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ABSTRACT 

BACKGROUND: Women are twice as likely as men to suffer from stress-related psychiatric 

disorders. However, the biological basis of these sex differences is poorly understood.  Orexins 

are altered in anxious and depressed patients. Using a rat model of repeated stress, we asked 

whether orexins contribute to sex differences in outcomes relevant to stress-related psychiatric 

diseases.  

METHODS: Behavioral, neural, and endocrinal habituation to repeated restraint stress and 

subsequent cognitive flexibility was examined in adult male and female rats. In parallel, orexin 

expression and activation was determined in both sexes, and chromatin immunoprecipitation 

was used to determine transcription factors acting at the orexin promoter.  DREADDs (Designer 

Receptors Exclusively Activated by Designer Drugs) were used to inhibit orexin activation 

throughout repeated restraint to determine if the stress related impairments in females could be 

reduced.   

RESULTS: Female rats exhibited impaired habituation to repeated restraint with subsequent 

deficits in cognitive flexibility compared to male rats.  Increased orexin expression and activation 

was observed in females compared to males. The higher expression of orexin mRNA in females 

was due to actions of glucocorticoid receptors on the orexin promoter, as determined by 

chromatin immunoprecipitation. Finally, inhibition of orexins using DREADDs in 

females throughout repeated restraint abolished their heightened HPA responsivity and reduced 

stress-induced cognitive impairments. 

CONCLUSIONS:  The results demonstrate that orexins mediate the impairments in adaptations 

to repeated stress and in subsequent cognitive flexibility exhibited by female rats and provide 

evidence for a broader role for orexins in mediating functions relevant to stress related 

psychiatric diseases. 
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Introduction 

Stress-related psychiatric disorders are twice as common in women, however, the neurobiology 

underlying these sex differences is not fully understood (1–3). An important adaptation to 

repeated stress called habituation, is defined as decreased behavioral, hypothalamic pituitary 

adrenal (HPA) and autonomic responses to moderately intense stressors (4).  Habituation to 

repeated stress, including the HPA response, is disrupted in stress-related illnesses such as 

post-traumatic stress disorder (PTSD) and panic disorder (5). The HPA axis integrates the 

response to a stressor at the paraventricular hypothalamus (PVN), which causes downstream 

release of ACTH from the anterior pituitary, and ultimately glucocorticoid release from the 

adrenal glands. Corticosterone, the primary glucocorticoid in rodents, binds to glucocorticoid 

and/or mineralocorticoid receptors (GR and MR, respectively) to exert its effects in the periphery 

and in the brain. Stressful life events can also impair cognitive function, including cognitive 

flexibility (6), which precipitates or exacerbates many psychiatric disorders (7). Patients with 

disorders such as panic disorder and PTSD exhibit altered concentrations of the hypothalamic 

peptides orexins in cerebrospinal fluid (5, 8, 9). Orexins regulate neuroendocrine and behavioral 

responses that are affected in stress-related illness including disruptions in the HPA axis, 

cognitive flexibility, arousal, food intake, and emotional memory (5, 10, 11). Sex differences in 

orexin precursor prepro-orexin mRNA have been reported (12), but neither the mechanisms 

underlying this sex difference nor the functional consequences of this disparity is understood. 

 To address these gaps in knowledge, we conducted a detailed examination of sex 

differences in the HPA response to repeated stress and in subsequent cognitive flexibility in an 

operant strategy shifting test (13). We then determined the role of orexins in mediating these 

effects of stress. The results indicate that elevated orexins in female rats are responsible for the 

heightened HPA responses to repeated stress and the stress-induced impairments in cognitive 

flexibility. Together, the results suggest a novel role for orexins in mediating sex differences in 

functions that are altered in stress-related psychiatric disorders.   
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Methods and Materials 

Animals: Male and female Sprague-Dawley rats between 65-75 days of age were obtained from 

Charles River Laboratories (Wilmington, MA, USA).  Rats were singly housed and had food and 

water available ad libitum, under 12-h light/dark cycle. Animals acclimated to the housing and 

lighting conditions for 5 days prior to any surgical or stress protocols. The Institutional Animal 

Care and Use Committee of The Children’s Hospital of Philadelphia (CHOP) Research Institute 

approved all experimental procedures. 

 

Experiment 1: Habituation to Repeated Restraint: Behavioral, Neural, and Endocrine Measures 

Two cohorts of animals were used in these experiments (n = 48 animals, 8/treatment group: 

See Figure 1A for treatment groups and experimental paradigm). Animals were restrained in 

Plexiglas restrainers differently sized for male or female rats for 30min/day for 5 consecutive 

days. As orexins exhibit a circadian rhythm (14), animals were restrained within 2h after lights 

on so that levels of orexin remained consistent. Noldus software was used to quantify time 

spent struggling from videos of the first 10 min of restraint, as previously described (4, 15). 

Blood samples were taken on Day 1 and Day 5 of restraint for ACTH and corticosterone as 

previously described (16).  

 To assess activation in the parvocellular division of the PVN (pPVN) after restraint, rats 

were rapidly decapitated 30 minutes following restraint on day 5 and brains were flash frozen in 

2-methyl butane. Sections through the pPVN (-1.72 mm to -1.92 mm from bregma) were fixed in 

4% paraformaldehyde, immunostained for c-Fos (1:1250, sc-52; Santa Cruz Biotechnology, 

Santa Cruz, CA) , and analyzed in NIH Image J by two investigators blind to  treatment 

conditions.  
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Experiment 2: Effects of Repeated Restraint on Cognitive Flexibility  

Three cohorts of animals were used in this experiment (n= 48 animals, 12/ treatment group: 

Control Males, Control Females, 5 Day Restrained Males, or 5 Day Restrained Females). Male 

and female rats were either left in their home cages or restrained for five days. On the 6th day, an 

operant set shifting protocol was performed and analyzed as in Snyder et al ((13); See SI and 

Figure 2A).  

 

Experiment 3: Orexin Expression and Activation in Male and Female Rats  

Brains of control animals from Experiment 1 were used to assess prepro-orexin mRNA (as 

described in (17, 18)) and brains from control, 1 day, or 5 day restrained rats were used to 

measure activation of orexin neurons. A separate cohort of rats was used for cerebrospinal fluid 

collection (12/group: Control Males and Control Females). Activation of orexinA-immunoreactive 

neurons was assessed by a dual stain for c-Fos (as described above) and orexinA (1:50, sc-8070; 

Santa Cruz Biotechnology, Santa Cruz CA), followed by biotinylated Horse Anti-Goat antibody 

(1:500, BA-9500; Vector Laboratories, Burlingame, CA) and a Nova Red reaction (SK-4800, 

Vector Laboratories, Burlingame, CA). Dual labeled cells (Fos nuclear black stain and orexinA 

cytoplasmic red stain) were counted by observers blind to experimental conditions. 

 Cerebrospinal fluid was collected from the cisterna magna of anesthetized rats and 

orexinA concentrations were assayed by radioimmunoassay (Phoenix Pharmaceuticals; 

Burlingame, CA). The minimum levels of detection for orexinA was 80 pg/ml.  Intra-and 

interassay variability was 5-7% and 12-15%. 

 

Experiment 4: Examining the Glucocorticoid Receptor (GR) regulation of prepro-orexin mRNA 

Sections of the LH from control males and females in Experiment 1 were used to examine GR 

expression in orexin neurons. Immunofluorescence was performed with primary antibodies for 

Orexin A and GR (1:50, SC-1004, Santa Cruz Biotechnology; Santa Cruz, CA), followed by 
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AlexaFluor488 Donkey anti-goat and AlexaFluor647 Donkey anti-rabbit secondary antibodies 

(1:200, A-11055 and A-31573; Life Technologies, Carlsbad, CA). A colocalization plugin was 

used in ImageJ to determine percent orexin neurons that express GR. 

To examine potential transcription factors that act on the prepro-orexin promoter, the 

sequence for prepro-orexin was entered into the ALGGEN PROMO virtual laboratory (See SI), 

which identified the GR (α and β). Chromatin immunoprecipitation (ChIP) was performed for GR 

in the LH of control male and female rats (8/treatment group) using a standard kit (Catalog # 17-

295, EMD Millipore). qPCR was performed at specific primer set locations along the prepro-

orexin promoter, where GR was predicted to bind (See SI).  

 Two cohorts of female rats were used to test whether GR regulates prepro-orexin 

expression in females (8/treatment group: Females injected with scrambled siRNA or Females 

injected with siRNA directed at the GR). Oligodeoxynucleotides (ODNs) (Eurofins MWG 

Operon; Huntsville, AL) directed at the GR were used to knock down its expression in the LH as 

previously described (19). In order to confirm knockdown of the GR by siRNA, slides were 

stained immunofluorescently for GR and orexinA. Additionally, LH punches from another cohort 

of control or siRNA treated female rats were collected 24 hours after the third day of ODN 

injections (6/group). QPCR on LH punches was performed using a Sybr Green Master Mix 

(Thermo Fisher Scientific; Pittsburgh, PA) and primers for GR (forward: AGG GGA GGG GGA 

GCG TAA TGG reverse: CCT CTG CTG CTT GGA ATC TGC) and GAPDH (forward: GAC ATG 

CCG CCT GGA GAA AC reverse: AGC CCA GGA TGC CCT TTA GT).  

 

Experiment 5: Inhibiting Orexin via Designer Receptors Exclusively Activated by Designer Drugs 

(DREADDs) throughout Repeated Restraint  

Four cohorts of animals were used in these studies (n = 64 animals, 8/group: Females injected 

with Vehicle or Clozapine N-Oxide (CNO). Both groups had the DREADDs virus expressed in the 

LH (see SI for more construct information).  Half of the animals were analyzed for pPVN and 
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orexin activation after the fifth restraint and half continued on to the strategy shifting test.  

 Female rats received injections of vehicle (saline and 8% DMSO) or CNO (Sigma-

Aldrich; St Louis, MO 2 mg/kg ip) 60 minutes prior to the start of the 30-minute restraint for 5 

consecutive days. This timing was chosen because CNO promotes behavioral effects in the rat 

within 30 minutes and effects last up to 4 hours (20, 21). Blood was collected on day 1 and day 

5 of restraint and assayed for ACTH and corticosterone. Some females were sacrificed after 5 

days of restraint to assess c-Fos in the pPVN and in orexin neurons as described above, while 

others continued to the strategy shifting test to be assessed for cognitive flexibility, as described 

above. 

 A new cohort of female rats (n 16, 8/group) underwent 5 consecutive days of 30-minute 

restraint with SB334867 (an orexin 1 receptor antagonist) administered 30 min prior to daily 

restraint.  Tail blood for these rats were collected on day 1 and 5 of restraint. 

 

Statistical Analysis: Two-way ANOVAs examined Sex and Stress variables for habituation and 

strategy shifting data. T-tests compared control males and females for orexin 

expression/activation and ChIP data. For DREADDs data: t-tests compared vehicle- and CNO-

treated stressed females for pPVN activation, orexin activation, and basal plasma corticosterone; 

two-way ANOVAs were used to examine ACTH and corticosterone data; one-way AVOVA were 

used to analyze strategy shifting data. T-tests compared control and GR SiRNA treated rats for 

QPCR and prepro-orexin analysis. Statistical analysis was conducted with GraphPad Prism 

(GraphPad Software, La Jolla, CA, USA). 

 

Results 

Females exhibit impaired habituation to repeated stress  

 Female rats spent significantly more time struggling in response to the 1st and 5th restraint 

compared with males (Figure 1A). Moreover, on day 5, time spent struggling in males was 
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reduced to 46% of its value on day 1, but the reduction in females was only to 69% of its value 

on day 1, indicating reduced behavioral habituation to repeated restraint in females. 

 cFos activation in the pPVN was significantly increased by acute restraint in males and 

reduced by day 5, comparable to that of control males (Figure 1B). In contrast, in females, pPVN 

activation was significantly increased acutely, and remained elevated on day 5 of restraint 

compared to control females, indicating continued activation of the pPVN with repeated restraint 

in female rats. Consistent with these results, integrated plasma ACTH levels were significantly 

decreased in males but not females by day 5 of restraint compared with day 1 (Figure 1C). The 

same sex difference was observed in integrated plasma corticosterone concentrations. 

Additionally, females displayed significantly higher plasma corticosterone concentrations at both 

day 1 and 5 compared with males. Interestingly, females but not males had significantly higher 

basal corticosterone concentrations on day 5 of restraint compared with their respective day 1 of 

restraint. These results indicate that behavioral, neural and neuroendocrine habituation to 

repeated stress is diminished in female rats compared to male rats and that female rats exhibited 

heightened baseline glucocorticoid release after repeated restraint. 

 

Female rats exhibit impaired cognitive flexibility after repeated stress  

 Control and repeatedly restrained males and females trained in an operant strategy 

shifting test (see Figure 2A), followed by a test day, which consisted of three tasks: Side 

Discrimination, Side Reversal, and Light Discrimination. Stressed males required significantly 

fewer trials than control males to complete the side reversal task (Figure 2B). In contrast, stressed 

females required significantly more trials than control females to complete the side reversal task. 

Thus, stress improved performance in males but impaired performance in females in the side 

reversal task. In the light discrimination task, stress increased the number of trials to criterion in 

females, thereby impairing performance in this task.   
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 Stressed males made fewer errors than control males in the side reversal task, consistent 

with their fewer trials to criterion (Figure 2C). Moreover, stressed females made significantly more 

errors than control females in both the side reversal and light discrimination tasks, consistent with 

their impaired performance in trials to criterion for both tasks. Total errors were further categorized 

into perseverative or regressive errors (Figure 2D, for more detail, see SI and (13)). In the side 

reversal task, stressed males made less perseverative errors compared with control males. In 

contrast, stressed females made more perseverative errors than control females in both the side 

reversal and light discrimination tasks. There were no differences between the treatment groups 

in the number of regressive errors in either task. Stressed males took less time to complete the 

side reversal task than control males, while stressed females took significantly more time to 

complete the side reversal task (Figure 2E). In addition, stressed females made a higher 

percentage of omissions compared with control females, contributing to this longer time to 

complete the task. In summary, stressed females made more omissions and perseverative errors 

in the side reversal task, contributing to their impaired performance in this task. 

 

Female rats exhibit elevated baseline orexin expression and activation compared to male rats 

 Orexin system function was assessed at several levels.  First, significantly higher prepro-

orexin mRNA was observed in control females compared with control males (Figure 3A) as 

assessed by in situ hybridization. Next, control females exhibited significantly more activation of 

orexin neurons compared with control males as assessed by dual labeling for orexinA and cFos 

(Figure 3B). While day 1 of restraint induced significant activation of orexin neurons, orexin 

activation returned to its respective baseline by day 5 of restraint in both sexes. However, orexin 

neural activation in females was still significantly higher than males after repeated restraint. 

Finally, concentrations of orexinA were significantly higher in the cerebrospinal fluid of females 
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compared to males (Figure 3C). In summary, females displayed higher levels of baseline orexin 

expression and activation compared with control males. 

 

Glucocorticoid receptors promote elevations of prepro-orexin mRNA in females  

 We next explored the mechanism by which orexins are increased in females compared 

with males. We examined candidate transcription factors that may bind to the orexin promoter 

and upregulate prepro-orexin mRNA in females, one of which was the GR, which is known to be 

expressed in orexin neurons ((22) and see Figure 4A). Chromatin immunoprecipitation revealed 

that GR bound to several sites on the orexin promoter (Figure 4B) with higher enrichment of GR 

in control females compared with males in the HCRT1, HCRT5, and HCRT6 primer sets. We also 

showed amplification of the period 1 promoter, a positive control of which GR is known to bind, 

based on previous literature (23) and no amplification at the GAPDH promoter, a negative control. 

While these results indicated that the GR is enriched at the orexin promoter in females, they did 

not determine whether this enrichment leads to the upregulation of prepro-orexin in females. To 

test this, GR siRNA was administered into the LH in female rats. There was stable knockdown of 

GR in orexin neurons (Figure 4C) confirming the efficacy of the GR siRNA.  Critically, this GR 

knockdown reduced prepro-orexin mRNA in females compared to scrambled control (Figure 4D), 

demonstrating that GR directly acts at the orexin promoter to upregulate orexin expression in 

female rats. 

 

Orexins contribute to HPA activity and cognitive impairment after repeated restraint in females 

 The previous results lead to the hypothesis that higher orexin system activity in females 

produces their reduced habituation and impaired cognitive flexibility. To test this hypothesis, 

orexin system activity was reduced in females using two different approaches. First, an inhibitory 

DREADDs construct targeted to orexins (referred to as hM4D-orexins) was developed to inhibit 

orexin cells in females throughout repeated restraint (see Figure 5A). Inhibition of hM4D-orexins 
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transfected neurons by Clozapine N-Oxide (CNO) administration prior to each restraint 

significantly reduced neural activity in both orexin neurons and in pPVN cells in stressed females 

by day 5 of restraint (Figure 5B and C), decreased plasma ACTH concentrations by day 5 of 

restraint compared with day 1 (Figure 5D) and eliminated the heightened basal plasma 

corticosterone concentrations in stressed females by day 5 of restraint (Figure 5E). This 

augmented basal corticosterone on day 5 was also abolished through use of a second approach 

to reduce orexin activity, ip administration of the orexin 1 receptor antagonist SB334867 prior to 

each daily restraint. To summarize, inhibiting orexin action during repeated restraint was sufficient 

to induce habituation to repeated restraint in females and to lower their heightened baseline 

glucocorticoid release. Moreover, inhibiting orexin neurons throughout restraint reduced the trials 

to criterion, time to criterion, and number of omissions in the side reversal task in stressed females 

(Figure 5F and 5G). Thus, inhibition of orexins throughout repeated restraint ultimately improved 

cognitive flexibility in females. 

 

Discussion 

 Inability to adapt to repeated stress, including an impaired habituation to familiar non-life-

threatening stressors and disruptions in cognitive functions are common in illnesses such as 

depression and PTSD (5, 7). For the first time, a detailed examination of sex differences in the 

ability to habituate to stress and in subsequent cognitive flexibility revealed that female rats 

exhibited reduced habituation and enhanced baseline glucocorticoid concentrations after 5 days 

of restraint, a moderately intense and primarily cognitive stressor (24). Furthermore, female rats 

exhibited disruptions in cognitive flexibility after stress whereas cognitive flexibility improved in 

male rats after stress. To determine the mechanisms that contribute to these sex differences, 

we examined the neuropeptides orexins, since orexins have been shown to contribute to both 

the HPA response and cognitive function (10, 11, 25, 26). We discovered that nonstressed 

female rats had higher prepro-orexin expression, activation of orexin neurons, and higher orexin 
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levels in the cerebrospinal fluid compared with male rats. We then determined that GR acts on 

the prepro-orexin promoter to increase prepro-orexin mRNA. Using both inhibitory DREADDs 

specifically targeted to orexin neurons and pharmacological approaches to inhibit orexin 

receptors, we determined that the enhanced orexins produce both the impaired habituation to 

restraint and subsequent cognitive deficits in females. These results suggest that orexins are 

important mediators of sex differences in the response to repeated stress and subsequent 

cognitive function, providing important insights in both the etiology and treatment of psychiatric 

diseases. 

 

Sex differences in habituation to stress  

 Though it is well established that female rats have a higher HPA response to acute 

stressors than male rats (27), fewer studies have examined sex differences in adaptations to 

repeated stress such as habituation. Through behavioral, neuronal, and endocrine measures, the 

results suggest that females do not habituate as fully as males to 5 consecutive days of 30-minute 

restraint.  This does not preclude the possibility that females may habituate similarly to males with 

further exposure to the same stressor.  While other studies from our lab have found that females 

still do not display habituation at 8 consecutive days of 30-min restraint (28), a recent study found 

that 10 days of 30-min restraint produced habituation in both sexes (29).  However, by examining 

this point in time when sex differences in the stress response do occur, we are able to study the 

neurobiology underlying the increased sensitivity to stress displayed by females, shedding light 

on gender biased stress-related illness. 

   

Sex differences in cognitive function after stress      

 In humans, stressful life events impair cognitive function, precipitating or exacerbating 

many psychiatric disorders (30). Aspects of executive functioning in humans can be assessed 

using the Wisconsin Card Sorting Task, a demonstration of cognitive flexibility (31). Stress impairs 



Grafe, L. 

 12 

cognitive flexibility using analogous tests in rodents including the attentional set shifting task and 

the operant strategy shifting task used here (13).  However, there has been limited research 

directly examining sex differences in these paradigms (13, 32). Our results are the first to 

demonstrate that repeated stress leads to sex-specific deficits in cognitive flexibility in rats.  

Females performed worse on both the side reversal and light discrimination tasks after stress, as 

indicated by an increased number of trials to criterion, perseverative errors, and omissions.  In 

contrast, repeated restraint improved male performance in the side reversal task. Perseveration 

is observed in stress-related psychiatric disorders such as PTSD, and impairs the ability of one 

to learn a new set of rules, ultimately impairing working memory (7). Omissions in attention tasks 

have also been noted in patients with PTSD, indicating slower cortical processing (7).  As 

cognitive inflexibility is a prominent phenotype in stress-related psychiatric disorders, the results 

suggest that females may be more vulnerable to this type of cognitive impairment after repeated 

stress compared with males. 

 

Sex differences in orexin expression are produced by actions of GRs    

As orexins are known to contribute to both the stress response and cognitive function, it was 

possible that these neuropeptides could explain the sex differences we observed.  Sex differences 

in prepro-orexin mRNA have been noted in Wistar Rats (12).  We replicated and extended these 

initial findings, demonstrating that female Sprague Dawley rats not only exhibit higher baseline 

levels of prepro-orexin mRNA, but additionally display higher activation of orexin neurons and 

increased orexinA concentrations in the cerebrospinal fluid compared with male rats. While other 

studies indicate that female rats display higher prepro-orexin mRNA during proestrus (33, 34), a 

study that ovariectomized females showed no reduction in prepro-orexin mRNA, further 

suggesting that this sex difference is not mediated by female gonadal hormones (35). However, 

both the paucity and equivocal nature of this literature leaves the contribution of female gonadal 

hormones in regulating prepro-orexin expression unclear.  
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We next examined possible mechanisms responsible for higher orexin expression and 

activation in females. We hypothesized that transcription factors more prevalent or active in 

females may bind to the orexin promoter and cause upregulation of orexin expression.  A 

transcription factor binding prediction program revealed that the consensus sequence for the 

GR may bind to the orexin promoter. Using chromatin immunoprecipitation, we found GR to be 

more highly enriched at the orexin promoter in females compared with males. GR expression 

was inhibited in the LH of female rats using siRNA and this inhibition did indeed produce a 

decrease in prepro-orexin expression suggesting that GR is responsible for the upregulation of 

prepro-orexin in females. These data suggest that the GRs directly on the orexin promoter 

increase prepro-orexin expression in females, providing a novel regulatory mechanism for the 

control of orexin system activity.  

Our studies focused on baseline changes in orexin regulation of habituation and 

cognitive function and did not characterize relationship between orexins and GRs in stressed 

animals. It is possible that this relationship is different than in control animals. The activation of 

the GR changes with stress which could obscure our understanding of the relationship between 

glucocorticoids and orexins under basal conditions, as investigated here. Future studies are 

necessary to delineate the relationship between orexins and glucocorticoids throughout 

repeated stress.   

 

Inhibiting orexins rescues habituation to stress and cognitive flexibility in females  

 We next examined the role of orexins in regulating the sex differences that we observed 

in habituation to stress and subsequent cognitive function.  We found that inhibiting orexin 

neurons prior to each restraint using hM4D-orexins reduced pPVN activation, integrated ACTH 

levels and basal corticosterone concentrations at day 5 of restraint.  This reduction of basal 

corticosterone levels by day 5 of restraint was also induced by pharmacological means through 

administration of the orexin 1 receptor antagonist SB334867, indicating that the orexin 1 receptor 
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is responsible for higher basal corticosterone in females after repeated restraint. Thus, these data 

suggest that the relationship between glucocorticoids and orexins is bidirectional: not only can 

GR increase central orexin expression, but decreasing orexin action lowers basal glucocorticoid 

levels. Further, these results suggest a novel mechanism for regulation of basal glucocorticoid 

release. This is important because basal glucocorticoids are higher in patients with depression 

(36). Thus, if orexins contribute to an increase in basal glucocorticoids, inhibiting these 

neuropeptides may aid in treatment of certain aspects of this neuropsychiatric disorder. By 

extension, understanding how orexins regulate basal glucocorticoids may also inform aspects of 

disorders where basal glucocorticoids are low, such as in PTSD (37). 

 We then examined whether inhibiting orexins throughout repeated restraint impacted 

subsequent cognitive flexibility. We found that inhibiting orexin neurons prior to each restraint with 

hM4D-orexins reduced subsequent cognitive impairments in strategy shifting in stressed females. 

Specifically, inhibiting orexin neurons markedly reduced the number of trials to criterion, the 

number of omissions, and the time it took to complete the side reversal task. Overall, these results 

indicate that orexins actions during repeated stress are important for the subsequent impairments 

in strategy shifting in female rats.  

 

Conclusions and Future Directions  

 The present studies demonstrated that elevated expression and activation of orexin 

neurons in female rats, due in part to GR actions at the prepro-orexin promoter, underlies their 

inability to habituate to repeated stress. Furthermore, orexins are involved in behavioral 

consequences of stress, contributing significantly to stress-induced impairment in cognitive 

flexibility in females. Together, these results demonstrate that orexins are novel regulators of sex 

differences in neural, behavioral and neuroendocrine adaptations to repeated stress and in the 

cognitive consequences of repeated stress exposure. The results suggest that orexins could be 
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important in the etiology of those stress-related psychiatric disorders that present differently in 

men and women.  
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Figure Legends 

 

Figure 1.  Habituation is diminished in female compared to male rats.  

Panel A. Top: Repeated restraint paradigm. Bottom: Time spent struggling while in the restrainer 

is quantified. Males reduce cumulative duration of movement to 46% of day 1 by day 5, whereas 

females only reduce to 69% of day 1 by day 5. Females display significantly higher struggle 

behavior on both day 1 and 5 compared with males. (Sex effect, F(1,24) = 36.7, p<0.0001; Stress 

effect, F(1,24) = 17.5, p<0.001; two-way ANOVA followed by Tukey’s t-test; n = 8/group) Panel 

B. pPVN activation in control, 1 day restrained, and 5 days repeatedly restrained male and female 

rats. Representative images of cFos staining, with dotted lines outlining the pPVN. While day 1 of 

restraint induces significant cFos staining in both males and females, males have significantly 

lower cFos activation by day 5, whereas pPVN neurons remain activated in females on day 5. 

(Stress effect, F(2,28) = 7.1, p<0.01; Interaction trend, F(2,28) = 3.1, p = 0.06; two-way ANOVA 

followed by Tukey’s t-test; n = 8/group) Panel C. Integrated plasma ACTH and corticosterone on 

day 1 and 5 of restraint in male and female rats. Both plasma ACTH and corticosterone decrease 

by day 5 compared with day 1 of restraint in males, but not in females. Regardless of stress, 

plasma corticosterone levels are significantly higher in females compared with males.  (ACTH: 

Stress effect, F(1,17) = 5.9, p<0.05; Cort: Sex effect, F(1,18) = 20.0, p<0.001; two-way ANOVA 

followed by Tukey’s t-test). Basal corticosterone (0 minute time point) is significantly higher in 

females on day 1 of restraint compared with males on day 1. Moreover, females display higher 

basal corticosterone on day 5 of restraint compared with day 1, whereas males do not (Sex effect, 

F(1,39) = 25.6, p<0.001; Stress effect, F(1,39) = 9.2, p<0.01; Interaction effect, F(1,39) = 11.5, 

p<0.01; two-way ANOVA followed by Tukey’s t-test; n = 8/group). *P<0.05, **P<0.01, ***P<0.001 

 

 

Figure 2.  Repeated stress impairs cognitive flexibility and cortical activation in females. 



Grafe, L. 

 23 

Panel A. Schematic illustrating the operant set shifting paradigm training days. § Adapted from 

Behavioural Brain Research, Volume 190 (Issue 1). Floresco SB, Block AE, and Tse M. 

“Inactivation of the medial prefrontal cortex of the rat impairs strategy set-shifting, but not reversal 

learning, using a novel, automated procedure”, p85-96, 2008, with permission from Elsevier. 

Panel B. Trials to criterion for each task on test day.  In the side reversal task, stress improved 

performance in males but impaired performance in females (Stress effect, F(1,23) = 6.0, p<0.05; 

Interaction effect, F(1,23) = 31.7, p<0.0001; two-way ANOVA followed by Tukey’s t-test). In the 

light discrimination task, stress impaired performance in females while it did not affect males 

(Stress trend, (F(1,25) = 2.8, p = 0.1); two-way ANOVA followed by Tukey’s t-test; n = 12/group). 

Panel C. Number of errors for each task on test day. Stress decreases errors made in males but 

increases errors made in females in both the side reversal and light discrimination tasks (Side 

Reversal: Interaction effect, F(1,28) = 6.5, p<0.05; Light Discrimination: Interaction trend, F (1,28) 

= 3.4, p = 0.08; two-way ANOVA followed by Tukey’s t-test). Panel D. Perseverative and 

regressive error characterization. Stress decreases perseverative errors made in males but 

increases perseverative errors made in females in both the side reversal and light discrimination 

tasks (Side Reversal: Interaction effect, F (1,26) = 6.7, p<0.05; Light Discrimination: Stress effect, 

(F (1,26) = 5.3, p<0.05; two-way ANOVA followed by Tukey’s t-test). Panel E. Time to criterion 

and % trials omitted in the side reversal task. Stress decreases the time it takes males but 

increases the time required by females to complete the task. This may be explained by increased 

number of omissions exhibited by females after stress (Time: Interaction effect, F (1,28) = 7.8, 

p<0.01; two-way ANOVA followed by Tukey’s t-test). #P≤0.10, *P<0.05, ****P<0.0001 

 

 

 

Figure 3. Females have higher orexin expression and activation than males.  
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Panel A. Representative photomicrographs of in situ radiolabeling for prepro-orexin mRNA in the 

LH in control male and female rats.  Dark black grains indicate prepro-orexin expression. Control 

females express significantly more prepro-orexin mRNA than control males (p<0.05; t-test; n = 

8/group).  Panel B. Orexin neural activation in control, 1 day restrained, and 5 days repeatedly 

restrained male and female rats. Representative 10x images of an orexin/cFos dual stain in the 

LH in control male and female rats. ƒ denotes the fornix. The box with dashed lines in the 

representative control female image is displayed at 40x. Orexin neurons can be visualized by red 

cytoplasmic stains (NovaRed reaction, Δ symbol) and cFos can be visualized with black nuclear 

stains (Nickel DAB reaction). The arrow denotes a dual cFos and orexin labeled cell. Control 

females have significantly more activated orexin neurons than males. While day 1 of restraint 

induces significant activation of orexin neurons, orexin activation returns to its respective baseline 

by day 5 of restraint in both sexes. However, orexin neural activation in females is still significantly 

higher than males after repeated restraint. (Stress effect, F(2,97) = 36.5, p<0.0001; Sex effect, 

F(1,97) = 21.0, p<0.0001; Interaction effect, F(2,97) =8.7, p<0.001; two-way ANOVA followed by 

Tukey’s t-test; n = 8/group).  Panel C. Cerebrospinal fluid was collected from the cisterna magna 

and assayed for Orexin A. Females have significantly higher levels of Orexin A in the 

cerebrospinal fluid than males (p<0.05; t-test; n = 12/group). *P<0.05, **P<0.01, ***P<0.001, 

****P<0.0001 

 

Figure 4. GR is highly enriched at the orexin promoter in females compared to males. 

Panel A. A representative image of dual staining for both orexin (green, Δ symbol) and GR (red, 

arrow symbol) reveals that most orexin neurons express GR (colabeling in yellow). Specifically, 

colocalization analysis revealed that roughly 80% of orexin neurons express GR. Panel B. ChIP 

and qPCR quantified GR bound to the orexin promoter in control male and female rats.  At HCRT 

primer set 1, 5, and 6, control females were more highly enriched with the GR compared with 

control males (Primer set 1: p = 0.10; Primer Set 5: p = 0.10; Primer Set 6: p<0.05; t-test; n = 
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8/group). Panel C. Representative images of dual stain for orexin neurons and GR in control 

females (left) and females injected with siRNA directed against the GR (right). GR siRNA reduced 

visible GR staining in the LH. Additionally, GR siRNA significantly reduced GR expression in the 

LH as measured by qPCR (p<0.001; t-test; n = 6/group). Panel D. In situ radiolabeling of prepro-

orexin mRNA in control females and females injected with siRNA directed against the GR. 

Representative images of prepro-orexin expression (top) and quantification of the dark black 

grains (bottom).  siRNA directed against the GR injected into the LH decreases prepro-orexin 

mRNA expression in females compared with controls (p<0.05; t-test; n = 8/group). #P≤0.10, 

*P<0.05, ***P<0.001 

 

Figure 5.  Inhibiting orexin neurons throughout repeated restraint promotes habituation 

and reduces baseline HPA activity and subsequent cognitive impairment in female rats.  

Panel A. Representative images displaying viral expression of DREADDs in the LH at 4 weeks. 

A composite image displaying the spread of viral expression along the LH is depicted using rat 

brain atlas images (Paxinos and Watson, 1998). Each red dot represents a cell expressing the 

viral tag. A timeline of the experimental paradigm is pictured below. Panel B. Representative 

images of dual cfos/orexin staining in the LH in repeatedly restrained female rats.  CNO treated 

females (orexins inhibited prior to each restraint) exhibited significantly less activation in orexin 

neurons compared with vehicle treated females (p<0.05, t-test, n = 8/group). Panel C. 

Representative images of cFos staining in the pPVN in repeatedly restrained female rats. CNO 

treated females (orexins inhibited prior to each restraint) exhibited significantly less activation in 

the pPVN compared with vehicle treated females. (p<0.05; t-test; n = 8/group). Panel D. 

Integrated plasma ACTH and corticosterone responses to Day 1 and Day 5 of restraint. CNO 

treated females exhibited significantly lower plasma ACTH by day 5 of restraint (Stress effect, 

F(1,13) = 5.3, p<0.05; two-way ANOVA followed by Tukey’s t-test). Panel E. Basal plasma 

corticosterone levels on day 5 in repeatedly restrained females. CNO treated females exhibited 
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significantly lower basal plasma corticosterone levels on day 5 of restraint (p<0.01; t-test).  

Treatment with orexin receptor antagonist SB334867 also significantly reduced basal 

corticosterone levels by day 5 of restraint (p<0.05; t-test; n = 8/group). Panel F. Trials to criterion 

in repeatedly restrained females. CNO treated females exhibited a reduced number of trials to 

criterion in the side reversal task. (p<0.05; t-test; n = 8/group). Panel G. Time to criterion and 

percent trials omitted in the side reversal task in repeatedly restrained females. CNO treated 

females exhibited both reduced time and reduced percent trials omitted in the side reversal task 

(Time: p=0.10, Omissions: p<0.01; t-test). #P≤0.10, *P<0.05, **P<0.01 
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