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Abstract

This paper describes the initial steps required to
incorporate an artificial neural network vision module into
an established fuzzy logic, behavior-based mobile robot
and controller. This efficient and robust method is
demonstrated to show its effectiveness in simple real-world
environments.

Introduction

Although Zadeh defined the basic operations of fuzzy
set theory over thirty years ago (Zadeh, 1965), fuzzy
logic-based controllers have just recently become the
technique of choice for many researchers in robotics.
Fuzzy logic controllers allow for the integration of
high-level, human-designed plans to operate along
side immediate, reactive plans in a robust manner.
The key to this successful line of research has been
the development of the concept of behaviors.

Behaviors
Behaviors as a method of controlling robots were
inspired by Brooks’ subsumption architecture
(Brooks, 1986) and later generalized by Maes’
descriptions of behavior-based designs (Maes, 1993).
Generally, a behavior is a simple, focused, perceptual
trigger and associated action. An example might look
like: IF door-on-left THEN turn-left . The door-on-
left is the perceptual trigger that activates the robot to
turn-left .

The ideas of behaviors and fuzzy logic were a
perfect match; behaviors provided an abstract
interface for humans to enter plans, and fuzzy logic
provided a method for dealing with inexact variable
values. A robot under the control of a fuzzy logic,
behavior-based rule (such as IF door-on-left THEN

turn-left ) will act in an appropriate manner when
door-on-left has a value somewhere between
absolute true and absolute false. The hope is that
general, robust functioning can be attained with just a
few simple behaviors mediated by a fuzzy logic
controller (Saffiotti, Ruspini, and Konolige, 1993).

Learning
Our goal was to integrate learning into this well-

known methodology.  Although some success has
been reached using fuzzy logic controllers without
learning, we believe that learning will be necessary as
we require robots to process more complex sensory
information, and require them to perform more
complex tasks.

One obvious way to incorporate learning into a
fuzzy control system is to attempt to learn the fuzzy
logic rules. However, this is exactly where human
expertise benefits a fuzzy logic controller the most.
That is, humans are able to efficiently and effectively
write the abstract rules, such as IF obstacle-on-right
THEN turn-left . We believe that a much better task

Figure 1: The mobile robot with laptop controller and CCD
camera.



for a learning module is in the recognition and
categorization of the perceptual triggers (i.e.,
obstacle-on-right). Although obstacle-on-right may
be gleaned directly from low-level sonar sensors,
more sophisticated perceptions cannot. For instance,
consider the goals of attempting to get close to dogs,
but to avoid cats. The human module in the controller
can easily create the rules (i.e., IF cat THEN
reverse-motors). The hard portion of the problem is
coming up with the appropriate truth values for the
categories cat and dog.

Our solution to this problem was to insert an
artificial neural network between the low-level
sensors and the fuzzy logic controller. Artificial
neural networks can be trained (via back-propagation
(Rumelhart, Hinton, and Williams, 1986) or some
other method) to read in low-level sensors, and
produce activation values on output nodes. The
output values, representing possibly high-level
categories (like “cat”), can be used directly (or nearly
directly) in a fuzzy logic controller. This
methodology is quite general. For example, a network
can be trained to read in 2D visual images and sonar
readings, and produce output nodes representing the
presence or absence of a cat. In addition, such a
network’s output activation will typically gracefully
drop as the input image looks less like a cat. As the
output value is treated as a likelihood value in the
fuzzy logic controller, this is exactly the desired
behavior.

The Robot and Controller

For this research, we chose the low-cost Pioneer 1
mobile robot and Saphira fuzzy logic behavior-based
controller from ActivMedia, Inc., in association with
Real World Interface, Inc.  Our version of the Pioneer
1, called RazorBot, has seven sonar sensors and a
slightly wide-angle CCD color camera mounted on
the front and center of the robot (see Figure 1).
RazorBot has an on-board MC68HC11-based micro-
controller. RazorBot weighs 17 pounds and measures
45 cm from stern to stern, 36 cm across the wheels,
and 23 cm to the top of the console. It has enough
battery power to run for a few hours unattached.

For these experiments, a remote PC ran the
fuzzy logic controller and captured video signals sent
from RazorBot via radio transmitters and receivers.
The video was captured by a Matrox Meteor frame-
grabber on the PC (see Figure 2). The PC controlled
the robot by radio modems.

Saphira, the fuzzy logic controller, is a flexible
system designed to handle behaviors as described
above.1 In addition to having purely perceptual
triggers, Saphira can also post items to a global
blackboard, similar to Erman, Hayes-Roth, Lesser,
and Raj Reddy’s Hearsay II model (1980).

Saphira is capable of handling hierarchies of
behaviors like those defined by Brooks (1986). But,
more importantly, Saphira is also capable of smooth
behavior blending. Behavior blending allows for
robust robot control in light of competing perceptual
triggers.  For instance, if two competing rules were
both being activated by their perceptual triggers,
Saphira can often produce a behavior that is an
intelligent combination of the two.

Our goal was to create an artificial neural
network which could be trained in a general manner
to categorize objects in the visual field. The output of
the network could then be used in abstract fuzzy rules
in Saphira.

Connectionist Vision Module

Specifically, our task was to recognize a small purple
moving ball in the visual scene, and to help steer
RazorBot toward the ball.2 After some
experimentation, we decided that we needed to keep

                                                          
1 See (Konolige, Myers, Ruspini, and Saffiotti, 1996) for a detailed
description of Saphira.
2 This ball is often called a Squiggleball because of its apparent
random movements.

Figure 2: Image captured with the Meteor video frame-
grabber as sent from RazorBot.



the visual resolution as small as possible while still
allowing enough information for object recognition.
We settled on an image that was 44 x 48 pixels, with
three colors per pixels (RGB). That provided an
image that has 6336 data points. This was our input
into the network (see Figure 3).

The output was decided to be a simple
categorization of which quadrant the ball was in.
Therefore, four output units were created, one for
each quad.

A feed-forward, fully connected  network was
then created. Back-propagation was chosen as the
training method (Rumelhart, Hinton, and Williams,
1986) (see Figure 4).

Before integration into the fuzzy logic
controller, we ran many training tests attempting to
learn the classification task. We captured 100 images
as seen from the robot, and trained various networks
on 90 images, keeping 10 to test generalization
ability. Initially, we used a real number between 0
and 1 for each of the 6336 RGB data points.
However, no configuration of hidden units and
parameter settings allowed the network to learn the
task. By rounding off each data point to 0 and 1, the
network was then able to learn the task.

The final network contained 10 hidden units.
Momentum was set to 0.1, and all learning rates (unit
and bias) were set to 0.1. The network learned to
identify the quadrant that contained the ball in 147
sweeps through the 90 image corpus. To test
generalization, the remaining untrained 10 images

were tested, and it got 80% correct. Further training
produced better performance on the training set, but
produced worse performance on the generalization
set. 3

Now that the network was trained to produce
appropriate output categorizations, it was ready to be
worked into the fuzzy logic controller.

Integration

To integrate Saphira and the connectionist vision
module (see Figure 5), we needed a method to create
fuzzy variables that could be used to control
RazorBot’s motors. We decided to create a fuzzy
variable for each quadrant. Each variable would hold
the value indicating the network’s estimation of the
likelihood that that quad contained the ball. One
measure of that likelihood was simply the output
activation of each of the associated output units.

Let q1 be the activation of the unit
representing the presence of a ball in quad 1.
Therefore, one can write behaviors of the form:

                                                          
3 This is a familiar occurrence in training back-prop networks
called over-training.

Figure 3: An image as seen from the robot’s reduced
color and pixel perspective (the ball is in the lower center
of the scene).

Figure 4: The connectionist network was given images and
trained to produce the quadrant containing the ball.



IF (q1 OR q3) THEN Turn Left
IF (q2 OR q4) THEN Turn Right

where q1  and q3  are the quadrants on the left side of
the visual image. Simply using the output values of
the network has the advantage of being easy to
compute. However, the output activations do not
necessarily correspond to likelihood values.

We found it necessary to normalize the output
activations prior to using them in Saphira. For
example, the output activations for q1 , q2 , q3 , and
q4  might be 0.1, 0.0, 0.1, and 0.4 respectively.
Although the network produced only a 0.4 activation
on the unit associated with q4 , this is by far the
largest activation of the four output units. However,
this activation is not great enough to produce a level
of confidence needed to move the robot in Saphira.
Scaling the values gives 0.2, 0.0, 0.2, and 0.8, which
would be more likely to produce the desired results.

After scaling the output activations, we plugged
a routine into Saphira to grab an image and propagate
the activations through the network. We then wrote a
simple behavior similar to that outlined above so that
q1  through q4 were set to the scaled versions of the
associated output units. The network is small enough
and the frame-grabber fast enough to allow for many
propagations through the network per second.

The integrated system can successfully follow a
ball rolling on the floor, while simultaneously
avoiding collisions with walls and other obstacles.

Conclusions

Our initial results are promising, however, critical
analysis remains to determine how this methodology
compares to other techniques.

In addition, normalization of the output
activations is only one method to link network
activations to likelihood values. Our simple method
does not work in all cases; for instance, if a ball is not
present the four quad values are still normalized.
Clearly, some type of threshold regulator is needed.

Although the network did correctly categorize
80% of the novel images in the test of generalization,
we would, of course, like much better performance.
We believe that a much richer training set would help
with the generalization, as well as creating output
activations that would not need to be normalized. A
semi-automatic method of creating a training corpus
is being investigated. This method would simply
require a human to “drive” RazorBot around, making
appropriate moves in response to objects in the visual
field. Later, the robot will replay the images and
movements, learning to associate one with the other.

Currently, the visual image is probably overly
boiled-down. At 44 x 48, the resolution is at the limits
for even ball recognition. More complex recognition
tasks may require a finer resolution. However, recall
that each RGB color value was rounded off to 0 or 1.
This in effect gives only 9 different colors (32). By
allowing three different values for each color data

Figure 5: Schematics of processing. The on-board video camera sends an image to the radio
receiver. The image is grabbed and sent to the artificial neural network. The ANN propagates the
activations through its weights. The outputs are sent to the fuzzy logic controller. Finally, the
controller decides the next actions, and sends the commands back to the robot via radio waves.



point (i.e., 0, 0.5, and 1) effectively increases the
colors to 27 (33). We believe that this should also
help recognition and generalization, while keeping
the task learnable.

Finally, we would like to add a self-tuning
learning component to the fuzzy logic portion of the
system. This would allow the system to automatically
adapt to neural network-based fuzzy variables.
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