Bryn Mawr College
Scholarship, Research, and Creative Work at Bryn Mawr College

Computer Science Faculty Research and

Scholarship Computer Science

1993

Emergent Control and Planning in an Autonomous Vehicle

Lisa Meeden
Gary McGraw

Doug Blank
Bryn Mawr College, dblank@brynmawr.edu

Follow this and additional works at: https://repository.brynmawr.edu/compsci_pubs

b‘ Part of the Computer Sciences Commons
Let us know how access to this document benefits you.

Citation
Meeden, L.A., McGraw, G.E., and Blank, D.S. (1993). Emergent Control and Planning in an Autonomous
Vehicle. In Proceedings of the 15th Annual Cognitive Science Society Conference. (PDF)

This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College.
https://repository.brynmawr.edu/compsci_pubs/23

For more information, please contact repository@brynmawr.edu.

https://repository.brynmawr.edu/
https://repository.brynmawr.edu/compsci_pubs
https://repository.brynmawr.edu/compsci_pubs
https://repository.brynmawr.edu/compsci
https://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/open-access-feedback.html
https://repository.brynmawr.edu/compsci_pubs/23
mailto:repository@brynmawr.edu

Emergent Control and Planning in an Autonomous Vehicle
Appeared in Proceedings of the Fifteenth Annual Conference of the Cognitive Science Society

Lisa Meeden! and Gary McGraw*' and Douglas Blank'
TDepartment of Computer Science
*Center for Research on Concepts and Cognition
Indiana University
Bloomington, Indiana 47405
meeden@cs.indiana.edu gem@cogsci.indiana.edu blank@cs.indiana.edu

Abstract

We use a connectionist network trained with reinforce-
ment to control both an autonomous robot vehicle and
a simulated robot. We show that given appropriate
sensory data and architectural structure, a network
can learn to control the robot for a simple navigation
problem. We then investigate a more complex goal-
based problem and examine the plan-like behavior that
emerges.

1. Autonomous agents

An autonomous agent can be abstractly defined as a
mapping from a sequence of sensory inputs to an ap-
propriate action in response to these percepts. Such
an agent is autonomous to the extent that its be-
havior is determined by its immediate inputs and
past experience, rather than by its built-in control
[Russell and Wefald, 1991]. We are interested in investi-
gating the cognitive capabilities of autonomous agents.
We believe that cognitive behavior can emerge from the
reactive, situated activity of autonomous agents.

Some consensus exists about how to design au-
tonomous agents. There should be a relatively direct
coupling between perception and action, control should
be distributed and decentralized, and most importantly,
there should be a dynamic interaction between the envi-
ronment and the agent [Maes, 1990]. However, no such
consensus exists on the best method to implement these
design features. Connectionist networks can easily ac-
commodate all these design features and we believe they
can be effective mechanisms for controlling autonomous
agents.

This paper focuses on exploring connectionist designs
for controlling simple navigation in an autonomous ve-
hicle. We conclude by applying the successful design
features to a more difficult problem and examine the
plan-like behavior that emerges.

2. Methodology

Given that a connectionist controller will be used, there
are still a number of implementation questions to be re-
solved. First, what sorts of sensory abilities will the
controller need to simply react effectively to the envi-
ronment? Second, what sort of memory or training sub-
tasks would enable the controller to produce more com-
plex responses to the environment? Third, how should
the controller be trained so that the behavior emerges
rather than being specified explicitly?

We examine these implementation questions by test-
ing network controllers for both a real and simulated
robot in a very simple environment, using as experimen-
tal variables both type of sensory data, type of training
subtasks, and amount of memory. To train the network

controllers, we use a reinforcement learning algorithm
which converts abstract measures of goodness (reward
and punishment) into specific teacher signals.

The environment, called the “playpen”, is a rectan-
gular box (2 x 4 feet) with a light in one corner. The
reinforcement training problems we investigate involve
coordination of motor activity with the information be-
ing supplied by the sensors. The navigation problem,
which we refer to as evoid and mowve, reinforces the robot
for moving in the playpen while avoiding the walls. The
more difficult problem, light as food, adds a goal state
in order to simulate hunger, and reinforces the robot
for periodically seeking and avoiding the light while still
avoiding the walls and moving.

By holding a problem constant and varying sensory
ability we can determine to what extent the addition
of more sensors helps the robot succeed at its prob-
lem. Similarly, we can evaluate the utility of contextual
memory and different training subtasks such as auto-
association and prediction.

3. Carbot—an autonomous robot

3.1 The autonomous vehicle

Our robot, called carbot, is a modified toy car (6 x 9
inches) controlled by a programmable mini-board (de-
signed by [Martin, 1992]). Carbot was inexpensive
to build, primarily because it makes use of primitive
sensors—no lasers, video, or sonar. It has two servo-
motors; one controls forward and backward motion and
the other steering. The robot has two types of physi-
cal sensors: digital touch sensors on the front and back
bumpers, and analog light sensors on stalks near the
back. The light sensors are directed 30 degrees to each
side of carbot.

3.2 The control networks

Carbot is controlled by a remote connectionist network
that communicates with the mini-board. The network
gathers input data from the sensors and determines how
to set the motors for the next time step. Figure 1 shows
the standard network used in our experiments.

There are four discrete sets of input units; three are
for sensors and one is for context memory. The first
set represents the previous state of the two motors—
two units per motor. The first motor unit represents
the spin direction of the rear motor (this determines di-
rection of motion—forward or backward). The second
unit designates the state of the motor as on or off. The
third unit represents the spin direction of the front motor
(this determines the direction of turning—Ileft or right).
Note that in order to turn carbot must have both motors
running—the back motor provides movement while the
front motor steers. The fourth unit designates the state
of the front motor as on or off.

Motors
Copy

connections t

Q0000

(00000
[0 00|00 00 ?na?g 00000

Motors Digital Context

Copy connections

Sensor banks

Fig. 1. The standard control network. Bold arrows indi-
cate that the units are fully connected. Note that some ex-
periments were conducted without any context units and/or
without any sensor units.

The next set of units in the input layer represent the
state of the digital touch sensors. There are four digital
sensors—three in front and one in back. Two of the
front sensors are out to either side so that carbot can
sense side collisions when moving forward. The next
two units represent the state of the analog light sensors,
whose values can range from 0.0 to 1.0 (due to ambient
light, their values rarely fall below 0.25). One is for the
right sensor, the other for the left.

The context units are present in most, but not all of
the experiments. Activations from the hidden layer on
the previous time step are copied into the context units
directly. The simple recurrence of the context units al-
lows the network to have a limited short-term memory of
its past states [Elman, 1990]. We refer to the simple re-
current networks as SRNs and the feed-forward networks
(without context memory) as FFNs.

The four output units of the standard network deter-
mine what the activity of the motors will be for the next
time step. We show a recurrent connection between the
output motor units and the input motor units because
the robot has no physical sensors to tell what its motors
are doing. Since the network controls the motors, the
information from the last time step can be easily copied
down to the input layer and considered an additional
type of sensor.

Motors

0O oo\ﬁﬁo

30000 0oooooo00 00!

[O e eexe]

N
[00000]
[0 00][0o0o0] Ona?g 00000

Motors Digital Context

Sensor banks

Fig. 2. To add prediction to the network, six additional out-
put units representing the predicted sensor information were
required. To add auto-association, ten more output units rep-
resenting the current state of the motors and the sensors were
required. The most complex network we investigated (the one
shown) includes both prediction and auto-association.

Part of our research involved determining the effect of
adding specific training subtasks to the controller net-
work such as auto-association and prediction. Figure 2
shows how these subtasks are included. In general, auto-
association forces the network to pay more attention to

its inputs (since it must learn to duplicate the input ac-
tivations on the output layer). Prediction may help the
network build a more complex model of its environment
so that it can, for instance, avoid punishment by pre-
dicting that it may hit a wall during the next time step.
Another portion of our research involved determining the
effect of varying the size of the contextual memory.

3.3 Reinforcement training

Because autonomous agent problems are typically de-
fined in terms of abstract goals rather than specific in-
put to output pairs, some type of reinforcement proce-
dure is required for learning. For example, in the avoid
and move problem, suppose that carbot has just bumped
into a wall triggering its front sensors. Any action that
moves it away from the wall and clears its sensors should
be rewarded, while any action that persists in bumping
into the wall should be punished. There is not necessar-
ily one “right” action for a given situation, and even if
there were, it might not be known a prior:.

In all of our experiments, the control networks were
trained with a modified version of the complementary
reinforcement back-propagation (CRBP) learning algo-
rithm [Ackley and Littman, 1990]. Back-propagation
learning requires precise error measures for each output
produced by a network. CRBP provides these exact er-
ror measures from the abstract reward and punishment
signals as follows.

A forward propagation of the input values produces
a real-valued search vector S. Each of these activations
is interpreted as the probability that an associated ran-
dom bit takes on the value 1. From these probabilities a
binary output vector O is stochastically produced. If O
is rewarded, then learning should push the network to-
wards this vector, so the error measure (O — S) is back-
propagated. If O is punished, then learning should push
the network away from this vector, but the appropriate
direction is not clear. CRBP chooses to push the net-
work directly toward the complement of O, using the er-
ror measure ((1—O0)—S). In this way rewarded outputs
will be more likely to occur again and punished outputs
will tend to produce the complement output vector in
similar situations.

CRBP was designed for static problems. Because car-
bot’s problems are temporally extended, we needed to
modify the algorithm. To the best of our knowledge,
this work is the first application of CRBP to a continuous
problem. The original version of CRBP uses a learning
rate ten times greater for reward than for punishment to
reflect the informativeness of the associated errors. But
in carbot’s domain, the system gets rewarded for simply
moving in the environment, so the reward to punishment
ratio 1s much larger than for static problems, making
such a large disparity in learning rates infeasible.

To side-step this problem, we empirically determined
that a reward learning rate only three times the punish-
ment learning rate worked well for our dynamic domain.
In the experiments reported below, we used a reward
learning rate of 0.3, a punishment learning rate of 0.1,
and no momentum for training the motor outputs. Any
additional outputs for which an explicit target was avail-
able (e.g., auto-association and prediction), were trained
with a fixed learning rate of 0.5.

3.4 Evaluating global behavior

After running many preliminary tests with carbot, we
found one global metric that provide a good measure of
overall behavior—the percent time punished. We used

this measure for the graphs shown in this paper as well
as for the statistical analyses. All of the statistical anal-
yses reported below make use of analysis of variance
(ANOVA) testing. Post hoc significance comparisons
were done using Scheffé tests.

It is important to keep in mind the temporal nature
of our experimental problems. Analyzing one particular
time-slice of behavior is not useful. Instead, behavior
over some large range of time-slices must be considered.
We found that most avoid and move networks tended
to converge (i.e., learn a successful strategy) within the
first 3000 cycles of a run. We chose to consider these
first cycles the “training phase”. We used the next 2000
cycles of a run (during which learning continued) as the
“performance phase”. We gathered data during the per-
formance phase in order to evaluate carbot’s behavior.

3.5 Training in the real world

Since the robot had to physically move in the world,
bumping into things, it took a long time to train and
test a particular controller network (approximately two
and a half hours for a 5,000 cycle run). To get around
the time problem we decided to simulate the behavior of
the robot in software. We are aware that simulators are
often too clean and not very much like the real world,
but since we actually have a real robot we were able to
test the correspondence of our simulator with the real-
world behavior of the robot. We even did a series of
“brain-transplant” experiments to verify that the sorts
of networks that worked well in the simulator would work
well in the robot.

4. The carbot simulator

The simulator is a C program using the same controller
networks as the robot. We empirically determined the
average turning radius and distance traveled by carbot
in the playpen. We used these averages in the simulator,
adding small amounts of random noise to its heading,
position, and analog sensor readings on every time step.
To test the accuracy of the simulator we transplanted
trained networks from the simulator to the robot and
from the robot to the simulator, and then compared the
behavior in terms of percent time punished.

4.1 Transplanting controller networks

Transplant tests provided a surprising result. The
robot’s behavior on any trained network (trained either
in the simulator, or in the robot) is always superior to the
simulator’s behavior. We suspect that this is because the
robot’s movements are not noisy in the same way as the
simulator’s. The robot’s movement is only occasionally
noisy while the simulator systematically adds noise on
every time step. Interestingly, this added noise seems to
be beneficial to training. Just as it is useful for runners
to train with weights on their legs and then run with-
out them during competition, it seems useful to have
more noise during simulation training than is actually
present during robot testing. Further investigation into
the benefits of a noisy simulator is needed. We would like
to compare controllers trained in the simulator without
noise to controllers trained with noise.

The simulated robot’s behavior is close enough to the
actual behavior of carbot to warrant use of the simulator
for research. Our methodology is to use the simulator
to test hypotheses and develop useful architectures that
we then apply back to the robot. This saves many hours
since a typical 5,000 cycle run on the simulator takes less
than a minute (a speedup factor of 150).

5. Experiments in the simulator

We ran several groups of experiments with the simulator.
For each experimental variable described below, 20 tri-
als were run. For each trial, the network controller being
investigated was initialized with a random set of weights
and run for 5000 cycles. Performance was evaluated dur-
ing the last 2000 cycles of each trial producing an average
percent punishment. These averages were then averaged
over all 20 trials. We then applied ANOVA to these com-
posite averages in order to determine the significance of
the variable.

There was a large amount of variation across the 20
trials for a particular variable (the standard deviations
ranged from 4 to 13). We believe that the primary source
of this variation was the random initial weights. Some
sets of random weights tended to be quite bad while oth-
ers were quite good. Unfortunately the large variations
in the results may have tended to obscure significant ef-
fects in the experiments.

5.1 The avoid and move problem

Recall that for this problem the robot was rewarded for
avoiding walls while constantly moving. There are many
possible successful strategies for this simple navigation
problem. The easiest solution is to continually turn in
one direction forming a circular path which avoids all the
walls. The limited size of the playpen made this solution
impossible since carbot’s turning radius was larger than
the smallest dimension (although this was a frequent re-
sult in larger environments not reported on here). An-
other simple solution is to oscillate one step forward then
one step backward, this proved to be the most frequent
solution in the experiments reported here. Since car-
bot’s only constraints were to keep moving and avoid
walls, there was no impetus to explore the environment
or to develop more complex patterns of behavior.

5.1.1 Baselines

To determine the baseline behavior of the simulator we
did not use a controller network, but instead set the mo-
tors randomly. Since there was no network to be trained,
there was no learning. This resulted in an average pun-
ishment of 67.29%.

To determine the baseline behavior of the network ar-
chitectures, we ran two sets of tests, one with FFNs and
the other with SRNs. Both types of networks had access
to the sensor data, but did not learn. We wanted to see
how well network controllers with random weights would
perform. The average punishment rates were 75.47% for
the FFN model and 72.60% for the SRN model. The
differences between either of the non-learning network
baselines vs. the simulator baseline are both significant
(p < 0.01). This is interesting because it shows that un-
trained network controllers perform worse than random.
Fortunately learning alleviates this.

5.1.2 Varying sensory data

To discover the effect that the addition of sensor data
has on controlling ability, we tested 16 types of networks.
Starting with either a FFN or an SRN (with 5 context
units) we systematically added all combinations of sen-
sors: analog (A), digital (D), and motor (M).

Figure 3 depicts the results of these variations. It
shows average convergence histories of the 16 types of
networks, one curve for the 20 trials of each type. This
kind of graph gives a sense of the learning as it progresses
in time. Data points for the graphs were calculated by
finding the percentage of punishments in 500 cycle bins.

% Punishments

45 —
40|
35—
FFN+DA
FFN+D
30| SRN+D
\/,/\ SRN+DA
e .. FEN+MD
ST FEN+M
25| >< SRN+MA
FFN+MA
-~ SRN+MDA
20| FFN+MDA
2 ... SRN+MD
SRN+M
15 _
Training phase Performance phase
I I I I Cycles
1000 2000 3000 4000 5000

Fig. 3. Convergence histories for the 16 types of networks
used to investigate the utility of sensory input. Each curve
represents the average performance of 20 networks. To the
right of each curve is a label denoting the category of the
network. The labels make use of the following convention:
digital sensors (D), analog sensors (A), motor sensors (M).

Percentages of punishment in each bin were plotted and
connected to form a curve. As noted above, we divided
each run into two phases, a training phase and a perfor-
mance phase. These phases are marked on the graph.
The statistical analysis was run on the averages over the
performance phases.

As seen in Figure 3, the sensory input networks can
be divided into three groups. Starting at the top of the
graph, the first group is made up of the first four types
of network (which all failed to converge). These are net-
works of both types (SRN and FFN) with either no in-
puts or analog inputs alone. The next group is made up
of networks without motor sensors but including digital,
analog, or both. The most successful group includes all
the networks with motor sensors. Of all the 16 types of
networks, the best is an SRN with motor sensors alone.

Through statistical analysis we found that there is a
significant difference between the SRN and FFN models
for the sensory input tests (p < 0.05). On average the
SRNs were punished 27.31% of the time while the FFNs
were punished 29.53% of the time. However, there is
no significant interaction between the architecture types
and the inputs. This is also apparent from the conver-
gence graph.

The analysis confirmed that networks with access to
motor sensors far outperformed networks without mo-
tor sensors. In pairwise comparisons, networks with
motor inputs alone were significantly better than those
with no input, digital input alone, or analog input alone
(p < 0.01). Motors alone were also better than digital
and analog together (p < 0.05). Although there was
no significant difference between digital alone and ana-
log alone, combined they are better than analog alone
(p < 0.01).

It is interesting that motors, digitals, and analogs to-
gether are not significantly better than motors alone.

Intuitively we expected that the more perceptual input
available, the better the controller would be. This may
be true for increasingly complex problems, but clearly
for this problem, just having access to the previous mo-
tor settings alone is very informative. Recall that the
motor sensor values are provided through a recurrence
from the output layer to the input layer (see Figure 1).
This simple, one-step memory is probably what makes
the motor sensors so much more useful than the other
Sensors.

5.1.3 Varying training subtasks

To discover the effect that adding training subtasks
has on controlling ability, we tested four types of net-
works. Each was an SRN provided with all the sensory
data (motors, digitals, and analogs). Figure 4 shows the
convergence histories of the four architecture networks.
The best two networks (at the bottom of the graph) both
have prediction units.

% Punishments
45— —

404 ™
35
30

25|

><>\ SRN+auto+pred

SRN+pred
Performance phase

\ \ \ \ \
1000 2000 3000 4000 5000

20—

15—

Training phase

10—

Cycles

Fig. 4. Convergence histories of the four types of networks
used to determine the utility of training subtasks. Some
networks have prediction units (pred), others have auto-
association (auto).

Although there appears to be a substantial advantage
for networks with prediction, no significance is found
when all four networks are compared (the standard de-
viations are greater than 10). However, if the compar-
ison is changed from a four-level comparison to a two-
level comparison (between networks with prediction vs.
networks without prediction), the result is significant
(p < 0.01) with the average time punished being 13.75%
vs. 21.88%.

Forcing the network, through auto-association, to pay
more attention to its perceptual input is not enough to
improve performance. Yet having to predict the subse-
quent input is extremely useful for learning navigation
control. Learning to mimic the input is a static problem,
while predicting the next input is a temporal problem.
Thus it appears that the network does not use its context
memory effectively unless its training subtask explicitly
depends on temporal information.

5.1.4 Varying contextual memory

To discover the effect that the size of the contextual
memory has on controlling ability, we tested seven types
of networks, varying memory size from 0 to 50 units.
Again, each of the networks had access to all of the avail-
able perceptual data, including motors.

% Punishments
50 —

45
20— -
35—

35—

el 2 units

25

5 units
>~ 0 units

20— —

10 units

15 units

15 |

o /\ _
50 units

Training phase Performance phase

I I I I [Cycles
1000 2000 3000 4000 5000

Fig. 5. Convergence histories of the seven types of networks
used to determine the utility of contextual memory.

Figure 5 shows the convergence histories of the seven
types of network tested for memory utility. The graph
shows that above a certain memory size (somewhere be-
tween 5 and 10 units) more memory seems useful. How-
ever, the only significant pairwise results were size 20 vs.
size 2 (p < 0.05) and size 50 vs. size 2 (p < 0.01). There
may be a point at which too large a memory becomes
disadvantageous, but we did not have the resources to
explore this question.

In these experiments, pairwise comparisons between
SRNs with up to 50 units of context memory are not
significantly better than FFNs with no context mem-
ory at all (shown as 0 units on the graph). This result
is somewhat surprising. Although the avoid and move
problem does not require temporal information, we ex-
pected that access to temporal information would be a
significant benefit in learning control. This result can be
explained by the findings from the input experiments.
We noted earlier that the motor inputs are really a form
of recurrence from the output layer to the input layer.
They provide information about the previous time step
and are therefore temporal in nature. This means that
the FFN model is not strictly feed-forward.

In summary, the avoid and move experiments revealed
that, contrary to our intuitions, more is not always bet-
ter (at least for this simple navigation problem). For
the sensory input, the past motor states were the most
informative, followed by the digital touch sensors, and
finally the analog light sensors. Using all three types of
input was not better than using the motor sensors alone.
With respect to training subtasks, prediction was a sig-
nificant benefit, but auto-association did not seem to be
useful. Finally, for the contextual memory size, more
actually was better, although there may be some limit

to this improvement. In the next set of experiments we
apply these design insights to a more difficult problem.

5.2 The light as food problem

Since we believe that abstract reasoning abilities, such
as planning, arise developmentally from concrete ac-
tivity [Chapman and Agre, 1987], a connectionist, au-
tonomous agent controller should also be able to exhibit
plan-like behavior if given a more complex problem.

For this problem, a goal unit was added to the input
layer. A positive value for the goal indicated that carbot
should seek out the light (placed in one corner of the
playpen) until a maximum light reading was obtained.
Once this happened, the goal unit switched to a nega-
tive value, indicating that carbot should avoid the light
until a minimum light reading was obtained. Successful
avoidance switched the goal back to seek-mode again.

When in seek-mode, carbot was rewarded if the sum of
its light sensor readings increased relative to the previous
time step. When in avoid-mode, carbot was rewarded if
the sum of its light sensor readings decreased relative to
the previous time step. Carbot was concurrently trained
on the avoid and move problem.

For these experiments we focused on one type of SRN
model. The controller networks had a context memory
of size 20, used both prediction and auto-association,
and were provided with all the available sensory inputs.
Again 20 trials were run.

Intuitively the light as food problem seems much more
difficult than the evoid and move problem. Baseline ex-
periments proved this to be true. Without learning, the
controller networks for light as food were punished on
average 90.42% of the time, while the avoid and move
SRNs were punished 75.47%, which is a significant dif-
ference (p < 0.01).

The difficulty of this problem is also reflected in the
amount of training required. After 100,000 cycles, the
most successful network controller was still receiving
punishment 46.11% of the time while the average per-
formance was 50.71%. After another 100,000 cycles (for
a total of 200,000), the best network improved to 17.78%
performance while the average was 23.37%.

Throughout the training phases, there was a general
trend observed in the distribution of the punishments for
all the networks. To illustrate, we will describe this trend
using one network. In the initial training phase, 36% of
the punishment resulted from sensor hits, 12% from not
moving, 43% from seeking the light incorrectly, and 9%
from avoiding the light incorrectly. Note that it is easier
to avoid the light than to seek it, since there are many
positions in the environment which satisfy the minimum
light requirement, but few that satisfy the maximum re-
quirement. By the end of the second training phase, the
distribution of punishments was substantially different,
55% from sensor hits, 2% from not moving, 24% from
seeking the light incorrectly, and 19% from avoiding the
light incorrectly. The controller has become almost as
successful at seeking the light as avoiding the light.

6. Emergent planning

The same basic strategies were adopted by all 20 con-
troller networks trained on the light as food problem.
When in avoid-mode, first move away from the light,
then orient carbot away from the light. When in seek-
mode, the opposite strategy was used, first orient carbot
toward the light, and next move to the light. See Fig-
ure 6 for examples of these strategies from an actual run
of one network.

Fig. 6. Path of a simulated carbot through the playpen
(units are inches). The light is located at the origin. The
direction of the arrows indicate carbot’s current heading. The
numbers on the path refer to steps in a sequence of motion.
1-8 occurred during avoid-mode, 9-16 occurred during seek-
mode. Note that it has satisfied its goals at steps 8 and 16.

To enact these strategies, when in avoid-mode, first
carbot moved backward away from the light (steps 1-
3). Then it alternated between moving forward turning
left and backward turning right, until it was facing away
from the light (steps 4-8). When in seek-mode, it al-
ternated between moving backward turning right and
forward turning left, until it was facing the light (steps
9—13).) Then it moved forward towards the light (steps
14-16).

0.3~ A
o
<
38
85
£
£8
12 ;/I 14
B"10
-13 principal f
-1.0 component 2 15

Fig. 7. Path of the network’s internal states corresponding
to the actions in Figure 6. The shaded regions highlight the
most visited areas. When carbot is orienting itself toward the
light in seek-mode, the network alternates between regions A
and B. When carbot is orienting itself away from the light in
avoid-mode, the network alternates between C and D.

To examine how the network has implemented these
strategiles we ran principal components analysis on the
hidden layer activations from 5,000 cycles of the trained
network. Whereas Figure 6 shows the path of carbot in
the playpen, Figure 7 shows the path of the network’s
internal states at each of the same points in time. The
two modes of carbot’s behavior, seeking and avoiding the
light, are distinct in the network’s internal transitions as

well. In addition, the two phases of each mode, orient
toward then move forward or move backward then orient
away, are also evident. Another interesting aspect of
Figure 7 is that regions A and B are much more compact
than C and D which reflects the fact that seeking the
light (A and B) is a more constrained task than avoiding
the light (C and D).

In summary, the behavior produced by the network
controllers is plan-like in a number of ways. First, the
controllers learned to associate abstract goals with se-
quences of primitive actions which occurred over time.
Second, the behavior can be easily described hierarchi-
cally in abstract terms (see Figure 8). Finally, the con-
troller can flexibly react to the environmental conditions
while still maintaining its overall strategy. For example,
if a wall is encountered during the move-toward-the-light
phase of the seek strategy, then carbot suspends its cur-
rent task of heading to the light by backing away from
the wall, and then returns to moving forward towards
the light.

light asfood
seek Iight/ avoid light
orient goto go away orient
towards light from light away from
light light
backward forward forward backward forward backward
right left right left

Fig. 8. A hierarchical view of carbot’s behavior.

In other respects this behavior is not very plan-like,
at least as planning is traditionally conceived. The con-
trollers do not consistently anticipate and avoid punish-
ment, nor attempt to minimize their resources to pro-
duce optimal behavior, and the number and complex-
ity of strategies they exhibit is still minimal. In spite
of these deficiencies, we believe that the multi-step, al-
most procedural behavior that emerged from the light
as food problem is interestingly plan-like. Our results
lend empirical weight to the argument that complex be-
havior can result from the low-level interaction of an
autonomous agent with its environment.

7. Acknowledgements

We would like to thank Sven Anderson, Amy Barley,
Laura Blankenship, Dave Chalmers, Mike Gasser, Jim
Marshall, Devin McAuley, Jonathon Mills, John Nien-
art, Cathy Rogers, and Andy Strauss for their support
during this research. Thanks also to Yoshiro Miyata and
Andreas Stolcke for their cluster and principal compo-
nent analysis program.

References

[Ackley and Littman, 1990] Ackley, D. H. and Littman,
M. L. (1990). Generalization and scaling in reinforcement
learning. In Touretsky, D. S., editor, Advances in Neural
Information Processing Systems 2, pages 550-557. Morgan
Kaufmann, San Mateo, CA.

[Chapman and Agre, 1987] Chapman, D. and Agre, P. E.
(1987). Abstract reasoning as emergent from concrete ac-
tivity. In Georgeff, M. P. and Lansky, A. L., editors, Rea-

soning about actions and plans: Proceedings of the 1986

Workshop, pages 411-424. Morgan Kaufmann, Los Altos,
CA.

[Elman, 1990] Elman, J. L. (1990). Finding structure in
time. Cognitive Science, 14:179-212.

[Maes, 1990] Maes, P. (1990). Guest editorial: Designing
autonomous agents. Robotics and Autonomous Systems,
(6):1-2.

[Martin, 1992] Martin, F. (1992). Mini board 2.0 technical
reference. MIT Media Lab, Cambridge MA 02139.

[Russell and Wefald, 1991] Russell, S. and Wefald, E.
(1991). Do the Right Thing: Studies in Limited Ratio-
nality. MIT Press, Cambridge, MA.

	Emergent Control and Planning in an Autonomous Vehicle
	Citation

	Untitled

