
Bryn Mawr College Bryn Mawr College

Scholarship, Research, and Creative Work at Bryn Mawr College Scholarship, Research, and Creative Work at Bryn Mawr College

Computer Science Faculty Research and
Scholarship Computer Science

6-2017

Levity Polymorphism Levity Polymorphism

Richard A. Eisenberg
Bryn Mawr College, rae@cs.brynmawr.edu

Simon Peyton Jones
Microsoft Research, Cambridge, simonpj@microsoft.com

Follow this and additional works at: https://repository.brynmawr.edu/compsci_pubs

 Part of the Programming Languages and Compilers Commons

Let us know how access to this document benefits you.

Citation Citation
R.A. Eisenberg and S. Peyton Jones 2017. "Levity Polymorphism." Proceeding PLDI 2017 Proceedings of
the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation: 525-539.

This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College.
https://repository.brynmawr.edu/compsci_pubs/69

For more information, please contact repository@brynmawr.edu.

https://repository.brynmawr.edu/
https://repository.brynmawr.edu/compsci_pubs
https://repository.brynmawr.edu/compsci_pubs
https://repository.brynmawr.edu/compsci
https://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/open-access-feedback.html
https://repository.brynmawr.edu/compsci_pubs/69
mailto:repository@brynmawr.edu

Levity Polymorphism

Richard A. Eisenberg
Bryn Mawr College, Bryn Mawr, PA, USA

rae@cs.brynmawr.edu

Simon Peyton Jones
Microsoft Research, Cambridge, UK

simonpj@microsoft.com

Abstract
Parametric polymorphism is one of the linchpins of modern
typed programming, but it comes with a real performance
penalty. We describe this penalty; offer a principled way to
reason about it (kinds as calling conventions); and propose
levity polymorphism. This new form of polymorphism allows
abstractions over calling conventions; we detail and verify
restrictions that are necessary in order to compile levity-
polymorphic functions. Levity polymorphism has created
new opportunities in Haskell, including the ability to general-
ize nearly half of the type classes in GHC’s standard library.

CCS Concepts •Software and its engineering → Poly-
morphism; Compilers; Functional languages

Keywords unboxed types, compilation, polymorphism

1. The Cost of Polymorphism
Consider the following Haskell function:

bTwice :: ∀ a. Bool → a→ (a→ a)→ a
bTwice b x f = case b of True → f (f x)

False → x

The function is polymorphic1 in a; that is, the same function
works regardless of the type of x , provided f and x are
compatible. When we say “the same function” we usually
mean “the same compiled code for bTwice works for any
type of argument x”. But the type of x influences the calling
convention, and hence the executable code for bTwice! For
example, if x were a list, it would be passed in a register
pointing into the heap; if it were a double-precision float, it
would be passed in a special floating-point register; and so
on. Thus, sharing code conflicts with polymorphism.

A simple and widely-used solution is this: represent every
value uniformly, as a pointer to a heap-allocated object. That

1 We use the term polymorphism to refer to parametric polymorphism only.

[Copyright notice will appear here once ’preprint’ option is removed.]

solves the problem, but it is terribly slow (Section 2.1). Thus
motivated, most polymorphic languages also support some
form of unboxed values that are represented not by a pointer
but by the value itself. For example, the Glasgow Haskell
Compiler (GHC), a state of the art optimizing compiler for
Haskell, has supported unboxed values for decades.

But unboxed values come at the price of convenience
and re-use (Section 3). In this paper we describe an elegant
new approach to reconciling high performance code with
pervasive polymorphism. Our contributions are these:

• We present (Section 4) a principled way to reason about
compiling polymorphic functions and datatypes. Types
are categorized into kinds, where each kind describes the
memory layout of its types. Thus the kind determines the
calling convention of functions over its types.
• Having a principled way to describe memory layout and

calling convention, we go one step further and embrace
levity polymorphism, allowing functions to be abstracted
over choices of memory layout provided that they never
move or store data with an abstract representation (Section
5). We believe we are the first to describe and implement
levity polymorphism.
• It is tricky to be sure precisely when levity polymorphism

is permissible. We give a formal proof that our rules
guarantee that levity-polymorphic functions can indeed be
compiled into concrete code (Section 6). Along the way,
we were surprised to be unable to find any prior literature
proving that the widespread technique of compiling via A-
normal form [7] is semantics-preserving. A key part of that
proof (unrelated to levity polymorphism) is challenging,
and we leave it as an open problem (Section 6.4).
• With levity polymorphism in hand, new possibilities open

up—including the ability to write an informative kind
for (→) and to overload operations over both boxed and
unboxed types. We explore these in Section 7.

We are not the first to use kinds in this way (see Section 9),
but we take the idea much further than any other compiler we
know, with happy consequences. Levity polymorphism does
not make code go faster; rather, it makes highly-performant
code more convenient to write and more re-usable. Levity
polymorphism is implemented in GHC 8.0.1.

1 2017/4/14

2. Background: Performance through
Unboxed Types

We begin by describing the performance challenges that our
paper tackles. We use the language Haskell2 and the compiler
GHC as a concrete setting for this discussion, but many of
our observations apply equally to other languages supporting
polymorphism. We discuss other languages and compilers in
Section 9.

2.1 Unboxed Values
Consider this loop, which computes the sum of the integers
1 . . n:

sumTo :: Int → Int → Int
sumTo acc 0 = acc
sumTo acc n = sumTo (acc + n) (n − 1)

GHC represents values of type Int as a pointer to a two-word
heap-allocated cell; the first word is a descriptor, while the
second has the actual value of the Int. If sumTo used this
representation throughout, it would be unbearably slow. Each
iteration would evaluate its second argument,3 follow the
pointer to get the value, and test it against zero; in the non-
zero case it would allocate thunks for (acc + n) and (n − 1),
and then iterate. In contrast, a C compiler would use a three-
machine-instruction loop, with no memory traffic whatsoever.
The performance difference is enormous. For this loop, on a
typical machine 10,000,000 iterations executes in less than
0.01s when using unboxed Ints, but takes more 2s when using
boxed integers.

For performance-critical code, GHC therefore allows
the programmer to write code over explicitly-unboxed val-
ues [20]. For example, GHC provides a built-in data type
Int# of unboxed integers [20], represented not by a pointer
but by the integer itself. Now we can rewrite sumTo like this4

sumTo# :: Int# → Int# → Int#

sumTo# acc 0# = acc
sumTo# acc n = sumTo# (acc +# n) (n −# 1#)

We had to use different arithmetic operations and literals, but
apart from that the source code looks just the same. But the
compiled code is very different; we get essentially the same
code as if we had written it in C.

GHC’s strictness analyzer and other optimizations can of-
ten transform sumTo into sumTo#. But it cannot guarantee
to do so, so performance-conscious programmers often pro-
gram with unboxed values directly. As well as Int#, GHC
provides a range of other unboxed types, such as Char#, and
Double#, together with primitive operations that operate on

2 GHC extends Haskell in many ways to better support high-performance
code, so when we say “Haskell” we will always mean “GHC Haskell”.
3 Haskell is a lazy language, so the second argument might not be evaluated.
4 The suffix “#” does not imply any special treatment by the compiler; it is
simply a naming convention that suggests to the reader that there may be
some use of unboxed values going on.

Boxed Unboxed

Lifted
Int
Bool

Unlifted ByteArray#
Int#

Char#

Figure 1. Boxity and levity, with examples

them. Given these unboxed values, the boxed versions can be
defined in Haskell itself; GHC does not treat them specially.
For example:

data Int = I# Int#

plusInt :: Int → Int → Int
plusInt (I# i1) (I# i2) = I# (i1 +# i2)

Here Int is an ordinary algebraic data type, with one data
constructor I#, that has one field of type Int#. The function
plusInt simply pattern matches on its arguments, fetches their
contents (i1 and i2, both of type Int#), adds them using (+#),
and boxes the result with I#.

2.2 Boxed vs. Unboxed and Lifted vs. Unlifted
In general, a boxed value is represented by a pointer into the
heap, while an unboxed value is represented by the value
itself. It follows that an unboxed value cannot be a thunk;
arguments of unboxed type can only be passed by value.

Haskell also requires consideration of levity—that is, the
choice between lifted and unlifted. A lifted type is one that is
lazy. It is considered lifted because it has one extra element
beyond the usual ones, representing a non-terminating com-
putation. For example, Haskell’s Bool type is lifted, meaning
that three Bools are possible: True, False, and⊥. An unlifted
type, on the other hand, is strict. The element⊥ does not exist
in an unlifted type.

Because Haskell represents lazy computation as a heap-
allocated thunk, all lifted types must also be boxed. However,
it is possible to have boxed, unlifted types. Figure 1 summa-
rizes the relationship between boxity and levity, providing
examples of the three possible points in the space.

2.3 Unboxed Tuples
Along with the unboxed primitive types (such as Int# and
Double#), Haskell has support for unboxed tuples. A normal,
boxed tuple—of type, say, (Int,Bool)—is represented by a
heap-allocated vector of pointers to the elements of the tuple.
Accordingly, all elements of a boxed tuple must also be boxed.
Boxed tuples are also lazy, although this aspect of the design
is a free choice.

Originally conceived to support returning multiple values
from a function, an unboxed tuple is merely Haskell syntax
for tying multiple values together. Unboxed tuples do not
exist at runtime, at all. For example, we might have

divMod :: Int → Int → (# Int, Int #)

2 2017/4/14

that returns two integers. A Haskell programmer might use
divMod like this,

case divMod n k of (# quot, rem #)→ ...

using case to unpack the components of a tuple. However,
during compilation, the unboxed tuple is erased completely.
The divMod function is compiled to return two values,
in separate registers, and the case statement is compiled
simply to bind quot and rem to those two values. This is
more efficient than an equivalent version with boxed tuples,
avoiding allocation for the tuple and indirection.

Modern versions of GHC also allow unboxed tuples to
be used as function arguments: (+) :: (# Int, Int #) → Int
compiles to the exact same code as (+) :: Int → Int →
Int; the unboxed tuple is used simply to represent multiple
arguments passed via multiple registers.

An interesting aspect of unboxed tuples, important to
the story in this paper, is that nesting is computationally
irrelevant. That is, while (# Int, (# Float#,Bool #) #) is
a distinct type from (# Int,Float#,Bool #), the two are
identical at runtime; both represent three values to be passed
or returned via three registers.

3. Unboxed Types and Polymorphism
Recall the function bTwice from the introduction:

bTwice :: ∀ a. Bool → a→ (a→ a)→ a
bTwice b x f = case b of True → f (f x)

False → x

Like many other compilers for a polymorphic language, GHC
assumes that a value of polymorphic type, such as x :: a,
is represented uniformly by a heap pointer. So we cannot
call bTwice with x :: Int# or x :: Float#, or indeed with
x :: (# Int, Int #). Actually, bTwice cannot even be used on
a boxed unlifted value, such as a ByteArray#. Why not?
Because if a is unlifted the call (f (f x)) should be compiled
using call-by-value, whereas if a is a lifted type the call should
to be compiled with call-by-need.

GHC therefore adopts the following principle:

• The Instantiation Principle. You cannot instantiate a
polymorphic type variable with an unlifted type.

That is tiresome for programmers, but in return they get solid
performance guarantees. (An alternative would be some kind
of auto-specialization, as we discuss in Section 9.) However,
adopting the instantiation principle turns out to be much less
straightforward than it sounds, as we elaborate in the rest of
this section. These are the challenges that we solve in the rest
of the paper.

These same complications would arise in a strict language,
where polymorphism would still have to operate over types
with a shared representation. The Instantiation Principle in a
strict language would replace “unlifted” with “unboxed”, but
much of what follows would be unchanged.

3.1 Kinds
How can the compiler implement the Instantiation Principle?
For example, how does it even know if a type is unlifted?

Haskell classifies types by kinds, much the same way that
terms are classified by types. For example,5 Bool :: Type,
Maybe :: Type → Type, and Maybe Bool :: Type. So it is
natural to use the kind to classify types into the lifted and
unlifted forms, thus Int# :: #, Float# :: #, where “#” is a
new kind that classifies unlifted types.6

In contrast, Type classifies lifted types and, because of
laziness, a value of lifted type must be represented uniformly
by a pointer into the heap. So the Instantiation Principle
can be refined to this: all polymorphic type variables have
kind Type. For example, here is bTwice with an explicitly-
specified kind:

bTwice :: ∀ (a :: Type). Bool → a→ (a→ a)→ a

Now if we attempt to instantiate it at type Float# :: #, we
will get a kind error because Type and # are different kinds.

3.2 Sub-kinding
Haskell has a rich language of types. Of particular interest is
that the function arrow (→) is just a binary type constructor
with kind

(→) :: Type → Type → Type

But now we have a serious problem: a function over
unlifted types, such as sumTo# :: Int# → Int# → Int#,
becomes ill-kinded! Why? Because (→) expects a Type, but
Int# :: #. This problem has dogged GHC ever since the
introduction of unboxed values. For many years its “solution”
was to support a sub-kinding relation, depicted here:

OpenKind

Type #

That is, GHC had a kind OpenKind , a super-kind of both
Type and #. We could then say that

(→) :: OpenKind → OpenKind → Type

To avoid the inevitable complications of sub-kinding and kind
inference, GHC also stipulated that only fully-saturated uses
of (→) would have this bizarre kind; partially applied uses
of (→) would get the far saner kind Type → Type → Type
as we have seen above.

Haskellers paid for this sleight-of-hand, of course:

5 The Haskell Report [15] uses the symbol “?” as the kind of ordinary types,
but the community seems to be coalescing around this new spelling of Type,
which is available in GHC 8. We use Type rather than “?” throughout this
paper.
6 Do not be distracted by the inconsistent notation here; “#” really is what
GHC used in the past, but the rest of the paper shows a more uniform way
forward.

3 2017/4/14

• Keen students of type theory would, with regularity, crop
up on the mailing lists and wonder why, when we can see
that (→) :: Type → Type → Type, GHC accepts types
like Int# → Double#.
• It is well known that the combination of (a) type inference,

(b) polymorphism, and (c) sub-typing, is problematic.
And indeed GHC’s implementation of type inference
was riddled with awkward and unprincipled special cases
caused by sub-kinding.
• The kind OpenKind would embarrassingly appear in error

messages.
• The introduction of kind polymorphism [2, 31] made this

situation worse, and the subsequent introduction of kind
equalities [30] made it untenable.

All in all, the sub-kinding solution was never satisfactory and
was screaming to us to find something better.

3.3 Functions that Diverge
Consider this function

f :: Int# → Int#

f n = if n <# 0# then error "Negative argument"
else n /# 2#

Here error :: ∀ a. String → a prints the string and halts
execution.7 Under the Instantiation Principle, this call to error
should be rejected, because we are instantiating a with Int#.
But in this case, it is OK to break the Instantiation Principle!
Why? Because error never manipulates any values of type
a—it simply halts execution. It is tiresome for a legitimate
use of error to be rejected in this way, so GHC has given
error a magical type

∀ (a :: OpenKind). String → a

Now, using the sub-kinding mechanism described above, the
call can be accepted. Alas, the magic is fragile. If the user
writes a variant of error like this:

myError :: String → a
myError s = error ("Program error " ++ s)

then GHC infers the type ∀ (a :: Type). String → a, and the
magic is lost.

4. Key Idea: Polymorphism, not Sub-kinding
We can now present the main idea of the paper: replace sub-
kinding with kind polymorphism. As we shall see, this simple
idea not only deals neatly with the awkward difficulties out-
lined above, but it also opens up new and unexpected oppor-
tunities (Section 7). Using polymorphism as a replacement
for a sub-typing system is not a new idea; for example see
Finne et al. [6], where Section 5 is entitled “Polymorphism
expresses single inheritance”. However, even starting down
this road required the rich kinds that have only recently been

7 More precisely, it throws an exception.

added to GHC [30, 31]; this new approach would not have
been easily implementable earlier.

4.1 Runtime-representation Polymorphism
Here is the design, as implemented in GHC 8.2.1. We intro-
duce a new, primitive type-level constant, TYPE

TYPE :: Rep → Type

with the following supporting definitions:

data Rep = LiftedRep -- Boxed, lifted
| UnliftedRep -- Boxed, unlifted
| IntRep -- Unboxed ints
| FloatRep -- Unboxed floats
| DoubleRep -- Unboxed doubles
| TupleRep [Rep] -- Unboxed tuples
| . . . etc . . .

type Type = TYPE LiftedRep

Rep is a type that describes the runtime representation of
values of a type. Type, the kind that classifies the types of
values, was previously treated as primitive, but now becomes
a synonym for TYPE LiftedRep. It is easiest to see how
these definitions work using examples:

Int :: Type
Int :: TYPE LiftedRep -- Expanding Type
Int# :: TYPE IntRep
Float# :: TYPE FloatRep
(Int,Bool) :: Type
Maybe Int :: Type
Maybe :: Type → Type

Any type that classifies values, whether boxed or unboxed,
lifted or unlifted, has kind TYPE r for some r :: Rep.
The type Rep specifies how a value of that type is repre-
sented. Such representations include: a heap pointer to a
lifted value (LiftedRep); a heap pointer to an unlifted value
(UnliftedRep); an unboxed fixed-precision integer value
(IntRep); an unboxed floating-point value (FloatRep), and so
on. Where we have multiple possible precisions we have mul-
tiple constructors in Rep; for example we have DoubleRep
as well as FloatRep.

The type Rep is not magic: it is a perfectly ordinary
algebraic data type, promoted to the kind level by GHC’s
DataKinds extension [31]. Similarly, Type is just an ordinary
type synonym. Only TYPE is primitive in this design. It is
from these definitions that we claim that a kind dictates a
type’s representation, and hence its calling convention. For
example, Int and Bool have the same kind, and hence use
the same calling convention. But Int# belongs to a different
kind, using a different calling convention.

There are, naturally, several subtleties, addressed in the
subsections below.

4 2017/4/14

4.2 Representing Unboxed Tuples
Unboxed tuples pose a challenge for our approach because an
unboxed tuple value is stored in multiple registers or memory
locations. We thus allow the TupleRep constructor to take a
list of constituent Reps, indicating the representations of the
components of the unboxed tuples. For example:

(# Int,Bool #) :: TYPE (TupleRep ’[LiftedRep
, LiftedRep])

(# Int#,Bool #) :: TYPE (TupleRep ’[IntRep
, LiftedRep])

(# #) :: TYPE (TupleRep ’[])

Values of the first kind are represented by two pointer register;
of the second by an integer register and a pointer register.
Values of the third kind are represented by nothing at all.

This design actually allows slightly less polymorphism
than we could, because the ultimate representation of un-
boxed tuples ignores nesting. For example, the following two
types both have the same representation:

(# Int, (# Bool ,Double #) #)

(# (# Char , String #), Int #)

Both are represented by three garbage-collected pointers,
yet they have different kinds in our design. Accordingly, no
function could be polymorphic in a variable that might take
on either of those two types. We considered collapsing this
structure, but we found that it was tricky to do in practice—
for example, it complicated the equational theory of kinds.8

Moreover, we had no compelling use-cases, so we adopted
the simpler design described here.

4.3 Levity Polymorphism
We can now give proper types to (→) and error :

(→) :: ∀ (r1 :: Rep) (r2 :: Rep).

TYPE r1 → TYPE r2 → Type
error :: ∀ (r :: Rep) (a :: TYPE r). String → a

These types are polymorphic in r :: Rep. We call such
abstraction “levity polymorphism”, a name owing to its birth
as an abstraction over only the levity (lifted vs. unlifted)
of a type. It might now properly be called representation
polymorphism, but we prefer the original terminology as
briefer and more recognizable—that is, easier to search for
on a search engine.

Levity polymorphism adds new, and useful, expressive-
ness to the language (Section 7), but it needs careful handling
as we discuss in Section 5. But note that levity polymorphism
does not improve the performance of any compiled code; it
simply serves to make a compiled function applicable to a
wider range of argument types. The compiled code, however,
remains the same as it always was.

8 See https://mail.haskell.org/pipermail/ghc-devs/
2017-March/014007.html

4.4 The Kind of TYPE

Above, we gave the type of TYPE as Rep → Type. That
looks suspicious because Type is short for TYPE LiftedRep,
so the kind of TYPE involves TYPE . Is that OK?

Yes it is. Unlike other dependently typed languages, GHC
does not stratify the universes of types, and instead supports
the axiom Type :: Type [30]. While this choice of design
makes the language inconsistent when viewed as a logic,
it does not imperil type safety. The type safety point is
addressed in other work [4, 30]; we do not revisit it here.

You might also wonder whether why TYPE returns a
TYPE LiftedRep. Why not return TYPE ’[IntRep], or one
of the other possibilities? What does it even mean to talk of
the representation of a type?

We choose TYPE :: Rep → Type because it supports
a future extension to a full-spectrum dependently-typed
language in which types are first-class values and can be
passed at runtime. What would it mean to pass a type at
runtime? Presumably it would mean passing a pointer to a
heap-allocated syntax tree describing the type; so Type would
be the appropriate return kind.

5. Taming Levity Polymorphism
In its full glory, levity polymorphism is un-compilable, at
least not without runtime code generation. Let us return to
our initial example of bTwice. Would this work?

bTwice :: ∀ (r :: Rep) (a :: TYPE r).

Bool → a→ (a→ a)→ a

Sadly, no. We cannot compile a levity-polymorphic bTwice
into concrete machine code, because its calling convention
depends on r.

One possibility is to generate specialized versions of
bTwice, perhaps at runtime. That choice comes with signif-
icant engineering challenges, albeit less so in a JIT-based
system (see Section 9.3). Here we explore the alternative:
how to restrict the use of levity polymorphism so that it can
be compiled.

5.1 Rejecting Un-compilable Levity Polymorphism
The fundamental requirement is this:

Never move or store a levity-polymorphic value. (*)

Note that it is perfectly acceptable for a machine to store
a value of a polymorphic type, as long as it is not levity-
polymorphic. In the implementation of bTwice where a ::
Type, this is precisely what is done. The second argument is
passed in as a pointer, and the result is returned as one. There
is no need to know a concrete type of the data these pointers
refer to. Yet we do need to know the kind of these types, to
fix the calling conventions of the arguments and return value.

We now turn our attention to ensuring that (*) holds, a
property we attain via two restrictions:

5 2017/4/14

https://mail.haskell.org/pipermail/ghc-devs/2017-March/014007.html
https://mail.haskell.org/pipermail/ghc-devs/2017-March/014007.html

1. Disallow levity-polymorphic binders. Every bound term
variable in a Haskell program must have a type whose
kind is fixed and free of any type variables.9 This rule
would be violated had we implemented bTwice with the
type as given in this section: we would have to bind a
variable of type a :: TYPE r .

2. Disallow levity-polymorphic function arguments. Argu-
ments are passed to functions in registers. During compi-
lation, we need to know what size register to use.

These checks can be easily performed after type inference
is complete. Any program that violates these conditions is
rejected. We prove that these checks are sufficient to allow
compilation in Section 6.

5.2 Type Inference and Levity Polymorphism
Phrasing the choice between the concrete instantiations of
TYPE as the choice of a Rep is a boon for GHC’s type
inference mechanism. When GHC is checking an expression
(λx → e), it must decide on a type for x . The algorithm
naturally invents a unification variable10 α. But what kind
does α have? Equipped with levity polymorphism, GHC
invents another unification variable ρ :: Rep and chooses
α :: TYPE ρ. If x is used in a context expecting a lifted type,
then ρ is unified with LiftedRep—all using GHC’s existing
unification machinery. In terms of GHC’s implementation,
this is actually a simplification over the previous sub-kinding
story.

However, we must be careful to enforce the restrictions
of Section 5.1. For example, consider defining f x = x .
What type should we infer for f ? If we simply generalized
over unconstrained unification variables in the usual way, we
would get

f :: ∀ (r :: Rep) (a :: TYPE r). a→ a

but, as we have seen, that is un-compilable because its calling
convention depends on r . We could certainly track all the
places where the restrictions of Section 5.1 apply; but that
is almost everywhere, and results in a great deal of busy-
work in the type inference engine. So instead we never infer
levity polymorphism;11 but we can for the first time check the
declared uses of levity polymorphism. Thus, we can write

9 Care should be taken when reading this sentence. Note that the kind
polymorphism in f :: ∀ k (a :: k). Proxy k → Int is just fine: the kind of
f ’s type is Type! No variables there.
10 Also called an existential variable in the literature. A unification variable
stands for an as-yet-unknown type. In GHC, unification variables contain
mutable cells that are filled with a concrete type when discovered; see [22]
for example.
11 Refusing to generalize over type variables of kind Rep is quite like
Haskell’s existing monomorphism restriction, where certain unconstrained
type variables similarly remain ungeneralized. Both approaches imperil
having principal types. In the case of levity polymorphism, the most general
type for f is un-compilable, so the loss of principal types is inevitable.
However, all is not lost: a program that uses boxed types (as most programs
do) retains principal types within that fragment of the language.

Metavariables:

x Variables α Type variables
n Integer literals r Representation variables

υ ::= P | I Concrete reps.
ρ ::= r | υ Runtime reps.
κ ::= TYPE ρ Kinds
B ::= Int | Int# Base types
τ ::= B | τ1 → τ2 | α | ∀α:κ. τ | ∀r . τ Types
e ::= x | e1 e2 | λx :τ. e | Λα:κ. e | e τ | Λr . e | e ρ | I#[e]
| case e1 of I#[x]→ e2 | n | error Expressions

v ::= λx :τ. e | Λα:κ. v | Λr . v | I#[v] | n Values
Γ ::= ∅ | Γ, x :τ | Γ, α:κ | Γ, r Contexts

Figure 2. The grammar for L

myError :: ∀ (r :: Rep) (a :: TYPE r). String → a
myError s = error ("Program error " ++ s)

to get a levity-polymorphic myError . Alternatively, we can
omit the signature in which case GHC will infer a levity-
monomorphic type thus: any levity variable that in principle
could be generalized is instead defaulted to Type.

Finally, any attempt to declare the above levity-poly-
morphic type signature for f will fail the check described in
Section 5.1.

6. Correctness of Levity Polymorphism
We claim above (Section 5.1) that restricting the use of
levity polymorphism in just two ways means that we can
always compile programs to concrete machine code. Here,
we support this claim by proving that a levity-polymorphic
language with exactly these restrictions is compilable. First,
we define L, a variant of System F [8, 24] that supports levity
polymorphism. Second, we define a lower-level languageM,
a λ-calculus in A-normal form (ANF) [7]. Its operational
semantics works with an explicit stack and heap and is
quite close to how a concrete machine would behave. All
operations must work with data of known, fixed width;M
does not support levity polymorphism. Lastly, we define
type-erasing compilation as a partial function from L to
M. We prove our compilation function correct via two
theorems: that compilation is well-defined whenever the
source L-expression is well-typed and that theM operational
semantics simulates that for L.12

6.1 The L Language
The grammar for L appears in Figure 2. Along with the usual
System F constructs, it supports the base type Int# with lit-
erals n; data constructor I# to form Int; case expressions

12 As we explore in Section 6.4, there is one lemma in this proof that we
assume the correctness of. This lemma would be necessary for any proof that
a compilation to ANF is sound in a lazy language and is not at all unique to
our use of levity polymorphism.

6 2017/4/14

Γ ` e : τ Term validity

x :τ ∈ Γ

Γ ` x : τ
E_VAR

Γ ` e : Int#

Γ ` I#[e] : Int
E_CON

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` τ1 : TYPE υ
Γ ` e1 e2 : τ2

E_APP

Γ, x :τ1 ` e : τ2 Γ ` τ1 : TYPE υ
Γ ` λx :τ1. e : τ1 → τ2

E_LAM

Γ, α:κ ` e : τ Γ ` κ kind
Γ ` Λα:κ. e : ∀α:κ. τ

E_TLAM

Γ ` e : ∀α:κ. τ1 Γ ` τ2 : κ

Γ ` e τ2 : τ1[τ2/α]
E_TAPP

Γ, r ` e : τ

Γ ` Λr . e : ∀r . τ E_RLAM
Γ ` e : ∀r . τ

Γ ` e ρ : τ [ρ/r]
E_RAPP

Γ ` e1 : Int Γ, x :Int# ` e2 : τ

Γ ` case e1 of I#[x]→ e2 : τ
E_CASE

Γ ` error : ∀r .∀α:TYPE r . Int → α
E_ERROR

Γ ` n : Int#
E_INTLIT

Γ ` τ : κ Type validity

Γ ` Int : TYPE P
T_INT

Γ ` Int# : TYPE I
T_INTH

Γ ` τ1 : κ1 Γ ` τ2 : κ2

Γ ` τ1 → τ2 : TYPE P
T_ARROW

α:κ ∈ Γ

Γ ` α : κ
T_VAR

Γ, α:κ1 ` τ : κ2 Γ ` κ1 kind

Γ ` ∀α:κ1. τ : κ2
T_ALLTY

Γ, r ` τ : κ κ 6= TYPE r

Γ ` ∀r . τ : κ
T_ALLREP

Γ ` κ kind Kind validity

Γ ` TYPE υ kind
K_CONST

r ∈ Γ

Γ ` TYPE r kind
K_VAR

Figure 3. Typing judgments for L

for unboxing integers; and error. Most importantly, L sup-
ports levity polymorphism via the novel forms Λr . e and
e ρ, abstractions over and applications to runtime representa-
tions. Typing rules and operational semantics for L appear
in Figure 3 and Figure 4. For the most part, these rules are
straightforward. In particular, note that L has a stratified type
system, with distinct types and kinds. While this differs from
the most recent GHC, the stratification greatly simplifies this
presentation; L still captures the essence of levity polymor-
phism in GHC.

Γ ` e2 : τ Γ ` τ : TYPE P
Γ ` e1 −→ e ′

1

Γ ` e1 e2 −→ e ′
1 e2

S_APPLAZY

Γ ` τ : TYPE P

Γ ` (λx :τ. e1) e2 −→ e1[e2/x]
S_BETAPTR

Γ ` e2 : τ Γ ` τ : TYPE I
Γ ` e2 −→ e ′

2

Γ ` e1 e2 −→ e1 e ′
2

S_APPSTRICT

Γ ` v2 : τ Γ ` τ : TYPE I
Γ ` e1 −→ e ′

1

Γ ` e1 v2 −→ e ′
1 v2

S_APPSTRICT2

Γ ` τ : TYPE I

Γ ` (λx :τ. e) v −→ e[v/x]
S_BETAUNBOXED

Γ ` e −→ e ′

Γ ` e τ −→ e ′ τ
S_TAPP

Γ ` e −→ e ′

Γ ` e ρ −→ e ′ ρ
S_RAPP

Γ, α:κ ` e −→ e ′

Γ ` Λα:κ. e −→ Λα:κ. e ′ S_TLAM

Γ ` (Λα:κ. v) τ −→ v [τ/α]
S_TBETA

Γ, r ` e −→ e ′

Γ ` Λr . e −→ Λr . e ′ S_RLAM

Γ ` (Λr . v) ρ −→ v [ρ/r]
S_RBETA

Γ ` e1 −→ e ′
1

Γ ` case e1 of I#[x]→ e2 −→
case e ′

1 of I#[x]→ e2

S_CASE

Γ ` case I#[n]of I#[x]→ e2 −→ e2[n/x]
S_MATCH

Γ ` e −→ e ′

Γ ` I#[e] −→ I#[e ′]
S_CON

Γ ` error −→ ⊥ S_ERROR

Figure 4. Operational semantics for L

The main payload of L is in its E_APP and E_LAM
rules: note the highlighted premises. We see (Figure 2) that
a kind TYPE υ must be fully concrete, as υ stands for only
P (“pointer”) or I (“integer”)—never r , a representation vari-
able. Thus rules E_APP and E_LAM implement the levity-
polymorphism restrictions of Section 5.1. The distinction
between P and I is also critical in choosing between lazy
and strict application (S_APPLAZY and S_APPSTRICT in
Figure 4).

We wish L to support type erasure. For this reason, the
kind (that is, runtime representation) of a type abstraction
must match that of the underlying expression. We can see
this in the fact that T_ALLTY results in a type of kind κ2,
not TYPE P, as one might expect in a language without type
erasure. Support for type erasure is also why L-expressions
are evaluated even under Λ and why the definition for values
v must be recursive under Λ. Representation abstraction, also
erased, is similar to type abstraction.

7 2017/4/14

Metavariables:

p Lifted (pointer) variables i Integer variables

y ::= p | i Variables
t ::= t y | t n | λy .t | y | let p = t1 in t2
| let! y = t1 in t2 | case t1 of I#[y]→ t2 | error
| I#[y] | I#[n] | n Expressions

w ::= λy .t | I#[n] | n Values
S ::= ∅ | Force(p),S | App(p),S | App(n),S
| Let(y , t),S | Case(y , t),S Stacks

H ::= ∅ | p 7→ t ,H Heaps
µ ::= 〈t ;S ;H 〉 Machine states
V ::= ∅ | x 7→ y ,V | y ,V Variable envs.

Figure 5. The grammar forM

〈t p;S ;H 〉 −→ 〈t ;App(p),S ;H 〉 PAPP

〈t n;S ;H 〉 −→ 〈t ;App(n),S ;H 〉 IAPP

〈p;S ; p 7→ w ,H 〉 −→ 〈w ;S ; p 7→ w ,H 〉 VAL

〈p;S ; p 7→ t ,H 〉 −→ 〈t ;Force(p),S ;H 〉 EVAL

〈let p = t1 in t2;S ;H 〉 −→ 〈t2;S ; p 7→ t1,H 〉 LET

〈let! y = t1 in t2;S ;H 〉 −→ 〈t1; Let(y , t2),S ;H 〉 SLET

〈case t1 of I#[y]→ t2;S ;H 〉 −→ 〈t1;Case(y , t2),S ;H 〉 CASE

〈error;S ;H 〉 −→ ⊥ ERR

〈λp1.t1;App(p2),S ;H 〉 −→ 〈t1[p2/p1];S ;H 〉 PPOP

〈λi .t1;App(n),S ;H 〉 −→ 〈t1[n/i];S ;H 〉 IPOP

〈w ;Force(p),S ;H 〉 −→ 〈w ;S ; p 7→ w ,H 〉 FCE

〈n; Let(i , t),S ;H 〉 −→ 〈t [n/i];S ;H 〉 ILET

〈I#[n];Case(i , t),S ;H 〉 −→ 〈t [n/i];S ;H 〉 IMAT

Figure 6. Operational semantics forM

Following Haskell, L’s operational semantics supports
both lazy and strict functions. The choice of evaluation
strategy is type-directed.

Language L is type-safe:

Theorem (Preservation). If Γ ` e : τ and Γ ` e −→ e ′,
then Γ ` e ′ : τ .

Theorem (Progress). Suppose Γ has no term variable bind-
ings. If Γ ` e : τ , then either Γ ` e −→ e ′ or e is a value.

The proofs appear in the extended version of this paper [5].

6.2 TheM Language
We compile L intoM, whose grammar appears in Figure 5
and operational semantics appears in Figure 6. TheM lan-
guage requires expressions to be in A-normal form, where
a function can be called only on variables or literals. We ac-
cordingly need to be able to let-bind variables so that we can
pass more complex expressions to functions. Corresponding
to the two interpretations of application in L,M provides
both lazy let and strict let!. As in L, the case expression in
M serves only to force and unpack boxed numbers. In order

to be explicit that we must know sizes of variables inM, we
use two different metavariables forM variables (p and i),
each corresponding to a different kind of machine register.

The M language is given an operational semantics in
terms of machine states µ. A machine state is an expression
under evaluation, a stack, and a heap. Stacks are an ordered
list of stack frames, as explored below; heaps are considered
unordered and contain only mappings from pointer variables
to expressions. The upper group of rules in Figure 6 apply
when the expression is not a value; the rule to use is chosen
based on the expression. The lower group of rules apply when
the expression is a value; the rule to use is chosen based on
the top of the stack.

The first two rules push an argument onto the stack. In
the first rule, PAPP, notice that the argument is a variable
p and may not be a value. Evaluating the function first is
therefore lazy application. In IAPP, on the other hand, the
argument must be a literal and therefore fully evaluated. The
stack frames are popped in the first two value rules, which
apply when we have fully evaluated the function to expose
a λ-expression. In these rules, we use substitution to model
function application; in a real machine, of course, parameters
to functions would be passed in registers. However, notice
that the value being substituted is always of a known width;
this substitution is thus implementable.

The VAL rule applies when we are evaluating a variable
p bound to a value in the heap. It does a simple lookup.
In contrast, the EVAL rule applies when p is mapped to a
non-value t (we consider trying VAL before EVAL when
interpreting Figure 6). In this case, we proceed by evaluating
t . Upon completion (FCE), we then store the value t reduced
to back in the heap; this implements thunk sharing, as
performed by GHC.

Lazy let simply adds a mapping to the heap (LET). Strict
let!, on the other hand, starts evaluating the let!-bound
expression t1, pushing a continuation onto the stack (SLET).
This continuation is then entered when t1 has been reduced
to a value (ILET). The case expression is similar (CASE),
pushing a continuation onto the stack and popping it after
evaluation (IMAT).

Finally, ERR processes error by aborting the machine.

6.3 Compilation
The languages L andM are related by the compilation op-
eration, in Figure 7. This type-directed algorithm is parame-
terized over a variable environment V , containing both map-
pings fromL-variables x toM-variables y as well as a listing
of freshM-variables used to compile applications.

Applications are compiled into either lazy or strict let
expressions, depending on the kind of the argument—this be-
havior is just as in Haskell and conforms to the two different
application rules in L’s operational semantics. Applications
of I# are similarly compiled strictly. Other compilation rules
are unremarkable, but we note that compiling an abstraction
requires knowing a concrete width for the bound variable.

8 2017/4/14

JeKVΓ t Compilation

x 7→ y ∈ V

JxKVΓ y
C_VAR

Γ ` e2 : τ Γ ` τ : TYPE P
p /∈ dom(V) V ′ = V , p

Je1KV
′

Γ t1 Je2KV
′

Γ t2

Je1 e2KVΓ let p = t2 in t1 p
C_APPLAZY

Γ ` e2 : τ Γ ` τ : TYPE I
i /∈ dom(V) V ′ = V , i

Je1KV
′

Γ t1 Je2KV
′

Γ t2

Je1 e2KVΓ let! i = t2 in t1 i
C_APPINT

i /∈ dom(V) V ′ = V , i

Γ ` e : Int# JeKV
′

Γ t

JI#[e]KVΓ let! i = t in I#[i]
C_CON

p /∈ dom(V) V ′ = V , x 7→ p

Γ ` τ : TYPE P JeKV
′

Γ,x :τ t

Jλx :τ. eKVΓ λp.t
C_LAMPTR

i /∈ dom(V) V ′ = V , x 7→ i

Γ ` τ : TYPE I JeKV
′

Γ,x :τ t

Jλx :τ. eKVΓ λi .t
C_LAMINT

JeKVΓ,α:κ t

JΛα:κ. eKVΓ t
C_TLAM

JeKVΓ t

Je τKVΓ t
C_TAPP

JeKVΓ,r t

JΛr . eKVΓ t
C_RLAM

JeKVΓ t

Je ρKVΓ t
C_RAPP

Je1KVΓ t1 i /∈ dom(V)

Je2KV ,x 7→i
Γ,x :Int#

 t2

Jcase e1 of I#[x]→ e2KVΓ case t1 of I#[i]→ t2
C_CASE

JnKVΓ n
C_INTLIT

JerrorKVΓ error
C_ERROR

Figure 7. Compilation of L intoM

This compilation algorithm is partial, as it cannot compile,
for example, an L-expression that uses levity polymorphism
in a variable bound by a λ. The type system of L rules out
this possibility. Indeed, L’s type system guarantees that an
L-expression can be compiled:

Theorem (Compilation). If Γ ` e : τ and Γ ∝ V , then
JeKVΓ t .

The condition Γ ∝ V requires that V has suitable
mappings for the variables bound in Γ; the full definition
appears in the extended version of this paper [5].

The compilation algorithm also critically preserves opera-
tional semantics, as proved in this theorem:

Theorem (Simulation). Suppose Γ has no term variable
bindings. If Γ ` e : τ and Γ ` e −→ e ′, then JeK∅Γ t ,
Je ′K∅Γ t ′, and t ⇔ t ′.

This theorem statement requires the notion of joinability
ofM-expressions. While the full definition appears in the
extended version, intuitively, twoM-expressions t1 and t2
are joinable (that is, t1 ⇔ t2) when they have a common
reduct for any stack and heap. We cannot quite say that t steps
to t ′ in the Simulation Theorem because of the possibility
of applications that compile to let-bindings, which must be
evaluated before we can witness the commonality between t
and t ′.

6.4 A Missing Step
The proof of the Simulation Theorem requires the following
technical fact, relating a substitution in L to a substitution in
M:

Assumption (Substitution/compilation). If:

1. Γ, x :τ,Γ′ ` e1 : τ ′ 2. Γ ` e2 : τ 3. Γ ` τ : TYPEP

4. Je1K
V ,x 7→p,V ′

Γ,x :τ,Γ′ t1 5. Je2KVΓ t2

Then there exists t3 such that Je1[e2/x]KV ,V
′

Γ,Γ′ t3 and
let p2 = t2 in t1[p2/p]⇔ t3, where p2 is fresh.

This assumption is needed when considering the S_BETA-
PTR rule from L’s operational semantics—we must prove
that the redex and the reduct, with its substitution, compile to
joinableM-expressions.

We have not proved this fact, though we believe it to be
true. The challenge in proving this is that the proof requires, in
the lazy application case, generalizing the notion of joinability
to heaps, instead of justM-expressions. When considering
this generalization, we see that it is difficult to write a well-
founded definition of joinability, if we consider the possibility
of cyclic graphs in the heap.13

Interestingly, this assumption is a key part of any proof that
compilation from System F to ANF is semantics-preserving.
In the functional language compilation community, we have
accepted such a transformation for some time. Yet to our sur-
prise, we have been unable to find a proof of its correctness in
the literature. We thus leave this step of the correctness proof
for the ANF transformation as an open problem, quite separa-
ble from the challenge of proving levity polymorphism. Note,
in particular, that the assumption works over substitutions of
a pointer type—no levity polymorphism is to be found here.

6.5 Conclusion
Following the path outlined at the beginning of this section,
we have proved that by restricting the use of levity polymor-
phism, we can compile a variant of System F that supports
levity polymorphism into an ANF language whose opera-
tional semantics closely mirrors what would take place on a
concrete machine. The compilation is semantics-preserving.

13 Lacking recursion, our languages do not support such cyclic structures.
However, this restriction surely does not exist in the broader context of
Haskell, and it would seem too clever by half to use the lack of recursion in
our languages as the cornerstone of the proof.

9 2017/4/14

This proof shows that our restrictions are indeed sufficient to
allow compilation.

7. Exploiting Levity Polymorphism
We claimed earlier that levity polymorphism makes high-
performance code more convenient to write, and more re-
usable (by being more polymorphic than before). In this
section we substantiate these claims with specific examples.

7.1 Relaxation of Restrictions around Unlifted Types
Previous to our implementation of levity polymorphism,
GHC had to brutally restrict the use of unlifted types:

• No type family could return an unlifted type. Recall that
previous versions of GHC lumped together all unlifted
types into the kind #. Thus the following code would be
kind-correct:

type family F a :: # where
F Int = Int#

F Char = Char#
However, GHC would be at a loss trying to compile
f :: F a→ a, as there would not be a way to know what
size register to use for the argument; the types Char# and
Int# may have different calling conventions. Unboxed
tuples all also had kind #, making matters potentially
even worse.
• Unlifted types were not allowed to be used as indices. It

was impossible to pass an unlifted type to a type family
or to use one as the index to a GADT. In retrospect, it
seems that this restriction was unnecessary, but we had
not developed enough of a theory around unlifted types to
be sure what was safe. It was safer just to prevent these
uses.
• Unlifted types had to be fully saturated. There are several

parameterized unlifted types in GHC: Array# :: Type →
is representative. We might imagine abstracting over a
type variable a :: Type → # and wish to use Array# to
instantiate a. However, with the over-broad definition of
#—which included unlifted types of all manner of calling
convention—any such abstraction could cause trouble.
In particular, note that (# , #) Bool (a partially-applied
unboxed tuple) can have type Type → #, and its calling
convention bears no resemblance to that of Array#.

Now that we have refined our understanding of unlifted
types as described in this paper, we are in a position to lift
all of these restrictions. In particular, note that the F type
family is ill-kinded in our new system, as Int# has kind
TYPE ’[IntRep] while Char# has kind TYPE ’[CharRep].
Similarly, abstractions over partially-applied unlifted type
constructors are now safe, as long as our new, more precise
kinds are respected.

7.2 Levity-polymorphic Functions
Beyond error , myError and other functions that never return,
there are other functions that can also be generalized to be
levity polymorphic. Here is the generalized type of Haskell’s
($) function, which does simple function application:

($) :: ∀ (r :: Rep) (a :: Type) (b :: TYPE r).

(a→ b)→ a→ b
f $ x = f x

Note that the argument, x , must have a lifted type (of kind
Type), but that the return value may be levity-polymorphic,
according to the rules in Section 5.1. This generalization
of ($) has actually existed in GHC for some time, due to
requests from users, implemented by a special case in the
type system. With levity polymorphism, however, we can
now drop the special-case code and gain more assurance that
this generalization is correct.

We can similarly generalize (.), the function composition
operator:

(.) :: ∀ (r :: Rep) (a :: Type) (b :: Type) (c :: TYPE r).

(b → c)→ (a→ b)→ a→ c
(f . g) x = f (g x)

Once again, we can generalize only the return type. Unlike in
the example with ($), we see that the restriction around levity-
polymorphic arguments bites here: we cannot generalize the
kind of b. Also unlike ($), we had not noticed that it was
safe to generalize (.) in this way. Only by exploring levity
polymorphism did this generalization come to light.

7.3 Levity-polymorphic Classes
Haskell uses type classes to implement ad-hoc polymor-
phism [28]. An example is the Num class, excerpted here:

class Num a where
(+) :: a→ a→ a
abs :: a→ a

Haskellers use the Num class to be able to apply numerical
operations over a range of numerical types. We can write
both 3 + 4 and 2.718 + 3.14 with the same (+) operator,
knowing that type class resolution will supply appropriate im-
plementations for (+) depending on the types of its operands.
However, because we have never been able to abstract over
unlifted types, unlifted numerical types have been excluded
from the convenience of ad-hoc overloading. The library that
ships with GHC exports (+#) :: Int# → Int# → Int# and
(+##) :: Double# → Double# → Double# in order to
perform addition on these two unlifted numerical types. Pro-
grammers who wish to use unlifted numbers in their code
must use these operators directly.

With levity polymorphism, however, we can extend the
type class mechanism to include unlifted types. We generalize
the Num class thus:

10 2017/4/14

class Num (a :: TYPE r) where
(+) :: a→ a→ a
abs :: a→ a

The only change is that a is no longer of type Type, but can
have any associated Rep. This allows the following instance,
for example:

instance Num Int# where
(+) = (+#)

abs n | n <# 0# = negateInt# n
| otherwise = n

We can now happily write 3#+4# to add machine integers.14

But how can this possibly work? Let’s examine the type of
our new (+):

(+) :: ∀ (r :: Rep) (a :: TYPE r). Num a⇒ a→ a→ a

It looks as if (+) takes a levity-polymorphic argument,
something that has been disallowed according to the rules in
Section 5.1. Yet we see that nothing untoward happens when
we expand out the definitions. Type classes are implemented
via the use of dictionaries [10], simple records of method
implementations. At runtime, any function with a Num a
constraint takes a dictionary (that is, record) containing the
two methods that are part of our Num class. To be concrete,
this dictionary type looks like this:

data Num (a :: TYPE r)

= MkNum {(+) :: a→ a→ a, abs :: a→ a}
The methods that the user writes are simply record selectors.
The type of the (+) record selector is, as we see above, levity-
polymorphic (note the ∀ (r :: Rep)). But its implementation
obeys the rules of Section 5.1: it takes a lifted argument of
type Num a, and returns a lifted result of type a → a → a,
so all is well.

When the user writes an instance, GHC translates each
method implementation to a top-level function. Let’s call the
functions plusInt# and absInt#. They are fully monomor-
phic, taking and returning Int# values; there is no levity
polymorphism there, so they cannot run afoul of our restric-
tions. With these functions defined, GHC then builds the
dictionary, thus:

$d :: Num Int#

$d = MkNum {(+) = plusInt#, abs = absInt#}
Once again, there is nothing unpleasant here—this snippet is
indeed entirely monomorphic.

So far, so good, but we are treading close to the cliff.
Consider this:

abs1, abs2 :: ∀ (r :: Rep) (a :: TYPE r).

Num a⇒ a→ a
abs1 = abs
abs2 x = abs x

14 We owe this use case of levity polymorphism to Baldur Blöndal, a.k.a. Ice-
land_jack. See https://ghc.haskell.org/trac/ghc/ticket/12708.

The definition for abs1 is acceptable; there are no levity-
polymorphic bound variables. However, abs2 is rejected! It
binds a levity-polymorphic variable x . And yet abs2 is clearly
just an η-expansion of abs1. How can this be possible?

When we consider how a function is compiled, it becomes
clearer. Despite the currying that happens in Haskell, a
compiled function is assigned an arity, declaring how many
parameters it accepts via the machine’s usual convention for
passing parameters to a function. The abs1 function has an
arity of 1: its one parameter is the Num a dictionary (which,
recall, is a perfectly ordinary value of a lifted type). It returns
the memory address of a function that takes one argument.
On the other hand, abs2 has an arity of 2, taking also the
levity-polymorphic value to operate on and returning a levity-
polymorphic value. It is this higher arity that causes trouble
for abs2. When compiling, η-equivalent definitions are not
equivalent!

8. Practicalities
8.1 Opportunities in GHC’s Libraries
While levity polymorphism is too new a feature to be widely
deployed within GHC’s standard libraries—we want this fea-
ture to be more battle-tested before pervasive usage—we have
generalized the type of six library functions where previous
versions of GHC have used special cases in order to deal with
the possibility of unlifted types15. Even here, though, general-
izing the types was not without controversy: after introducing
the new type of ($), several users loudly (and rightly, in our
opinion) complained16 that the type of ($), as reported in
GHC’s interactive environment, was far too complex. The ($)
function application operator is often an early example of a
higher-order function, and a type whose definition requires an
understanding of levity polymorphism is not appropriate for
beginners. We thus default all type variables of kind Rep to
be LiftedRep during pretty printing, unless users specify the
flag -fprint-explicit-runtime-reps. Given that func-
tion composition (.) was not special-cased previously, we
decided not to generalize its type yet, but may do so in the
future. There are no other widely-used functions that we have
observed to be available for levity-generalization.

In contrast to the paucity of available levity-polymorphic
functions, there is a plethora of available levity-polymorphic
classes, along the lines of the Num class above. We have
identified 34 of the 76 classes in GHC’s base and ghc-prim
packages (two key components of GHC’s standard library)
that can be levity-generalized.17. Future work includes taking

15 These are error , errorWithoutStackTrace, ⊥, oneShot, runRW#, and
($).
16 The thread starts here: https://mail.haskell.org/pipermail/
ghc-devs/2016-February/011268.html.
17 The full list of classes, along with some ideas for generalizing even
more classes, is here: https://ghc.haskell.org/trac/ghc/ticket/
12708#comment:29

11 2017/4/14

https://ghc.haskell.org/trac/ghc/ticket/12708
https://mail.haskell.org/pipermail/ghc-devs/2016-February/011268.html
https://mail.haskell.org/pipermail/ghc-devs/2016-February/011268.html
https://ghc.haskell.org/trac/ghc/ticket/12708#comment:29
https://ghc.haskell.org/trac/ghc/ticket/12708#comment:29

advantage of these opportunities and experimenting with the
results, to see if inclusion in the standard library is warranted.

8.2 Implementation
The implementation of levity polymorphism was done simul-
taneously with that of GHC’s TypeInType extension [30].
Indeed, as levity polymorphism requires kind variables of
a type other than Type (forbidden before TypeInType) and
kind-level equalities requires abolishing sub-kinding, these
two improvements to the compiler complement each other.
(It is possible to consider implementing levity polymorphism
before TypeInType, just adding the ability for kind variables
of type Rep.)

Because of the significant churn caused by TypeInType,
it is hard to pinpoint any effect on the compiler (e.g.,
length/complexity of code, efficiency) due solely to levity
polymorphism. However, we can report a number of pitfalls
that we ran into when realizing levity polymorphism in an
industrial-strength compiler:

Managing unboxed tuples proves to be fiddly. Before lev-
ity polymorphism, an unboxed tuple data constructor took
twice as many arguments as its arity. For example, (# , #) ::
∀ a b. a → b → (# a, b #), taking two type arguments and
two value arguments. Now, it takes three times as many ar-
guments as its arity: (# , #) :: ∀ r1 r2 (a :: TYPE r1) (b ::
TYPE r2). a → b → (# a, b #). Despite this change, regu-
lar boxed tuples still only take twice as many arguments as
their arity. This all means that, in several places in the com-
piler (e.g., serializing and deserializing the interface files that
support separate compilation), we must carefully multiply or
divide by either 2 or 3 depending on whether a tuple is boxed
or unboxed.

We cannot always tell whether a type is lifted. Previously,
it was dead easy to tell whether a type should be treated lazily:
just check its kind. Now, however, the kind of a type might
be levity-polymorphic, and it is impossible to tell whether a
levity-polymorphic type is lazy or strict. Indeed, one should
never ask—that is the whole point of the rules in Section
5.1! Nevertheless, there has been a steady stream of bug
reports that have come in over this issue, due to the fact that
unlifted types can now be abstracted over and so appear in
places previously unexpected. Making this situation worse,
GHC uses mutable cells to track types/kinds during type
inference. The functions that check the levity of a type are
pure, so they cannot look into the mutable cells; this means
we must update types, replacing any filled mutable cell with
its contents, before checking a type’s levity. (GHC calls this
process zonking.)

Related to this challenge is that GHC 8.2 still cannot sup-
port computation (via type families) in type representations,
as the presence of type families deeply confuses the code gen-
erator, when it needs to figure out which calling convention to
use at a function application. This issue is “merely engineer-

ing” to get the code generator to treat type families properly,
but it appears to be a tricky problem to solve cleanly.

Transformation by η-expansion has become delicate. The
optimizer sometimes chooses to η-expand a function in order
to improve performance. But, with levity polymorphism, we
must now be careful, as not every function can be safely
η-expanded. Worse, GHC primitives absolutely must be η-
expanded, because we have no closure available for them. For
example, if (# , #) is used unsaturated at levity-polymorphic
types, we must reject the program, even though (# , #), a
function, is always lifted.

Checking for bad levity polymorphism is awkward. Ide-
ally, the type checker would be responsible for checking to
see whether the user had made use of types in a safe manner.
However, we can only check for bad levity polymorphism
after type checking is complete and we have solved for all
unification variables. We thus do the levity polymorphism
checks in the desugarer, a separate pass completed after type
inference/checking is complete. A challenge here is that the
desugarer has a harder time producing informative error mes-
sages, as it tracks code contexts much more simplistically
than the type checker, which has much engineering in place
behind error message generation.

Part of the challenge in levity-polymorphism checking is
that, while in GHC’s Core (internal, typed) language [25], a
function application is easy to detect, we must report errors
in terms of the sugary surface syntax, where we had to
identify the range of constructs that desugar to Core function
applications.

8.3 Opportunities Beyond GHC
Could levity polymorphism make its way into languages
beyond Haskell? Our answer is, emphatically, yes. Levity
polymorphism is applicable to any language with support
for parametric polymorphism and unboxed types. Despite its
name, levity polymorphism is not at all tied to Haskell’s
laziness; while laziness (in concert with polymorphism)
provides extra motivation for boxing, that aspect of levity
polymorphism is inessential.18

The main challenge, however, in implementing levity poly-
morphism is that it is a brand-new form of abstraction, hap-
pening in the kinds of types. It is thus most appropriate for a
language already equipped with kind-polymorphism; other
systems would have a much larger implementation (and syn-
tactic) burden to overcome before introducing levity polymor-
phism. To our knowledge, GHC Haskell is the only language
supporting both unboxed types and kind polymorphism, mak-
ing levity polymorphism a natural fit. It is our hope that more
languages will join us in our happy neighborhood, however.
When they do, we believe our work on levity polymorphism
will be of great benefit.

18 Perhaps it is better titled boxity polymorphism, but that doesn’t have quite
the same ring.

12 2017/4/14

9. Related Work
There are a number of other approaches to resolving the
tension between polymorphism and performance. We review
the main contenders in this section.

9.1 A Single, Uniform Representation
One approach is to represent every value uniformly, whether
boxed or unboxed, lifted or unlifted. For example, OCaml
uses a single machine word to represent both a pointer and
an unboxed integer, distinguishing the two (for the garbage
collector) by stealing flag bit from the word. This solution
just does not scale. It slows arithmetic (which must account
for the flag bit); it is awkward on machines where floating
point operations use a different register bank;19 and it fails
altogether for types that are not word-sized, like double-
precision floats, unboxed tuples, or multi-values in modern
processors’ SSE instruction sets [14].

Java’s generics mechanism [18] is more restrictive still: it
works only over boxed types; no polymorphism over unboxed
types is possible.

9.2 Compile-time Monomorphization
Several languages and compilers require specializing all
polymorphic functions to monomorphic variants before code
generation. This group includes C++ (through its template
feature), the MLton Standard ML compiler [29], and Rust.
Monomorphization sidesteps many of the problems we see
here: the monomorphic variants are compiled independently
and may thus easily work over varying representations. But
monomorphization is a non-starter for Haskell:

• Polymorphic recursion, which has always been part of
Haskell, cannot be statically monomorphized [17].
• Higher rank types [19, 22] cannot be monomorphized at

all. For example, consider

f :: (∀ a. a→ a→ a)→ Int → Int

The argument to f must be polymorphic, because f may
call it at many different types.

These features are not considered exotic in the Haskell
ecosystem—indeed they appear in widely-used libraries such
as lens20 and the Scrap-your-Boilerplate generics library [13].

In addition, monomorphization requires that a compiler
consider all call sites of a function, which impedes sepa-
rate compilation and large-scale modularity. For example, a
C++ compiler specializes template functions but then must
deduplicate in the linker; and the MLton compiler requires
whole-program compilation, a technique that does not scale.

19 See https://www.lexifi.com/blog/unboxed-floats-ocaml for
recent discussion of work to allow unboxed floats.
20 http://hackage.haskell.org/package/lens

9.3 Run-time Monomorphization
Some system attempt to get the best of both worlds by
specializing functions where possible, still providing a run-
time method for monomorphization.

The C#/.NET implementation uses a JIT compiler to
specialize, compile, and then run any polymorphic functions
called at runtime [12, Section 4]. These specialized versions
are generated lazily, on demand, and the code is shared
if the types are “compatible”. As the paper says: “Two
instantiations are compatible if for any parameterized class
its compilation at these instantiations gives rise to identical
code and other execution structures.” To our knowledge,
.NET is the only widely-used language implementation that
supports unrestricted polymorphism over unboxed types, a
truly impressive achievement.

The TIL compiler uses intensional polymorphism (i.e., the
ability to branch on types) and aggressive optimizations to
monomorphize. However, polymorphic compiled functions
are allowed, where varying runtime representations can be
accommodated via a runtime type check. While the TIL
compiler reports impressive performance on the benchmarks
tested, Tarditi et al. [26] admit that all the benchmarks were
single-module programs and that polymorphism in a multi-
module program might indeed pose a performance challenge.

This approach forbids the possibility of type erasure, so
that the necessary type information is available at runtime,
which in turn imposes a performance penalty for the runtime
manipulation of type representations.

9.4 Tracking Representations in Kinds
One can view the kind system we describe in this paper as
a generalization of the idea originally put forth as a part
of TALT [1] and Cyclone [11]. TALT is a typed assembly
language [16], with a type system where each kind describes
the size of the types inhabiting that kind. To wit, the system
has a kind T , which classifies all types , as well as an
infinite family of kinds Ti. Types of kind Ti take i bytes
in memory. The system supports type polymorphism, but no
kind polymorphism. Operations that need to know the size
of types (for example, indexing into an array) require that a
type have a kind Ti; the i is also passed at runtime. These
operations are unavailable on a type of kind T , much like our
restrictions on levity-polymorphic types. The design of TALT
appears to be the first place in the literature where a kind is
used to describe the memory layout of its inhabiting types.

Cyclone is a type-safe C-like language that builds on the
success of TALT. Grossman [9, Section 4.1] describes a kind
system for Cyclone supporting two kinds, A (for “any”) and
B (for “boxed”). This kind system supports sub-kinding,
where B <: A. In this system, all pointers have kind B , as
does type int; all types have kind A. Accordingly, the use of
abstract types (such as type variables) of kind A is restricted
to contexts that do not need to know the width of the type,
much like TALT’s T . Such types can appear in pointer types:

13 2017/4/14

https://www.lexifi.com/blog/unboxed-floats-ocaml
http://hackage.haskell.org/package/lens

for example, if type variable α has kind A, then a variable
of type α* (that is, a pointer to α) is allowed, but a variable
of type α itself is not. Cyclone’s restrictions around types
of kind A have the same flavor of our restrictions around
levity-polymorphic types.

We can view Cyclone’s A roughly as our ∀ (r ::Rep). TYPE r .
However, by being more explicit about representation quan-
tification, we can go beyond Cyclone’s type system in several
ways:

• Cyclone uses sub-kinding where we use polymorphism.
This leads to benefits in being able to support first-class
kind equalities [30] and interacts better with type infer-
ence.
• Levity polymorphism is first-class; users can even use a

runtime type check (though GHC’s Typeable feature [23])
to determine the memory representation of an as-yet-
unbound argument to a function.
• Cyclone’s system supports only two kinds, whereas we

present an infinite family of kinds, accurately describing
unboxed tuples.
• All of these features work in concert to provide the

opportunities in Section 7.

9.5 Optimization by Transformation
Instead of allowing the user to write polymorphic code over
unboxed types, the user could be restricted to using only
boxed types, trusting (or instructing) the compiler to optimize.
GHC has supporting such optimizations like this for some
time [21], but these might not apply in harder scenarios.
Recent work in Scala has given users more ability to write
and control these optimizations [27], reducing both the need
to depend on potentially-capricious decisions made by an
optimizer and the need for users to write code directly over
unboxed values.

9.6 Polymorphism over Evaluation Order
Recent work by Dunfield [3] describes quantification over
a function’s evaluation order—that is, whether a function is
call-by-value or call-by-need. Although using levity polymor-
phism to choose between strict and lazy application is essen-
tially a by-product of our work (where the focus is the ability
to deal with types having different representations in mem-
ory), there are clear parallels between levity quantification
and evaluation-order quantification, including type-directed
evaluation rules. One key difference between our system
and Dunfield’s is that we do not need to introduce a new
quantification form, piggy-backing on kind polymorphism.
Dunfield’s system also does not need our restriction, as that
system does not allow variation in memory representation.

10. Conclusion
This paper presents a new way to understand the limits of
parametric polymorphism, claiming that kinds are calling

conventions. We thus must fix the kind of any bound variables
and arguments before we can compile a function. Even
with these restrictions, however, we find that our novel
levity polymorphism—the ability to abstract over a type’s
runtime representation—is practically useful and extends the
expressiveness of Haskell. Furthermore, we have proved our
restrictions to be sufficient to allow compilation and have
implemented our ideas in a production compiler. It is our
hope that this new treatment of polymorphism can find its
way to new languages, several of which currently exhibit a
number of compromises around polymorphism.

References
[1] K. Crary. Toward a foundational typed assembly language. In

Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’03, pages
198–212. ACM, 2003.

[2] K. Crary and S. Weirich. Flexible type analysis. In Proceedings
of the Fourth ACM SIGPLAN International Conference on
Functional Programming, ICFP ’99, pages 233–248. ACM,
1999.

[3] J. Dunfield. Elaborating evaluation-order polymorphism. In
Proceedings of the 20th ACM SIGPLAN International Confer-
ence on Functional Programming, ICFP 2015, pages 256–268.
ACM, 2015.

[4] R. A. Eisenberg. Dependent Types in Haskell: Theory and
Practice. PhD thesis, University of Pennsylvania, 2016.

[5] R. A. Eisenberg and S. Peyton Jones. Levity polymor-
phism (extended version). Technical report, Bryn Mawr
College, 2017. URL http://cs.brynmawr.edu/~rae/
papers/2017/levity/levity-extended.pdf.

[6] S. Finne, D. Leijen, E. Meijer, and S. Peyton Jones. Call-
ing Hell from Heaven and Heaven from Hell. In ACM SIG-
PLAN International Conference on Functional Programming
(ICFP’99), pages 114–125, Paris, Sept. 1999. ACM.

[7] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The
essence of compiling with continuations. In Proceedings of the
ACM SIGPLAN 1993 Conference on Programming Language
Design and Implementation, PLDI ’93, pages 237–247. ACM,
1993.

[8] J.-Y. Girard. Une extension de l’interpretation de Gödel à
l’analyse, et son application à l’élimination des coupures dans
l’analyse et la theorie des types. In J. Fenstad, editor, Proceed-
ings of the Second Scandinavian Logic Symposium, volume 63
of Studies in Logic and the Foundations of Mathematics, pages
63 – 92. Elsevier, 1971.

[9] D. Grossman. Quantified types in an imperative language.
ACM Trans. Program. Lang. Syst., 28(3):429–475, May 2006.

[10] C. V. Hall, K. Hammond, S. L. Peyton Jones, and P. L. Wadler.
Type classes in haskell. ACM Trans. Program. Lang. Syst., 18
(2), Mar. 1996.

[11] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and
Y. Wang. Cyclone: A safe dialect of C. In Proceedings of the
USENIX Annual Technical Conference, pages 275–288, 2002.

14 2017/4/14

http://cs.brynmawr.edu/~rae/papers/2017/levity/levity-extended.pdf
http://cs.brynmawr.edu/~rae/papers/2017/levity/levity-extended.pdf

[12] A. Kennedy and D. Syme. Design and implementation of gener-
ics for the .NET Common Language Runtime. In Programming
Language Design and Implementation. ACM, January 2001.

[13] R. Lämmel and S. Peyton Jones. Scrap your boilerplate: A
practical design pattern for generic programming. In Workshop
on Types in Languages Design and Implementation. ACM,
2003.

[14] G. Mainland, S. Marlow, R. Leshchinskiy, and S. Peyton Jones.
Exploiting vector instructions with generalized stream fusion.
In ACM SIGPLAN International Conference on Functional
Programming (ICFP ’13). ACM, September 2013.

[15] S. Marlow (editor). Haskell 2010 language report, 2010.

[16] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System
F to typed assembly language. ACM Trans. Program. Lang.
Syst., 21(3):527–568, May 1999.

[17] A. Mycroft. Polymorphic type schemes and recursive defini-
tions. Springer, Berlin, Heidelberg, 1984.

[18] M. Naftalin and P. Wadler. Java Generics and Collections:
Speed Up the Java Development Process. O’Reilly Media,
2006.

[19] M. Odersky and K. Läufer. Putting type annotations to work. In
Symposium on Principles of Programming Languages, POPL
’96. ACM, 1996.

[20] S. Peyton Jones and J. Launchbury. Unboxed values as first
class citizens. In FPCA, volume 523 of LNCS, pages 636–666,
1991.

[21] S. Peyton Jones and A. Santos. A transformation-based
optimiser for Haskell. In Science of Computer Programming,
volume 32, pages 3–47. Elsevier, October 1997.

[22] S. Peyton Jones, D. Vytiniotis, S. Weirich, and M. Shields.
Practical type inference for arbitrary-rank types. Journal of
Functional Programming, 17(1), Jan. 2007.

[23] S. Peyton Jones, S. Weirich, R. A. Eisenberg, and D. Vytiniotis.
A reflection on types. In A list of successes that can change the
world, LNCS. Springer, 2016. A festschrift in honor of Phil
Wadler.

[24] J. C. Reynolds. Towards a theory of type structure. In
B. Robinet, editor, Programming Symposium, volume 19 of
Lecture Notes in Computer Science, pages 408–425. Springer
Berlin Heidelberg, 1974.

[25] M. Sulzmann, M. M. T. Chakravarty, S. Peyton Jones, and
K. Donnelly. System F with type equality coercions. In Types
in languages design and implementation, TLDI ’07. ACM,
2007.

[26] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and
P. Lee. TIL: A type-directed optimizing compiler for ML.
In Proceedings of the ACM SIGPLAN ’96 Conference on
Programming Language Design and Implementation, PLDI
’96, 1996.

[27] V. Ureche, A. Biboudis, Y. Smaragdakis, and M. Odersky.
Automating ad hoc data representation transformations. In
International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA ’15. ACM,
2015.

[28] P. Wadler and S. Blott. How to make ad-hoc polymorphism
less ad-hoc. In POPL, pages 60–76. ACM, 1989.

[29] S. Weeks. Whole-program compilation in MLton. Invited talk
at ML Workshop, Sept. 2006.

[30] S. Weirich, J. Hsu, and R. A. Eisenberg. System FC with ex-
plicit kind equality. In International Conference on Functional
Programming, ICFP ’13. ACM, 2013.

[31] B. A. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Vytinio-
tis, and J. P. Magalhães. Giving Haskell a promotion. In Types
in Language Design and Implementation, TLDI ’12. ACM,
2012.

15 2017/4/14

	Levity Polymorphism
	Citation

	The Cost of Polymorphism
	Background: Performance through Unboxed Types
	Unboxed Values
	Boxed vs. Unboxed and Lifted vs. Unlifted
	Unboxed Tuples

	Unboxed Types and Polymorphism
	Kinds
	Sub-kinding
	Functions that Diverge

	Key Idea: Polymorphism, not Sub-kinding
	Runtime-representation Polymorphism
	Representing Unboxed Tuples
	Levity Polymorphism
	The Kind of TYPE

	Taming Levity Polymorphism
	Rejecting Un-compilable Levity Polymorphism
	Type Inference and Levity Polymorphism

	Correctness of Levity Polymorphism
	The L Language
	The M Language
	Compilation
	A Missing Step
	Conclusion

	Exploiting Levity Polymorphism
	Relaxation of Restrictions around Unlifted Types
	Levity-polymorphic Functions
	Levity-polymorphic Classes

	Practicalities
	Opportunities in GHC's Libraries
	Implementation
	Opportunities Beyond GHC

	Related Work
	A Single, Uniform Representation
	Compile-time Monomorphization
	Run-time Monomorphization
	Tracking Representations in Kinds
	Optimization by Transformation
	Polymorphism over Evaluation Order

	Conclusion

