
Bryn Mawr College Bryn Mawr College

Scholarship, Research, and Creative Work at Bryn Mawr College Scholarship, Research, and Creative Work at Bryn Mawr College

Computer Science Faculty Research and
Scholarship Computer Science

1993

Emergent Control and Planning in an Autonomous Vehicle Emergent Control and Planning in an Autonomous Vehicle

Lisa Meeden

Gary McGraw

Doug Blank
Bryn Mawr College, dblank@brynmawr.edu

Follow this and additional works at: https://repository.brynmawr.edu/compsci_pubs

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Citation Citation
Meeden, L.A., McGraw, G.E., and Blank, D.S. (1993). Emergent Control and Planning in an Autonomous
Vehicle. In Proceedings of the 15th Annual Cognitive Science Society Conference. (PDF)

This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College.
https://repository.brynmawr.edu/compsci_pubs/23

For more information, please contact repository@brynmawr.edu.

https://repository.brynmawr.edu/
https://repository.brynmawr.edu/compsci_pubs
https://repository.brynmawr.edu/compsci_pubs
https://repository.brynmawr.edu/compsci
https://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/open-access-feedback.html
https://repository.brynmawr.edu/compsci_pubs/23
mailto:repository@brynmawr.edu

Emergent Control and Planning in an Autonomous VehicleAppeared in Proceedings of the Fifteenth Annual Conference of the Cognitive Science SocietyLisa Meedeny and Gary McGraw�y and Douglas BlankyyDepartment of Computer Science�Center for Research on Concepts and CognitionIndiana UniversityBloomington, Indiana 47405meeden@cs.indiana.edu gem@cogsci.indiana.edu blank@cs.indiana.eduAbstractWe use a connectionist network trained with reinforce-ment to control both an autonomous robot vehicle anda simulated robot. We show that given appropriatesensory data and architectural structure, a networkcan learn to control the robot for a simple navigationproblem. We then investigate a more complex goal-based problem and examine the plan-like behavior thatemerges. 1. Autonomous agentsAn autonomous agent can be abstractly de�ned as amapping from a sequence of sensory inputs to an ap-propriate action in response to these percepts. Suchan agent is autonomous to the extent that its be-havior is determined by its immediate inputs andpast experience, rather than by its built-in control[Russell and Wefald, 1991]. We are interested in investi-gating the cognitive capabilities of autonomous agents.We believe that cognitive behavior can emerge from thereactive, situated activity of autonomous agents.Some consensus exists about how to design au-tonomous agents. There should be a relatively directcoupling between perception and action, control shouldbe distributed and decentralized, and most importantly,there should be a dynamic interaction between the envi-ronment and the agent [Maes, 1990]. However, no suchconsensus exists on the best method to implement thesedesign features. Connectionist networks can easily ac-commodate all these design features and we believe theycan be e�ective mechanisms for controlling autonomousagents.This paper focuses on exploring connectionist designsfor controlling simple navigation in an autonomous ve-hicle. We conclude by applying the successful designfeatures to a more di�cult problem and examine theplan-like behavior that emerges.2. MethodologyGiven that a connectionist controller will be used, thereare still a number of implementation questions to be re-solved. First, what sorts of sensory abilities will thecontroller need to simply react e�ectively to the envi-ronment? Second, what sort of memory or training sub-tasks would enable the controller to produce more com-plex responses to the environment? Third, how shouldthe controller be trained so that the behavior emergesrather than being speci�ed explicitly?We examine these implementation questions by test-ing network controllers for both a real and simulatedrobot in a very simple environment, using as experimen-tal variables both type of sensory data, type of trainingsubtasks, and amount of memory. To train the network

controllers, we use a reinforcement learning algorithmwhich converts abstract measures of goodness (rewardand punishment) into speci�c teacher signals.The environment, called the \playpen", is a rectan-gular box (2 � 4 feet) with a light in one corner. Thereinforcement training problems we investigate involvecoordination of motor activity with the information be-ing supplied by the sensors. The navigation problem,which we refer to as avoid and move, reinforces the robotfor moving in the playpen while avoiding the walls. Themore di�cult problem, light as food, adds a goal statein order to simulate hunger, and reinforces the robotfor periodically seeking and avoiding the light while stillavoiding the walls and moving.By holding a problem constant and varying sensoryability we can determine to what extent the additionof more sensors helps the robot succeed at its prob-lem. Similarly, we can evaluate the utility of contextualmemory and di�erent training subtasks such as auto-association and prediction.3. Carbot|an autonomous robot3.1 The autonomous vehicleOur robot, called carbot, is a modi�ed toy car (6 � 9inches) controlled by a programmable mini-board (de-signed by [Martin, 1992]). Carbot was inexpensiveto build, primarily because it makes use of primitivesensors|no lasers, video, or sonar. It has two servo-motors; one controls forward and backward motion andthe other steering. The robot has two types of physi-cal sensors: digital touch sensors on the front and backbumpers, and analog light sensors on stalks near theback. The light sensors are directed 30 degrees to eachside of carbot.3.2 The control networksCarbot is controlled by a remote connectionist networkthat communicates with the mini-board. The networkgathers input data from the sensors and determines howto set the motors for the next time step. Figure 1 showsthe standard network used in our experiments.There are four discrete sets of input units; three arefor sensors and one is for context memory. The �rstset represents the previous state of the two motors|two units per motor. The �rst motor unit representsthe spin direction of the rear motor (this determines di-rection of motion|forward or backward). The secondunit designates the state of the motor as on or o�. Thethird unit represents the spin direction of the front motor(this determines the direction of turning|left or right).Note that in order to turn carbot must have both motorsrunning|the back motor provides movement while thefront motor steers. The fourth unit designates the stateof the front motor as on or o�.1

Digital Analog Context

Sensor banks

Motors

Motors

Copy
connections

Copy connectionsFig. 1. The standard control network. Bold arrows indi-cate that the units are fully connected. Note that some ex-periments were conducted without any context units and/orwithout any sensor units.The next set of units in the input layer represent thestate of the digital touch sensors. There are four digitalsensors|three in front and one in back. Two of thefront sensors are out to either side so that carbot cansense side collisions when moving forward. The nexttwo units represent the state of the analog light sensors,whose values can range from 0.0 to 1.0 (due to ambientlight, their values rarely fall below 0.25). One is for theright sensor, the other for the left.The context units are present in most, but not all ofthe experiments. Activations from the hidden layer onthe previous time step are copied into the context unitsdirectly. The simple recurrence of the context units al-lows the network to have a limited short-term memory ofits past states [Elman, 1990]. We refer to the simple re-current networks as SRNs and the feed-forward networks(without context memory) as FFNs.The four output units of the standard network deter-mine what the activity of the motors will be for the nexttime step. We show a recurrent connection between theoutput motor units and the input motor units becausethe robot has no physical sensors to tell what its motorsare doing. Since the network controls the motors, theinformation from the last time step can be easily copieddown to the input layer and considered an additionaltype of sensor.
Digital Analog Context

Sensor banks

Motors

Motors
Prediction of sensors Auto-association of inputsFig. 2. To add prediction to the network, six additional out-put units representing the predicted sensor information wererequired. To add auto-association, ten more output units rep-resenting the current state of the motors and the sensors wererequired. The most complex network we investigated (the oneshown) includes both prediction and auto-association.Part of our research involved determining the e�ect ofadding speci�c training subtasks to the controller net-work such as auto-association and prediction. Figure 2shows how these subtasks are included. In general, auto-association forces the network to pay more attention to

its inputs (since it must learn to duplicate the input ac-tivations on the output layer). Prediction may help thenetwork build a more complex model of its environmentso that it can, for instance, avoid punishment by pre-dicting that it may hit a wall during the next time step.Another portion of our research involved determining thee�ect of varying the size of the contextual memory.3.3 Reinforcement trainingBecause autonomous agent problems are typically de-�ned in terms of abstract goals rather than speci�c in-put to output pairs, some type of reinforcement proce-dure is required for learning. For example, in the avoidand move problem, suppose that carbot has just bumpedinto a wall triggering its front sensors. Any action thatmoves it away from the wall and clears its sensors shouldbe rewarded, while any action that persists in bumpinginto the wall should be punished. There is not necessar-ily one \right" action for a given situation, and even ifthere were, it might not be known a priori.In all of our experiments, the control networks weretrained with a modi�ed version of the complementaryreinforcement back-propagation (CRBP) learning algo-rithm [Ackley and Littman, 1990]. Back-propagationlearning requires precise error measures for each outputproduced by a network. CRBP provides these exact er-ror measures from the abstract reward and punishmentsignals as follows.A forward propagation of the input values producesa real-valued search vector S. Each of these activationsis interpreted as the probability that an associated ran-dom bit takes on the value 1. From these probabilities abinary output vector O is stochastically produced. If Ois rewarded, then learning should push the network to-wards this vector, so the error measure (O� S) is back-propagated. If O is punished, then learning should pushthe network away from this vector, but the appropriatedirection is not clear. CRBP chooses to push the net-work directly toward the complement of O, using the er-ror measure ((1�O)�S). In this way rewarded outputswill be more likely to occur again and punished outputswill tend to produce the complement output vector insimilar situations.CRBP was designed for static problems. Because car-bot's problems are temporally extended, we needed tomodify the algorithm. To the best of our knowledge,this work is the �rst application of CRBP to a continuousproblem. The original version of CRBP uses a learningrate ten times greater for reward than for punishment toreect the informativeness of the associated errors. Butin carbot's domain, the system gets rewarded for simplymoving in the environment, so the reward to punishmentratio is much larger than for static problems, makingsuch a large disparity in learning rates infeasible.To side-step this problem, we empirically determinedthat a reward learning rate only three times the punish-ment learning rate worked well for our dynamic domain.In the experiments reported below, we used a rewardlearning rate of 0.3, a punishment learning rate of 0.1,and no momentum for training the motor outputs. Anyadditional outputs for which an explicit target was avail-able (e.g., auto-association and prediction), were trainedwith a �xed learning rate of 0.5.3.4 Evaluating global behaviorAfter running many preliminary tests with carbot, wefound one global metric that provide a good measure ofoverall behavior|the percent time punished. We used2

this measure for the graphs shown in this paper as wellas for the statistical analyses. All of the statistical anal-yses reported below make use of analysis of variance(ANOVA) testing. Post hoc signi�cance comparisonswere done using Sche��e tests.It is important to keep in mind the temporal natureof our experimental problems. Analyzing one particulartime-slice of behavior is not useful. Instead, behaviorover some large range of time-slices must be considered.We found that most avoid and move networks tendedto converge (i.e., learn a successful strategy) within the�rst 3000 cycles of a run. We chose to consider these�rst cycles the \training phase". We used the next 2000cycles of a run (during which learning continued) as the\performance phase". We gathered data during the per-formance phase in order to evaluate carbot's behavior.3.5 Training in the real worldSince the robot had to physically move in the world,bumping into things, it took a long time to train andtest a particular controller network (approximately twoand a half hours for a 5,000 cycle run). To get aroundthe time problem we decided to simulate the behavior ofthe robot in software. We are aware that simulators areoften too clean and not very much like the real world,but since we actually have a real robot we were able totest the correspondence of our simulator with the real-world behavior of the robot. We even did a series of\brain-transplant" experiments to verify that the sortsof networks that worked well in the simulatorwould workwell in the robot.4. The carbot simulatorThe simulator is a C program using the same controllernetworks as the robot. We empirically determined theaverage turning radius and distance traveled by carbotin the playpen. We used these averages in the simulator,adding small amounts of random noise to its heading,position, and analog sensor readings on every time step.To test the accuracy of the simulator we transplantedtrained networks from the simulator to the robot andfrom the robot to the simulator, and then compared thebehavior in terms of percent time punished.4.1 Transplanting controller networksTransplant tests provided a surprising result. Therobot's behavior on any trained network (trained eitherin the simulator, or in the robot) is always superior to thesimulator's behavior. We suspect that this is because therobot's movements are not noisy in the same way as thesimulator's. The robot's movement is only occasionallynoisy while the simulator systematically adds noise onevery time step. Interestingly, this added noise seems tobe bene�cial to training. Just as it is useful for runnersto train with weights on their legs and then run with-out them during competition, it seems useful to havemore noise during simulation training than is actuallypresent during robot testing. Further investigation intothe bene�ts of a noisy simulator is needed. We would liketo compare controllers trained in the simulator withoutnoise to controllers trained with noise.The simulated robot's behavior is close enough to theactual behavior of carbot to warrant use of the simulatorfor research. Our methodology is to use the simulatorto test hypotheses and develop useful architectures thatwe then apply back to the robot. This saves many hourssince a typical 5,000 cycle run on the simulator takes lessthan a minute (a speedup factor of 150).

5. Experiments in the simulatorWe ran several groups of experiments with the simulator.For each experimental variable described below, 20 tri-als were run. For each trial, the network controller beinginvestigated was initialized with a random set of weightsand run for 5000 cycles. Performance was evaluated dur-ing the last 2000 cycles of each trial producing an averagepercent punishment. These averages were then averagedover all 20 trials. We then applied ANOVA to these com-posite averages in order to determine the signi�cance ofthe variable.There was a large amount of variation across the 20trials for a particular variable (the standard deviationsranged from 4 to 13). We believe that the primary sourceof this variation was the random initial weights. Somesets of random weights tended to be quite bad while oth-ers were quite good. Unfortunately the large variationsin the results may have tended to obscure signi�cant ef-fects in the experiments.5.1 The avoid and move problemRecall that for this problem the robot was rewarded foravoiding walls while constantly moving. There are manypossible successful strategies for this simple navigationproblem. The easiest solution is to continually turn inone direction forming a circular path which avoids all thewalls. The limited size of the playpen made this solutionimpossible since carbot's turning radius was larger thanthe smallest dimension (although this was a frequent re-sult in larger environments not reported on here). An-other simple solution is to oscillate one step forward thenone step backward, this proved to be the most frequentsolution in the experiments reported here. Since car-bot's only constraints were to keep moving and avoidwalls, there was no impetus to explore the environmentor to develop more complex patterns of behavior.5.1.1 BaselinesTo determine the baseline behavior of the simulator wedid not use a controller network, but instead set the mo-tors randomly. Since there was no network to be trained,there was no learning. This resulted in an average pun-ishment of 67:29%.To determine the baseline behavior of the network ar-chitectures, we ran two sets of tests, one with FFNs andthe other with SRNs. Both types of networks had accessto the sensor data, but did not learn. We wanted to seehow well network controllers with random weights wouldperform. The average punishment rates were 75:47% forthe FFN model and 72:60% for the SRN model. Thedi�erences between either of the non-learning networkbaselines vs. the simulator baseline are both signi�cant(p < 0:01). This is interesting because it shows that un-trained network controllers perform worse than random.Fortunately learning alleviates this.5.1.2 Varying sensory dataTo discover the e�ect that the addition of sensor datahas on controlling ability, we tested 16 types of networks.Starting with either a FFN or an SRN (with 5 contextunits) we systematically added all combinations of sen-sors: analog (A), digital (D), and motor (M).Figure 3 depicts the results of these variations. Itshows average convergence histories of the 16 types ofnetworks, one curve for the 20 trials of each type. Thiskind of graph gives a sense of the learning as it progressesin time. Data points for the graphs were calculated by�nding the percentage of punishments in 500 cycle bins.3

FFN
SRN
SRN+A

FFN+A

FFN+DA
FFN+D
SRN+D

SRN+DA
FFN+MD

FFN+M
SRN+MA

FFN+MA
SRN+MDA

FFN+MDA

SRN+MD
SRN+M

1000 2000 3000 4000 5000

15

20

25

30

35

40

45

Cycles

% Punishments

Training phase Performance phaseFig. 3. Convergence histories for the 16 types of networksused to investigate the utility of sensory input. Each curverepresents the average performance of 20 networks. To theright of each curve is a label denoting the category of thenetwork. The labels make use of the following convention:digital sensors (D), analog sensors (A), motor sensors (M).Percentages of punishment in each bin were plotted andconnected to form a curve. As noted above, we dividedeach run into two phases, a training phase and a perfor-mance phase. These phases are marked on the graph.The statistical analysis was run on the averages over theperformance phases.As seen in Figure 3, the sensory input networks canbe divided into three groups. Starting at the top of thegraph, the �rst group is made up of the �rst four typesof network (which all failed to converge). These are net-works of both types (SRN and FFN) with either no in-puts or analog inputs alone. The next group is made upof networks without motor sensors but including digital,analog, or both. The most successful group includes allthe networks with motor sensors. Of all the 16 types ofnetworks, the best is an SRN with motor sensors alone.Through statistical analysis we found that there is asigni�cant di�erence between the SRN and FFN modelsfor the sensory input tests (p < 0:05). On average theSRNs were punished 27.31% of the time while the FFNswere punished 29.53% of the time. However, there isno signi�cant interaction between the architecture typesand the inputs. This is also apparent from the conver-gence graph.The analysis con�rmed that networks with access tomotor sensors far outperformed networks without mo-tor sensors. In pairwise comparisons, networks withmotor inputs alone were signi�cantly better than thosewith no input, digital input alone, or analog input alone(p < 0:01). Motors alone were also better than digitaland analog together (p < 0:05). Although there wasno signi�cant di�erence between digital alone and ana-log alone, combined they are better than analog alone(p < 0:01).It is interesting that motors, digitals, and analogs to-gether are not signi�cantly better than motors alone.

Intuitively we expected that the more perceptual inputavailable, the better the controller would be. This maybe true for increasingly complex problems, but clearlyfor this problem, just having access to the previous mo-tor settings alone is very informative. Recall that themotor sensor values are provided through a recurrencefrom the output layer to the input layer (see Figure 1).This simple, one-step memory is probably what makesthe motor sensors so much more useful than the othersensors.5.1.3 Varying training subtasksTo discover the e�ect that adding training subtaskshas on controlling ability, we tested four types of net-works. Each was an SRN provided with all the sensorydata (motors, digitals, and analogs). Figure 4 shows theconvergence histories of the four architecture networks.The best two networks (at the bottom of the graph) bothhave prediction units.
SRN+auto
SRN

SRN+auto+pred
SRN+pred

% Punishments

Cycles
5000400030001000 2000

45

40

35

30

25

20

15

10
Training phase Performance phaseFig. 4. Convergence histories of the four types of networksused to determine the utility of training subtasks. Somenetworks have prediction units (pred), others have auto-association (auto).Although there appears to be a substantial advantagefor networks with prediction, no signi�cance is foundwhen all four networks are compared (the standard de-viations are greater than 10). However, if the compar-ison is changed from a four-level comparison to a two-level comparison (between networks with prediction vs.networks without prediction), the result is signi�cant(p < 0:01) with the average time punished being 13.75%vs. 21.88%.Forcing the network, through auto-association, to paymore attention to its perceptual input is not enough toimprove performance. Yet having to predict the subse-quent input is extremely useful for learning navigationcontrol. Learning to mimic the input is a static problem,while predicting the next input is a temporal problem.Thus it appears that the network does not use its contextmemory e�ectively unless its training subtask explicitlydepends on temporal information.4

5.1.4 Varying contextual memoryTo discover the e�ect that the size of the contextualmemory has on controlling ability, we tested seven typesof networks, varying memory size from 0 to 50 units.Again, each of the networks had access to all of the avail-able perceptual data, including motors.
0 units

2 units

5 units

10 units
15 units

20 units

50 units

50

45

40

35

35

25

20

15

10

5

% Punishments

1000 2000 3000 4000 5000
Cycles

Training phase Performance phaseFig. 5. Convergence histories of the seven types of networksused to determine the utility of contextual memory.Figure 5 shows the convergence histories of the seventypes of network tested for memory utility. The graphshows that above a certain memory size (somewhere be-tween 5 and 10 units) more memory seems useful. How-ever, the only signi�cant pairwise results were size 20 vs.size 2 (p < 0:05) and size 50 vs. size 2 (p < 0:01). Theremay be a point at which too large a memory becomesdisadvantageous, but we did not have the resources toexplore this question.In these experiments, pairwise comparisons betweenSRNs with up to 50 units of context memory are notsigni�cantly better than FFNs with no context mem-ory at all (shown as 0 units on the graph). This resultis somewhat surprising. Although the avoid and moveproblem does not require temporal information, we ex-pected that access to temporal information would be asigni�cant bene�t in learning control. This result can beexplained by the �ndings from the input experiments.We noted earlier that the motor inputs are really a formof recurrence from the output layer to the input layer.They provide information about the previous time stepand are therefore temporal in nature. This means thatthe FFN model is not strictly feed-forward.In summary, the avoid and move experiments revealedthat, contrary to our intuitions, more is not always bet-ter (at least for this simple navigation problem). Forthe sensory input, the past motor states were the mostinformative, followed by the digital touch sensors, and�nally the analog light sensors. Using all three types ofinput was not better than using the motor sensors alone.With respect to training subtasks, prediction was a sig-ni�cant bene�t, but auto-association did not seem to beuseful. Finally, for the contextual memory size, moreactually was better, although there may be some limit

to this improvement. In the next set of experiments weapply these design insights to a more di�cult problem.5.2 The light as food problemSince we believe that abstract reasoning abilities, suchas planning, arise developmentally from concrete ac-tivity [Chapman and Agre, 1987], a connectionist, au-tonomous agent controller should also be able to exhibitplan-like behavior if given a more complex problem.For this problem, a goal unit was added to the inputlayer. A positive value for the goal indicated that carbotshould seek out the light (placed in one corner of theplaypen) until a maximum light reading was obtained.Once this happened, the goal unit switched to a nega-tive value, indicating that carbot should avoid the lightuntil a minimum light reading was obtained. Successfulavoidance switched the goal back to seek-mode again.When in seek-mode, carbot was rewarded if the sum ofits light sensor readings increased relative to the previoustime step. When in avoid-mode, carbot was rewarded ifthe sum of its light sensor readings decreased relative tothe previous time step. Carbot was concurrently trainedon the avoid and move problem.For these experiments we focused on one type of SRNmodel. The controller networks had a context memoryof size 20, used both prediction and auto-association,and were provided with all the available sensory inputs.Again 20 trials were run.Intuitively the light as food problem seems much moredi�cult than the avoid and move problem. Baseline ex-periments proved this to be true. Without learning, thecontroller networks for light as food were punished onaverage 90.42% of the time, while the avoid and moveSRNs were punished 75.47%, which is a signi�cant dif-ference (p < 0:01).The di�culty of this problem is also reected in theamount of training required. After 100,000 cycles, themost successful network controller was still receivingpunishment 46.11% of the time while the average per-formance was 50.71%. After another 100,000 cycles (fora total of 200,000), the best network improved to 17.78%performance while the average was 23.37%.Throughout the training phases, there was a generaltrend observed in the distribution of the punishments forall the networks. To illustrate, we will describe this trendusing one network. In the initial training phase, 36% ofthe punishment resulted from sensor hits, 12% from notmoving, 43% from seeking the light incorrectly, and 9%from avoiding the light incorrectly. Note that it is easierto avoid the light than to seek it, since there are manypositions in the environment which satisfy the minimumlight requirement, but few that satisfy the maximum re-quirement. By the end of the second training phase, thedistribution of punishments was substantially di�erent,55% from sensor hits, 2% from not moving, 24% fromseeking the light incorrectly, and 19% from avoiding thelight incorrectly. The controller has become almost assuccessful at seeking the light as avoiding the light.6. Emergent planningThe same basic strategies were adopted by all 20 con-troller networks trained on the light as food problem.When in avoid-mode, �rst move away from the light,then orient carbot away from the light. When in seek-mode, the opposite strategy was used, �rst orient carbottoward the light, and next move to the light. See Fig-ure 6 for examples of these strategies from an actual runof one network.5

14

5

5 20

1

2

3

4

5

6

7

8

9

10

1112

13

14

15

16Fig. 6. Path of a simulated carbot through the playpen(units are inches). The light is located at the origin. Thedirection of the arrows indicate carbot's current heading. Thenumbers on the path refer to steps in a sequence of motion.1-8 occurred during avoid-mode, 9-16 occurred during seek-mode. Note that it has satis�ed its goals at steps 8 and 16.To enact these strategies, when in avoid-mode, �rstcarbot moved backward away from the light (steps 1-3). Then it alternated between moving forward turningleft and backward turning right, until it was facing awayfrom the light (steps 4-8). When in seek-mode, it al-ternated between moving backward turning right andforward turning left, until it was facing the light (steps9-13). Then it moved forward towards the light (steps14-16).
1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

16

−1.0 1.5
−1.3

principal
component 2

0.3

pr
in

ci
pa

l
co

m
po

ne
nt

 3

A

B

C
D

Fig. 7. Path of the network's internal states correspondingto the actions in Figure 6. The shaded regions highlight themost visited areas. When carbot is orienting itself toward thelight in seek-mode, the network alternates between regions Aand B. When carbot is orienting itself away from the light inavoid-mode, the network alternates between C and D.To examine how the network has implemented thesestrategies we ran principal components analysis on thehidden layer activations from 5,000 cycles of the trainednetwork. Whereas Figure 6 shows the path of carbot inthe playpen, Figure 7 shows the path of the network'sinternal states at each of the same points in time. Thetwo modes of carbot's behavior, seeking and avoiding thelight, are distinct in the network's internal transitions as

well. In addition, the two phases of each mode, orienttoward then move forward or move backward then orientaway, are also evident. Another interesting aspect ofFigure 7 is that regions A and B are much more compactthan C and D which reects the fact that seeking thelight (A and B) is a more constrained task than avoidingthe light (C and D).In summary, the behavior produced by the networkcontrollers is plan-like in a number of ways. First, thecontrollers learned to associate abstract goals with se-quences of primitive actions which occurred over time.Second, the behavior can be easily described hierarchi-cally in abstract terms (see Figure 8). Finally, the con-troller can exibly react to the environmental conditionswhile still maintaining its overall strategy. For example,if a wall is encountered during the move-toward-the-lightphase of the seek strategy, then carbot suspends its cur-rent task of heading to the light by backing away fromthe wall, and then returns to moving forward towardsthe light.
light as food

avoid light

go away
from light

backward

orient
away from
light

backward
left

forward
right

seek light

orient
towards
light

forward
left

backward
right

go to
light

forwardFig. 8. A hierarchical view of carbot's behavior.In other respects this behavior is not very plan-like,at least as planning is traditionally conceived. The con-trollers do not consistently anticipate and avoid punish-ment, nor attempt to minimize their resources to pro-duce optimal behavior, and the number and complex-ity of strategies they exhibit is still minimal. In spiteof these de�ciencies, we believe that the multi-step, al-most procedural behavior that emerged from the lightas food problem is interestingly plan-like. Our resultslend empirical weight to the argument that complex be-havior can result from the low-level interaction of anautonomous agent with its environment.7. AcknowledgementsWe would like to thank Sven Anderson, Amy Barley,Laura Blankenship, Dave Chalmers, Mike Gasser, JimMarshall, Devin McAuley, Jonathon Mills, John Nien-art, Cathy Rogers, and Andy Strauss for their supportduring this research. Thanks also to Yoshiro Miyata andAndreas Stolcke for their cluster and principal compo-nent analysis program.References[Ackley and Littman, 1990] Ackley, D. H. and Littman,M. L. (1990). Generalization and scaling in reinforcementlearning. In Touretsky, D. S., editor, Advances in NeuralInformation Processing Systems 2, pages 550{557. MorganKaufmann, San Mateo, CA.[Chapman and Agre, 1987] Chapman, D. and Agre, P. E.(1987). Abstract reasoning as emergent from concrete ac-tivity. In George�, M. P. and Lansky, A. L., editors, Rea-soning about actions and plans: Proceedings of the 19866

Workshop, pages 411{424. Morgan Kaufmann, Los Altos,CA.[Elman, 1990] Elman, J. L. (1990). Finding structure intime. Cognitive Science, 14:179{212.[Maes, 1990] Maes, P. (1990). Guest editorial: Designingautonomous agents. Robotics and Autonomous Systems,(6):1{2.[Martin, 1992] Martin, F. (1992). Mini board 2.0 technicalreference. MIT Media Lab, Cambridge MA 02139.[Russell and Wefald, 1991] Russell, S. and Wefald, E.(1991). Do the Right Thing: Studies in Limited Ratio-nality. MIT Press, Cambridge, MA.

7

	Emergent Control and Planning in an Autonomous Vehicle
	Citation

	Untitled

