ′ ` e1 : τ ′ 2. Γ ` e2 : τ 3. Γ ` τ : TYPEP

4. Je1KV ,x 7→p,V ′

Γ,x :τ,Γ′ t1 5. Je2KVΓ t2

Then there exists t3 such that Je1[e2/x]KV ,V
′

Γ,Γ′ t3 and let p2 =

t2 in t1[p2/p]⇔ t3, where p2 is fresh.

This assumption is needed when considering the S BETAPTR
rule from L’s operational semantics—we must prove that the re-
dex and the reduct, with its substitution, compile to joinable M-
expressions.

We have not proved this fact, though we believe it to be true.
The challenge in proving this is that the proof requires, in the lazy
application case, generalizing the notion of joinability to heaps, in-
stead of justM-expressions. When considering this generalization,
we see that it is difficult to write a well-founded definition of join-
ability, if we consider the possibility of cyclic graphs in the heap.14

Interestingly, this assumption is a key part of any proof that
compilation from System F to ANF is semantics-preserving. In
the functional language compilation community, we have accepted
such a transformation for some time. Yet to our surprise, we have
been unable to find a proof of its correctness in the literature. We
thus leave this step of the correctness proof for the ANF transfor-
mation as an open problem, quite separable from the challenge of
proving levity polymorphism. Note, in particular, that the assump-

14 Lacking recursion, our languages do not support such cyclic structures.
However, this restriction surely does not exist in the broader context of
Haskell, and it would seem too clever by half to use the lack of recursion in
our languages as the cornerstone of the proof.

tion works over substitutions of a pointer type—no levity polymor-
phism is to be found here.

6.5 Conclusion
Following the path outlined at the beginning of this section, we
have proved that by restricting the use of levity polymorphism, we
can compile a variant of System F that supports levity polymor-
phism into an ANF language whose operational semantics closely
mirrors what would take place on a concrete machine. The compila-
tion is semantics-preserving. This proof shows that our restrictions
are indeed sufficient to allow compilation.

7. New opportunities from levity polymorphism
7.1 Relaxation of restrictions around unlifted types
Previous to our implementation of levity polymorphism, GHC had
to brutally restrict the use of unlifted types:

• No type family could return an unlifted type. Recall that previ-
ous versions of GHC lumped together all unlifted types into the
kind #. Thus the following code would be kind-correct:

type family F a :: # where
F Int = Int#

F Char = Char#

However, GHC would be at a loss trying to compile f :: F a→
a, as there would not be a way to know what size register to
use for the argument; the types Char# and Int# may have
different calling conventions. Unboxed tuples all also had kind
#, making matters potentially even worse.
• Unlifted types were not allowed to be used as indices. It was

impossible to pass an unlifted type to a type family or to use
one as the index to a GADT. In retrospect, it seems that this
restriction was unnecessary, but we had not developed enough
of a theory around unlifted types to be sure what was safe. It
was safer just to prevent these uses.
• Unlifted types had to be fully saturated. There are several pa-

rameterized unlifted types in GHC: Array# :: Type → # is
representative. We might imagine abstracting over a type vari-
able a :: Type → # and wish to use Array# to instantiate
a. However, with the over-broad definition of #—which in-
cluded unlifted types of all manner of calling convention—any
such abstraction could cause trouble. In particular, note that
(# , #) Bool (a partially-applied unboxed tuple) can have type
Type → #, and its calling convention bears no resemblance to
that of Array#.

Now that we have refined our understanding of unlifted types as
described in this paper, we are in a position to lift all of these
restrictions. In particular, note that the F type family is ill-kinded in
our new system, as Int# has kind TYPE ’[IntRep] while Char#
has kind TYPE ’[CharRep]. Similarly, abstractions over partially-
applied unlifted type constructors are now safe, as long as our new,
more precise kinds are respected.

7.2 Levity-polymorphic functions
Beyond error , myError and other functions that never return, there
are other functions that can also be generalized to be levity poly-
morphic. Here is the generalized type of Haskell’s ($) function,
which does simple function application:

($) :: ∀ (r :: Rep) (a :: Type) (b :: TYPE r).
(a→ b)→ a→ b

f $ x = f x

8 2016/11/17

Note that the argument, x , must have a lifted type (of kind Type),
but that the return value may be levity-polymorphic, according to
the rules in Section 5.1. This generalization of ($) has actually ex-
isted in GHC for some time, due to requests from users, imple-
mented by a special case in the type system. With levity polymor-
phism, however, we can now drop the special-case code and gain
more assurance that this generalization is correct.

We can similarly generalize (.), the function composition oper-
ator:

(.) :: ∀ (r :: Rep) (a :: Type) (b :: Type) (c :: TYPE r).
(b → c)→ (a→ b)→ a→ c

(f . g) x = f (g x)

Once again, we can generalize only the return type. Unlike in
the example with ($), we see that the restriction around levity-
polymorphic arguments bites here: this is the only reason that we
cannot generalize the kind of b. Also unlike ($), we had not noticed
that it was safe to generalize (.) in this way. Only by exploring
levity polymorphism did this generalization come to light.

7.3 Levity-polymorphic classes
Haskell uses type classes to implement ad-hoc polymorphism [15].
An example is the Num class, excerpted here:

class Num a where
(+) :: a→ a→ a
abs :: a→ a

Haskellers use the Num class to be able to apply numerical oper-
ations over a range of numerical types. We can write both 3 + 4
and 2.718 + 3.14 with the same (+) operator, knowing that type
class resolution will supply appropriate implementations for (+)
depending on the types of its operands. However, because we have
never been able to abstract over unlifted types, unlifted numerical
types have been excluded from the convenience of ad-hoc over-
loading. The library that ships with GHC exports (+#) :: Int# →
Int# → Int# and (+##) :: Double# → Double# → Double#

in order to perform addition on these two unlifted numerical types.
Programmers who wish to use unlifted numbers in their code must
use these operators directly.

With levity polymorphism, however, we can extend the type
class mechanism to include unlifted types. We generalize the Num
class thus:

class Num (a :: TYPE r) where
(+) :: a→ a→ a
abs :: a→ a

The only change is that a is no longer of type Type, but can
have any associated Rep. This allows the following instance, for
example:

instance Num Int# where
(+) = (+#)
abs n | n <# 0# = negateInt# n

| otherwise = n

We can now happily write 3# + 4# to add machine integers.15 But
how can this possibly work? Let’s examine the type of our new
(+):

(+) :: ∀ (r :: Rep) (a :: TYPE r). Num a⇒ a→ a→ a

It looks as if (+) takes a levity-polymorphic argument, something
that has been disallowed according to the rules in Section 5.1. Yet

15 We owe this use case of levity polymorphism to Baldur Blöndal, a.k.a.
Iceland jack. See https://ghc.haskell.org/trac/ghc/ticket/
12708.

we see that nothing untoward happens when we expand out the
definitions. Type classes are implemented via the use of dictionar-
ies [6], simple records of method implementations. At runtime, any
function with a Num a constraint takes a dictionary containing the
two methods that are part of our Num class. To be concrete, this
dictionary type looks like this:

data Num (a :: TYPE r)
= MkNum {(+) :: a→ a→ a, abs :: a→ a}

The methods that the user writes are simply record selectors. The
type of the (+) record selector is the type we see above (blurring
the distinction between ⇒ and →), but it’s not properly levity-
polymorphic: it takes a Num a dictionary (a lifted type) and returns
a function of type a → a → a. All functions are lifted, so there is
no improper levity polymorphism at play.

When the user writes an instance, GHC translates each method
implementation to a top-level function. Let’s call the functions
plusInt# and absInt#. They are fully monomorphic, taking and
returning Int# values; there is no levity polymorphism there, so
they cannot run afoul of our restrictions.

With these functions defined, GHC then builds the dictionary,
thus:

$d :: Num Int#

$d = MkNum {(+) = plusInt#, abs = absInt#}
Once again, there is nothing unpleasant here—this snippet is indeed
entirely monomorphic.

When we put this all together, we can see that this use of levity
polymorphism is all acceptable. We are treading close to the cliff,
however. Consider this:

abs1, abs2 :: ∀ (r :: Rep) (a :: TYPE r).
Num a⇒ a→ a

abs1 = abs
abs2 x = abs x

The definition for abs1 is acceptable; there are no levity-polymorphic
bound variables. However, abs2 is rejected! It binds a levity-
polymorphic variable x . And yet abs2 is clearly just an η-expansion
of abs1. How can this be possible?

When we consider how a function is compiled, it becomes
clearer. Despite the currying that happens in Haskell, a compiled
function is assigned an arity, declaring how many parameters it
accepts via the machine’s usual convention for passing parameters
to a function. The abs1 function has an arity of 1: its one parameter
is the Num a dictionary (which, recall, is a perfectly ordinary
value of a lifted type). It returns the memory address of a function
that takes one argument. On the other hand, abs2 has an arity
of 2, taking also the levity-polymorphic value to operate on and
returning a levity-polymorphic value. It is this higher arity that
causes trouble for abs2. When compiling, η-equivalent definitions
are not equivalent!

8. Polymorphism in other languages
8.1 Cyclone
One can view the kind system we describe in this paper as a gen-
eralization of the idea originally put forth as a part of Cyclone [7].
Cyclone was conceived as a type-safe C-like language. The design-
ers of Cyclone naturally wanted the language to support parametric
polymorphism; indeed, this feature is the core subject of a journal-
length article on the language [5]. However, parametric polymor-
phism in a language that supports values of differing sizes will nec-
essarily crash headlong into the same problem we describe here: it
is impossible to compile a function whose parameters have a width
unknown at compile time. Grossman [5, Section 4.1] describes a

9 2016/11/17

https://ghc.haskell.org/trac/ghc/ticket/12708
https://ghc.haskell.org/trac/ghc/ticket/12708

kind system for Cyclone supporting two kinds, A (for “any”) and
B (for “boxed”). This kind system supports sub-kinding, where
B <: A. In this system, all pointers have kind B , as well as int; all
types have kind A. Accordingly, the use of abstract types (such as
type variables) of kind A is restricted to contexts that do not need to
know the width of the type. Such types can appear in pointer types:
for example, if type variable α has kind A, then a variable of type
α* (that is, a pointer to α) is allowed, but a variable of type α itself
is not. Cyclone’s restrictions around types of kind A have the same
flavor of our restrictions around levity-polymorphic types.

Indeed, we can view Cyclone’s A roughly as our ∀ (r ::
Rep). TYPE r . However, by being more explicit about repre-
sentation quantification, we can use the same r variable in multiple
kinds, leading to the applications in Section 7. Our kind system
also allows for more than one concrete kind, unlike Cyclone’s.

8.2 C++
C++’s approach to parametric polymorphism is its template system.
A C++ template is essentially a macro, where the type at which the
template is to be specialized is inferred at use sites. Consider the
templated identity function:

template〈typename T 〉 T id(T t) {return t; }

If we were now to say id(5), the C++ compiler would special-
ize that function, producing int id(int t) {return t; }. Calling
id(’x’) would produce a similar specialization to characters. In
effect, polymorphism is eliminated at compile time, via specializa-
tion. Hence C++ need not worry about the compilation problems
we describe in this paper; only concrete instantiations are compiled.

One challenge with this approach is that templates must get spe-
cialized independently in each compilation unit. The linker then
deduplicates when combining the object files. Because of this, com-
pile times with templates can be slower, or compilers have to design
elaborate caching mechanisms to avoid recompilation. Another ma-
jor drawback is that this approach cannot support higher-rank types
or polymorphic recursion, both widely used by Haskell program-
mers.

8.3 Java
Java’s generics [11] provide parametric polymorphism. This fea-
ture takes the approach Haskell has taken before our contributions,
in requiring every type argument to a polymorphic function to be
boxed. In the Java terminology, reference types are boxed, while
primitive types are unboxed. In order to better support polymorphic
functions and classes, Java provides a boxed type corresponding
to every unboxed type and inserts conversions as necessary. While
these conversions are invisible to the programmer, they must be ex-
ecuted at runtime, with the attendant time and space costs.

Java has no support for user-defined unboxed types, so it is con-
ceivable for a programmer to manually specialize any polymorphic
definition to all available primitive types—there are only eight. In-
deed, the standard library does exactly this for many definitions.

8.4 OCaml
OCaml’s treatment of parametric polymorphism is unsurprisingly
very similar to Haskell’s, but with one major difference: OCaml’s
int type is unboxed, as well as any type that can be packed into an
int (like char or enumerations) [10]. However, because the width
of an int is always the same as the width of a pointer, polymorphic
functions in OCaml can be used at type int.16 Beyond those types

16 Although not necessary to support polymorphism, per se, OCaml does
need to distinguish between ints and pointers to allow the garbage collector
to do its job. Thus ints are all shifted left one bit and have their lowest bit
set to 1, distinguishing them from word-aligned pointers.

that can be packed into an int, OCaml does not have first-class
unboxed types.

8.5 C# / .NET
The .NET generics system allows unrestricted parametric polymor-
phism over unboxed types, by taking advantage of the JIT to gener-
ate specialized code at runtime, for each distinct runtime represen-
tation type [8, Section 4]. These specialized versions are generated
lazily, on demand, and the code is shared if the types are “compat-
ible”. As the paper says: “Two instantiations are compatible if for
any parameterized class its compilation at these instantiations gives
rise to identical code and other execution structures.”

To our knowledge, .NET is the only widely-used language im-
plementation that supports unrestricted polymorphism over un-
boxed types, a truly impressive achievement. Runtime types must
be passed to every polymorphic function, but this is needed for
other reasons too (e.g., reflection).

8.6 Rust
Although undocumented in the research literature, Rust’s generics
appear quite like C++’s templates, with monomorphization upon
request. Rust’s compiler avoids compilation overhead by compiling
a generic definition into an intermediate form, ready for specializa-
tion. This approach means that polymorphic definitions can be used
at both unboxed and boxed types but encounters the same restric-
tions around polymorphic recursion and higher-rank types that C++
does.

9. Conclusion
This paper presents a new way to understand the limits of paramet-
ric polymorphism, claiming that kinds are calling conventions. We
thus must fix the kind of any bound variables and arguments before
we can compile a function. Even with these restrictions, however,
we find that our novel levity polymorphism—the ability to abstract
over a type’s runtime representation—is practically useful and ex-
tends the expressiveness of Haskell. Furthermore, we have proved
our restrictions to be sufficient to allow compilation and have im-
plemented our ideas in a production compiler. It is our hope that this
new treatment of polymorphism can find its way to new languages,
several of which currently exhibit a number of compromises around
polymorphism.

References
[1] R. A. Eisenberg. Dependent Types in Haskell: Theory and Practice.

PhD thesis, University of Pennsylvania, 2016.
[2] S. Finne, D. Leijen, E. Meijer, and S. Peyton Jones. Calling Hell

from Heaven and Heaven from Hell. In ACM SIGPLAN International
Conference on Functional Programming (ICFP’99), pages 114–125,
Paris, Sept. 1999. ACM.

[3] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of
compiling with continuations. In Proceedings of the ACM SIGPLAN
1993 Conference on Programming Language Design and Implemen-
tation, PLDI ’93, pages 237–247. ACM, 1993.

[4] J.-Y. Girard. Une extension de l’interpretation de Gödel à l’analyse,
et son application à l’élimination des coupures dans l’analyse et la
theorie des types. In J. Fenstad, editor, Proceedings of the Second
Scandinavian Logic Symposium, volume 63 of Studies in Logic and
the Foundations of Mathematics, pages 63 – 92. Elsevier, 1971.

[5] D. Grossman. Quantified types in an imperative language. ACM Trans.
Program. Lang. Syst., 28(3):429–475, May 2006.

[6] C. V. Hall, K. Hammond, S. L. Peyton Jones, and P. L. Wadler. Type
classes in haskell. ACM Trans. Program. Lang. Syst., 18(2), Mar. 1996.

[7] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang.
Cyclone: A safe dialect of C. In Proceedings of the USENIX Annual
Technical Conference, pages 275–288, 2002.

10 2016/11/17

[8] A. Kennedy and D. Syme. Design and implementation of generics for
the .NET Common Language Runtime. In Programming Language
Design and Implementation. ACM, January 2001.

[9] S. Marlow (editor). Haskell 2010 language report, 2010.
[10] Y. Minsky, A. Madhavapeddy, and J. Hickey. Real World OCaml.

O’Reilly Media, 2013.
[11] M. Naftalin and P. Wadler. Java Generics and Collections: Speed Up

the Java Development Process. O’Reilly Media, 2006.
[12] S. Peyton Jones and J. Launchbury. Unboxed values as first class

citizens. In FPCA, volume 523 of LNCS, pages 636–666, 1991.
[13] S. Peyton Jones, D. Vytiniotis, S. Weirich, and M. Shields. Practical

type inference for arbitrary-rank types. Journal of Functional Pro-
gramming, 17(1), Jan. 2007.

[14] J. C. Reynolds. Towards a theory of type structure. In B. Robi-
net, editor, Programming Symposium, volume 19 of Lecture Notes in
Computer Science, pages 408–425. Springer Berlin Heidelberg, 1974.
ISBN 978-3-540-06859-4. doi: 10.1007/3-540-06859-7 148. URL
http://dx.doi.org/10.1007/3-540-06859-7_148.

[15] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-
hoc. In POPL, pages 60–76. ACM, 1989.

[16] S. Weirich, J. Hsu, and R. A. Eisenberg. System FC with explicit kind
equality. In International Conference on Functional Programming,
ICFP ’13. ACM, 2013.

[17] B. A. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Vytiniotis, and
J. P. Magalhães. Giving Haskell a promotion. In Types in Language
Design and Implementation, TLDI ’12. ACM, 2012.

11 2016/11/17

http://dx.doi.org/10.1007/3-540-06859-7_148

A. Proofs
A.1 Preliminaries
Definition 1 (Garbage collection). Define gc(µ) to do garbage collection on a machine state. This removes any Force(p) stack elements
and any p 7→ t heap bindings for pointers p which are not reachable from the expression in µ nor in App(p), Let(y , t), or Case(y , t) stack
elements.

Definition 2 (Equivalent states). Two machine states µ1 and µ2 are equivalent, written µ1 µ2 if gc(µ1) = gc(µ2).

Definition 3 (Joinability). TwoM-expressions t1 and t2 are joinable, written t1 ⇔ t2, when there exists t3 such that, for all S and H , there
exist S1, H1, S2, and H2 such that:

1. 〈t1;S ;H 〉 −→∗ 〈t3;S1;H1〉;
2. 〈t2;S ;H 〉 −→∗ 〈t3;S2;H2〉;
3. 〈t3;S1;H1〉 〈t3;S2;H2〉; and
4. gc(〈t3;S1;H1〉) = 〈t3;S ′,S ;H ′〉, where H ⊆ H ′.

In the above definition, note that the last line states that the garbage-collected stack of the common reduct machine state must match the
original stack.

Assumption 4 (Uniqueness of variables). We assume that all contexts Γ bind any variable at most once.

A.2 Determinacy
The following determinacy lemmas are all proven by straightforward induction.

Lemma 5 (Kind determinacy). If Γ ` τ : κ1 and Γ ` τ : κ2, then κ1 = κ2.

Lemma 6 (Type determinacy). If Γ ` e : τ1 and Γ ` e : τ2, then τ1 = τ2.

Lemma 7 (Reduction determinacy). If Γ ` e −→ e1 and Γ ` e −→ e2, then e1 = e2.

Lemma 8 (Compilation determinacy). If JeKVΓ t1 and JeKVΓ t2, then t1 = t2.

Proof. Straightforward induction, appealing to Lemma 5 and Lemma 6.

A.3 Weakening
Lemma 9 (Typing weakening). If Γ1 ` e : τ and Γ′ = Γ1,Γ2, then Γ′ ` e : τ .

Proof. Straightforward induction on the derivation of Γ1 ` e : τ .

Lemma 10 (Variable assignment weakening). If JeKV1
Γ1
 t , Γ′ = Γ1,Γ2, and V ′ = V1,V2, then JeKV

′

Γ′ t .

Proof. Straightforward induction on the derivation of JeKV1
Γ t , appealing to Lemma 9.

A.4 Substitution
The following substitution lemmas are all proved by the standard approach for substitution lemmas, with multiple cases for variables and
induction elsewhere. Later lemmas depend on earlier ones.

Lemma 11 (Representation substitution in kinds). If Γ, r ,Γ′ ` κ kind and fv(ρ) ⊆ Γ, then Γ,Γ′[ρ/r] ` κ[ρ/r] kind.

Lemma 12 (Representation substitution in types). If Γ, r ,Γ′ ` τ : κ and fv(ρ) ⊆ Γ, then Γ,Γ′[ρ/r] ` τ [ρ/r] : κ[ρ/r]

Lemma 13 (Representation substitution in expressions). If Γ, r ,Γ′ ` e : τ and fv(ρ) ⊆ Γ, then Γ,Γ′[ρ/r] ` e[ρ/r] : τ [ρ/r].

Lemma 14 (Type substitution in types). If Γ, α:κ′,Γ′ ` τ : κ and Γ ` τ ′ : κ′, then Γ,Γ′[τ ′/α] ` τ [τ ′/α] : κ.

Lemma 15 (Type substitution in terms). If Γ, α:κ,Γ′ ` e : τ and Γ ` τ ′ : κ, then Γ,Γ′[τ ′/α] ` e[τ ′/α] : τ [τ ′/α].

Lemma 16 (Substitution). If Γ, x :τ ′,Γ′ ` e : τ and Γ ` e ′ : τ ′, then Γ,Γ′ ` e[e ′/x] : τ .

A.5 Preservation
Theorem 17 (Preservation). If Γ ` e : τ and Γ ` e −→ e ′, then Γ ` e ′ : τ .

Proof. By induction on the derivation of Γ ` e : τ .

Case E VAR: Impossible, as variables do not step.
Case E APP: We now have several cases, depending on how e has stepped:

Case S APPLAZY: By the induction hypothesis.
Case S BETAPTR: By Lemma 16.
Case S APPSTRICT: By the induction hypothesis.
Case S APPSTRICT2: By the induction hypothesis.
Case S BETAUNBOXED: By Lemma 16.

12 2016/11/17

Case E LAM: Impossible.
Case E TLAM: We must step by S TLAM. We are done by the induction hypothesis.
Case E TAPP: We now have two cases, depending on how e has stepped:

Case S TAPP: By the induction hypothesis.
Case S TBETA: By Lemma 15.

Case E RLAM: We must step by S RLAM. We are done by the induction hypothesis.
Case E RAPP: Like the previous case, but appealing to Lemma 13.
Case E CON: We must step by S CON. We are done by the induction hypothesis.
Case E CASE: We now have two cases, depending on how e has stepped:

Case S CASE: By the induction hypothesis.
Case S MATCH: By Lemma 16.

Case E ERROR: Trivial.
Literal cases: Impossible.

A.6 Progress
Lemma 18 (Canonical forms). Suppose Γ has no term variable bindings and Γ ` v : τ .

1. If τ = τ1 → τ2, then v = λx :τ1. e .
2. If τ = ∀α:κ. τ0, then v = Λα:κ. v0.
3. If τ = ∀r . τ0, then v = Λr . v0.
4. If τ = Int, then v = I#[n].
5. If τ = Int#, then v = n .
6. τ is not a type variable.

Proof. By induction on the derivation of Γ ` v : τ .

Theorem 19 (Progress). Suppose Γ has no term variable bindings. If Γ ` e : τ , then either Γ ` e −→ e ′ or e is a value.

Proof. By induction on the derivation of Γ ` e : τ .

Case E VAR: Impossible with no bound term variables.
Case E APP:

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` τ1 : TYPE υ

Γ ` e1 e2 : τ2
E APP

We have three cases, depending on the value of υ.
Case υ = P: Use the induction hypothesis on e1, yielding two cases:

Case Γ ` e1 −→ e ′1: We are done by S APPLAZY.
Case e1 is a value: Lemma 18 tells us that e1 = λx :τ1. e0. We are done by S BETAPTR.

Case υ = I: Use the induction hypothesis on e2, yielding two cases:
Case Γ ` e2 −→ e ′2: We are done by S APPSTRICT.
Case e2 is a value: Now we use the induction hypothesis on e1, yielding two cases:

Case Γ ` e1 −→ e ′1: We are done by S APPSTRICT2.
Case e1 is a value: Lemma 18 tells us that e1 = λx :τ1. e0 and thus we are done by S BETAUNBOXED.

Case E LAM: Here, e is a value.
Case E TLAM: We have learned that e = Λα:κ. e0. Using the induction hypothesis on e0 gives us two possibilities:

Case Γ ` e0 −→ e ′0: We are done by S TLAM.
Case e0 is a value: Then e is a value.

Case E TAPP: We have learned that e = e0 τ . Using the induction hypothesis on e0 gives us two possibilities:
Case Γ ` e0 −→ e ′0: We are done by S TAPP.
Case e0 is a value: Lemma 18 tells us that e0 = Λα:κ. v0 and then we are done by S TBETA.

Case E RLAM: Like the case for E TLAM, using S RLAM.
Case E RAPP: Like the case for E TAPP, using S RAPP and S RBETA.
Case E CON: We learn that e = I#[e0]. Using the induction hypothesis on e0 gives us two possibilities:

Case Γ ` e0 −→ e ′0: We are done by S CON.
Case e0 is a value: Then e is a value.

Case E CASE: We learn that e = case e1 of I#[x]→ e2. Using the induction hypothesis on e1 gives us two possibilities:
Case Γ ` e1 −→ e ′1: We are done by S CASE.
Case e1 is a value: We see that Γ ` e1 : Int, and then Lemma 18 tells us that e1 = I#[n]. We are done by S MATCH.

Case E ERROR: We are done by S ERROR.

13 2016/11/17

Case E INTLIT: Here, e is a value.

A.7 Compilation

Γ ∝ V Compatibility

∅ ∝ ∅ COMPAT EMPTY

Γ ∝ V

Γ ∝ V , y
COMPAT FRESH

Γ ∝ V

Γ, α:κ ∝ V
COMPAT TYVAR

Γ, r ∝ V
COMPAT REPVAR

Γ ` τ : TYPE P Γ ∝ V

Γ, x :τ ∝ V , x 7→ p
COMPAT P

Γ ` τ : TYPE I Γ ∝ V

Γ, x :τ ∝ V , x 7→ i
COMPAT I

Lemma 20 (Variable assignments). If Γ ∝ V and x :τ ∈ Γ, then x 7→ y ∈ V .

Proof. Straightforward induction on the derivation of Γ ∝ V .

Theorem 21 (Compilation). If Γ ` e : τ and Γ ∝ V , then JeKVΓ t .

Proof. By induction on the derivation of Γ ` e : τ .

Case E VAR: By Lemma 20 and C VAR.
Case E APP:

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` τ1 : TYPE υ

Γ ` e1 e2 : τ2
E APP

Inversion tells us that Γ ` e2 : τ1 and that Γ ` τ1 : TYPE υ. We now have two cases, depending on the value of υ:
Case υ = P: Proceed by C APPLAZY. Choose p such that p # V . We see that Je1KV ,pΓ t1 and Je2KV ,pΓ t2 by induction and

Lemma 10.
Case υ = I: Similar, by C APPINT.

Case E LAM:
Γ, x :τ1 ` e : τ2 Γ ` τ1 : TYPE υ

Γ ` λx :τ1. e : τ1 → τ2
E LAM

We have two cases, depending on the value of υ.
Case υ = P: By C LAMPTR and the induction hypothesis.
Case υ = I: By C LAMINT and the induction hypothesis.

Case E TLAM: By C TLAM and the induction hypothesis.
Case E TAPP: By C TAPP and the induction hypothesis.
Case E RLAM: By C RLAM and the induction hypothesis.
Case E RAPP: By C RAPP and the induction hypothesis.
Case E CON:

Γ ` e : Int#

Γ ` I#[e] : Int
E CON

Inversion tells us that Γ ` e : Int#. We can thus proceed by C CON, Lemma 10, and the induction hypothesis.
Case E CASE:

Γ ` e1 : Int Γ, x :Int# ` e2 : τ

Γ ` case e1 of I#[x]→ e2 : τ
E CASE

By the induction hypothesis and C CASE.
Case E ERROR: By C ERROR.
Case E INTLIT: By C INTLIT.

14 2016/11/17

A.8 Simulation
Assumption 22 (Substitution/compilation). If:

1. Γ, x :τ,Γ′ ` e1 : τ ′

2. Γ ` e2 : τ
3. Γ ` τ : TYPEP
4. Je1KV ,x 7→p,V ′

Γ,x :τ,Γ′ t1, and

5. Je2KVΓ t2

Then there exists t3 such that Je1[e2/x]KV ,V
′

Γ,Γ′ t3 and let p2 = t2 in t1[p2/p]⇔ t3, where p2 is fresh.

See Section 6.4 for why this is an assumption.

Lemma 23 (Int# substitution/compilation). If JeKV ,x 7→i,V ′

Γ,x :Int#,Γ
′ t and JvKVΓ n , then Je[v/x]KV ,V

′

Γ,Γ′ t [n/i].

Proof. By induction on the derivation of JeKV ,x 7→i,V ′

Γ,x :Int#,Γ
 t .

Case C VAR: We have two cases:
Case e = x : In this case, t = i , e[v/x] = v , and t [n/i] = n . We are done by the assumption that JvKVΓ n and Lemma 10.
Case e 6= x : The substitutions are no-ops, and so we are done.

Other rules: By induction (and Lemma 16, in cases with typing rule premises).

Lemma 24 (Type substitution/compilation). If JeKVΓ,α:κ,Γ′ t , then Je[τ/α]KVΓ,Γ′ t .

Proof. By induction on the derivation of JeKVΓ,α:κ,Γ′ t , appealing to Lemma 14 and Lemma 15 in the cases with typing premises.

Lemma 25 (Representation substitution/compilation). If JeKVΓ,r,Γ′ t , then Je[ρ/r]KVΓ,Γ′ t .

Proof. By induction on the derivation of JeKVΓ,r,Γ′ t , appealing to Lemma 12 and Lemma 13 in the cases with typing premises.

Lemma 26 (Canonical runtime forms). Let Γ be a typing context with no bound term variables, and suppose Γ ` v : τ and Γ ` τ : TYPE I.
Then JvK∅Γ n for some n .

Proof. Proceed by induction on the derivation of Γ ` τ : TYPE I.

Case T INT: Impossible.
Case T INTH: Lemma 18 tells us that v = n . We are done by C INTLIT.
Case T ARROW: Impossible.
Case T VAR: Lemma 18 tells us this is impossible.
Case T ALLTY: We learn that τ = ∀α:κ. τ0. Lemma 18 tells us that v = Λα:κ. v0. Inversion then tells us that Γ, α:κ ` v0 : τ0 and that

Γ, α:κ ` τ0 : TYPE I. The induction hypothesis tells us that Jv0K∅Γ,α:κ n . We are done by C TLAM.
Case T ALLREP: Similar to previous case, using C RLAM.

Theorem 27 (Simulation). Suppose Γ has no term variable bindings. If Γ ` e : τ and Γ ` e −→ e ′, then JeK∅Γ t , Je ′K∅Γ t ′, and
t ⇔ t ′.

Proof. By induction on the derivation of Γ ` e : τ . Unless stated otherwise, assume that t variables are the compilations of the corresponding
e variables. Note that the existence of such ts is guaranteed by inversion and Theorem 21.

Case E VAR: Impossible.
Case E APP: Here, e = e1 e2. We now have several cases, depending on how e has stepped:

Case S APPLAZY:
Γ ` e2 : τ Γ ` τ : TYPE P
Γ ` e1 −→ e ′1

Γ ` e1 e2 −→ e ′1 e2
S APPLAZY

The induction hypothesis tells us that Je ′1K
p
Γ t ′1 and that t1 and t ′1 have a common reduct t ′′1 . The output of the C APPLAZY rule is

let p = t2 in t1 p. We can see that

〈let p = t2 in t1 p;S ;H 〉 −→ 〈t1 p;S ; p 7→ t2,H 〉
−→ 〈t1;App(p),S ; p 7→ t2,H 〉
−→∗ 〈t ′′1 ;App(p),S ′,S ; p 7→ t2,H

′〉

15 2016/11/17

We also see that Je ′1 e2K∅Γ let p = t2 in t ′1 p and that

〈let p = t2 in t ′1 p;S ;H 〉 −→ 〈t ′1 p;S ; p 7→ t2,H 〉
−→ 〈t ′1;App(p),S ; p 7→ t2,H 〉
−→∗ 〈t ′′1 ;App(p),S ′,S ; p 7→ t2,H

′〉

We have thus shown that the compilation of e1 e2 and that of e ′1 e2 have a common reduct, and so we are done with this case.
Case S BETAPTR:

Γ ` τ : TYPE P

Γ ` (λx :τ. e1) e2 −→ e1[e2/x]
S BETAPTR

Here, we learn that e1 is λx :τ1. e
′
1. Thus, t1, the compilation of e1, must be by C LAMPTR and must equal λp2.t

′
1 where we know

Je ′1K
x 7→p2
Γ,x :τ1

 t ′1 by Theorem 21. We can see that

〈let p = t2 in (λp2.t
′
1) p;S ;H 〉 −→ 〈(λp2.t

′
1) p;S ; p 7→ t2,H 〉

−→ 〈λp2.t
′
1;App(p),S ; p 7→ t2,H 〉

−→ 〈t ′1[p/p2];S ; p 7→ t2,H 〉

The β-reduct is e ′1[e2/x]. Assumption 22 gives us t3 such that Je ′1[e2/x]K∅Γ t3 and let p3 = t2 in t ′1[p3/p2]⇔ t3. We can see that

〈let p3 = t2 in t ′1[p3/p2];S ;H 〉 −→ 〈t ′1[p3/p2];S ; p3 7→ t2,H 〉
−→ 〈t ′1[p3/p2];S ; p3 7→ t2,H 〉

This final machine state is α-equivalent to the final machine state reached earlier. We are thus done with this case, as this state is
joinable with t3, the compilation of the β-reduct.

Case S APPSTRICT:
Γ ` e2 : τ Γ ` τ : TYPE I
Γ ` e2 −→ e ′2

Γ ` e1 e2 −→ e1 e ′2
S APPSTRICT

The induction hypothesis tells us that Je ′2KiΓ t ′2 and that t2 and t ′2 have a common reduct t ′′2 . The output of C APPINT is
let! i = t2 in t1 i . We can see that

〈let! i = t2 in t1 i ;S ;H 〉 −→ 〈t2; Let(i , t1 i),S ;H 〉

Compiling the reduct e1 e
′
2 yields (using Theorem 17 to show that e ′2 has the same type as e2) let! i = t ′2 in t1 i . We can see that

〈let! i = t ′2 in t1 i ;S ;H 〉 −→ 〈t ′2; Let(i , t1 i),S ;H 〉

Both of the resulting machine states must eventually reduce to (after garbage collection) 〈t ′′2 ;S ′, Let(i , t1 i),S ;H ′〉 (for some H ′

with H ⊆ H ′) and so we are done with this case.
Case S APPSTRICT2:

Γ ` v2 : τ Γ ` τ : TYPE I
Γ ` e1 −→ e ′1

Γ ` e1 v2 −→ e ′1 v2
S APPSTRICT2

Lemma 26 tells us that Jv2K∅Γ n2. Compiling the redex (by C APPINT) yields let! i = n2 in t1 i . We can see that

〈let! i = n2 in t1 i ;S ;H 〉 −→ 〈n2; Let(i , t1 i),S ;H 〉
−→ 〈(t1 i)[n2/i];S ;H 〉
= 〈t1 n2;S ;H 〉
−→ 〈t1;App(n2),S ;H 〉

Compiling the reduct (also by C APPINT) yields let! i = n2 in t ′1 i . Starting in a machine state with S and H , this similarly reduces
to 〈t ′1;App(n2),S ;H 〉. The induction hypothesis tells us that t1 and t ′1 are joinable, and so we are done.

Case S BETAUNBOXED:
Γ ` τ : TYPE I

Γ ` (λx :τ. e) v −→ e[v/x]
S BETAUNBOXED

Here, we learn that e1 is λx :τ. e ′1, e2 = v , Γ ` v : τ , and Γ ` τ : TYPE I. Thus, Lemma 26 tells us that JvK∅Γ n for some n .
Also, t1, the compilation of e1, must be by C LAMINT and must equal λi .t ′1 where we know Je ′1K

x 7→i2
Γ,x :τ t ′1 by Theorem 21. We can

see that

〈let! i = n in (λi2.t
′
1) i ;S ;H 〉 −→ 〈n; Let(i , (λi2.t

′
1) i),S ;H 〉

−→ 〈((λi2.t ′1) i)[n/i];S ;H 〉
= 〈(λi2.t ′1)n;S ;H 〉
−→ 〈λi2.t ′1;App(n),S ;H 〉
−→ 〈t ′1[n/i2];S ;H 〉

16 2016/11/17

The β-reduct is e ′1[v/x]. Lemma 23 tells us that Je ′1[v/x]K∅Γ t ′1[n/i2], which is the same as the final term in the derivation above.
We are done with this case.

Case E LAM: Impossible, as λ-terms do not step.
Case E TLAM: We know here that e = Λα:κ. e0 and that it has stepped by S TLAM to Λα:κ. e ′0. According to C TLAM, we are done by

the induction hypothesis.
Case E TAPP: We now have two cases, depending on how e has stepped:

Case S TAPP: We learn here that e = e1 τ and that Γ ` e1 −→ e ′1. Both e1 τ and e ′1 τ compile via C TAPP, yielding the same
M-expression as compiling e1 or e ′1 respectively. We are done by induction.

Case S TBETA: We learn here that e = (Λα:κ. e1) τ . This compiles via C TAPP and C TLAM. Inversion and Theorem 21 tells us
Je1K∅Γ t1 and therefore that J(Λα:κ. e1) τK∅Γ t1. The β-reduct is e1[τ/α]. Lemma 24 tells us that Je1[τ/α]K∅Γ t1, and we are
done.

Case E RLAM: Similar to the case for E TLAM, using C RLAM.
Case E RAPP: Similar to the case for E TAPP, appealing to Lemma 25 in the S RBETA case.
Case E CON: We know here that e = I#[e0] and that e has stepped via S CON; thus Γ ` e0 −→ e ′0. The redex compiles via C CON to

let! i = t0 in I#[i]. We can see that

〈let! i = t0 in I#[i];S ;H 〉 −→ 〈t0; Let(i , I#[i]),S ;H 〉
The reduct similarly compiles to let! i = t ′0 in I#[i], and we see that

〈let! i = t ′0 in I#[i];S ;H 〉 −→ 〈t ′0; Let(i , I#[i]),S ;H 〉
We are thus done by the induction hypothesis, relating t0 and t ′0.

Case E CASE: We learn here that e = case e1 of I#[x]→ e2. We have two cases, depending on how e has stepped.
Case S CASE: Here, we know Γ ` e1 −→ e ′1. The redex compiles via C CASE to case t1 of I#[i]→ t2. We can see that

〈case t1 of I#[i]→ t2;S ;H 〉 −→ 〈t1;Case(i , t2),S ;H 〉
The reduct compiles also via C CASE to case t ′1 of I#[i]→ t2. We can see that

〈case t ′1 of I#[i]→ t2;S ;H 〉 −→ 〈t ′1;Case(i , t2),S ;H 〉
These last two are joinable by the induction hypothesis, so we are done.

Case S MATCH: In this case, we know that e1 = I#[n]. Thus the redex compiles to case I#[n] of I#[i]→ t2, and we can see that

〈case I#[n] of I#[i]→ t2;S ;H 〉 −→ 〈I#[n];Case(i , t2),S ;H 〉
−→ 〈t2[n/i];S ;H 〉

The reduct is e2[n/x]. By Lemma 23, we see that Je2[n/x]K∅Γ t2[n/i], and we are done.
Case E ERROR: Our expression e must step by S ERROR and be compiled by C ERROR. We note that 〈error;S ;H 〉 −→ ⊥ and we are

done.
Case E INTLIT: Impossible.

17 2016/11/17

	Levity Polymorphism (extended version)
	Citation

	The cost of polymorphism
	Background: performance through unboxed types
	Unboxed values
	Boxed vs. unboxed and lifted vs. unlifted
	Unboxed tuples

	Unboxed types and polymorphism
	Kinds
	Sub-kinding
	Functions that diverge

	Key idea: polymorphism, not sub-kinding
	Runtime-representation polymorphism
	Representing unboxed tuples
	Levity polymorphism
	The kind of TYPE

	Taming levity polymorphism
	Rejecting un-compilable levity polymorphism
	Type inference and levity polymorphism

	Correctness of levity polymorphism
	The L language
	The M language
	Compilation
	A missing step
	Conclusion

	New opportunities from levity polymorphism
	Relaxation of restrictions around unlifted types
	Levity-polymorphic functions
	Levity-polymorphic classes

	Polymorphism in other languages
	Cyclone
	C++
	Java
	OCaml
	C# / .NET
	Rust

	Conclusion
	Proofs
	Preliminaries
	Determinacy
	Weakening
	Substitution
	Preservation
	Progress
	Compilation
	Simulation

