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Primer

The development of autism
spectrum disorders: variability
and causal complexity
Robert H. Wozniak,1,2* Nina B. Leezenbaum,2 Jessie B. Northrup,2 Kelsey L. West2

and Jana M. Iverson2

The autism spectrum is highly variable, both behaviorally and neurodevelop-
mentally. Broadly speaking, four related factors contribute to this variability:
(1) genetic processes, (2) environmental events, (3) gene × environment interac-
tions, and (4) developmental factors. Given the complexity of the relevant pro-
cesses, it appears unlikely that autism spectrum atypicalities can be attributed to
any one causal mechanism. Rather, the development of neural atypicality reflects
an interaction of genetic and environmental risk factors. As the individual grows,
changes in neural atypicality, consequent variation in behavior, and environmen-
tal response to that behavior may become linked in a positive feedback loop that
amplifies deviations from the typical developmental pattern. © 2016 Wiley Periodi-

cals, Inc.

How to cite this article:
WIREs Cogn Sci 2016. doi: 10.1002/wcs.1426

INTRODUCTION

The autism spectrum consists of a wide range of
mental and behavioral atypicalitiesa that usually

appear early in childhood, change with development,
and continue to manifest themselves throughout life.
Individuals said to be ‘on the autism spectrum’ typi-
cally receive a diagnosis of autism spectrum disorder
(ASD) based on a series of criteria developed by the
American Psychiatric Association. These criteria are:
(1) ‘persistent deficits in social communication and
social interaction across multiple contexts…’;
(2) ‘restricted, repetitive patterns of behavior, inter-
est, or activities…’; (3) the presence of atypicalities
‘in the early developmental period…’; (4) ‘clinically
significant impairment in social, occupational, or
other important areas of current functioning’;
and (5) ‘disturbances … not better explained by

intellectual disability … or global developmental
delay’.1 Although these criteria might appear to be
narrow enough to define a relatively homogeneous
entity, they are not. Because DSM criteria can be met
in widely differing ways, there is considerable varia-
tion among those with the diagnosis. In this article,
we will first describe this variability and then discuss
some of what we know about the causal complexity
that underlies it.

WIDE VARIATIONS AMONG THOSE
WITH AN ASD DIAGNOSIS

Much of the variability in ASD derives from the fact
that the diagnostic criteria are complex and change
with development. We consider each criterion
in turn.

• Because social communication and social inter-
action occur in many different ways from
infancy to adulthood, ‘persistent deficits’ in this
area may include any or all of the following:
atypical eye gaze, lack of gestural communica-
tion, overly neutral or exaggerated facial
expression, impairment in use of language for
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reciprocal communication, problems initiating
social interaction, sharing thoughts or feelings,
or responding to social cues, or difficulties in
developing, understanding, and maintaining
relationships with others. Some individuals with
ASD avoid eye contact, rarely smile or frown,
and do not gesture or speak. Others develop
some productive speech and language compre-
hension, but have great difficulty in using their
language skills to interact socially. Still others
are highly verbal but have difficulty utilizing the
subtle nonverbal cues that regulate communica-
tive exchange, facilitate fluent interaction, and
promote the establishment and maintenance of
relationships.

• ‘Restricted repetitive patterns of behavior, inter-
est, and activities’ may include simple motor
stereotypies such as hand and arm flapping or
rocking back and forth, repetitive use of objects,
involuntary repetition of another’s vocaliza-
tions, resistance to change in routines or rituals,
extreme preoccupation with particular objects
or events, or rigidity of thinking. This criterion
can be met by hypersensitivity to sound or indif-
ference to pain, heat, or cold. Some individuals
with ASD are fascinated with objects that spin,
imitate verbatim the speech of others, become
agitated when a bedtime routine is altered, and
find it difficult to adjust their own actions to the
demands of changing situations. Others become
engrossed in the movement of running water,
the sound of a vacuum cleaner, or the sound and
motion of a flushing toilet. Still others may be
overwhelmed by the sounds and sights of a
department store or insensitive to the tempera-
ture of their bath water.

• The degree to which these behaviors are
observed ‘in the early developmental period’ is
similarly variable. The emergence of ASD has
traditionally been described as occurring in one
of two ways2: (1) early onset, in which symp-
toms begin to appear by or before the end of
the first year and become more obvious with
age; and (2) regressive, in which children
appear to develop well within the norm during
the first year or two, then lose already-acquired
skills and begin to exhibit the atypicalities char-
acteristic of ASD. Recently, however, it has
become clear that this dichotomy is too simple.
Just as there are wide variations in autistic
behavior, there are wide variations in the
shapes of individual ASD developmental trajec-
tories. Indeed, as Ozonoff et al. pointed out,2

there are in fact ‘many intermediate phenotypes
containing mixed features and varying degrees
of early deficits, subtle diminishments, failures
to progress, and frank losses…’ (p. 325).

Not surprisingly, therefore, the age at which children
receive a definitive diagnosis of ASD (rarely before
age two and a half and frequently later3) is also
widely variable. This not only reflects the impact of
variation in trajectory shape on diagnosis, it also
reflects the fact that many diagnosis-relevant beha-
viors (e.g., difficulty using language for reciprocal
communication, problems sharing thoughts or feel-
ings, rigidity of thought) cannot be observed until
children are older. This has led to work focused on
identifying markers in infancy that might correctly
predict a later ASD diagnosis.

While the evidence for behavioral signs of ASD
in the second year is generally strong,4 the search for
infant markers during the first year has had very lim-
ited success. This may possibly be because research-
ers have been looking in the wrong place.5 Given the
standard characterization of ASD in terms of impair-
ments in social communication and social interac-
tion, attempts to identify early infant predictors of
later diagnosis have tended to focus on proto-social
and communicative behaviors. Unfortunately, infants
later receiving an ASD diagnosis have generally been
found to be indistinguishable from typically develop-
ing controls during the first year. This has been true
for variables such as frequency of gaze to faces,
shared smiles, socially directed vocalizations,6 scan-
ning of complex social scenes,7 and affective respon-
sivity in face-to-face interaction.8 Findings such as
these have led to the idea that ASD may first emerge
not in the social and communicative domains but in
lower level sensory and motor processes9 and/or in
the general mechanisms by which infants integrate
perceptual, attentional, motor, and social informa-
tion.5 While there is some evidence for this in
reported atypicalities in visual luminance contrast
sensitivity,10 visual orienting latencies,11 and postural
symmetry,12 research in these areas is just beginning;
and it is probably still fair to say that infant onset of
ASD (within Year 1) remains an assumption (for a
review, see Ref 13).

• The fourth criterion, ‘clinically significant
impairment in social, occupational, or other
important areas of current functioning,’ is
extraordinarily general and subjective. By the
time typically developing children are in school,
for example, they are generally able to dress and
undress themselves, button an overcoat, and
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brush hair or teeth. By contrast, even some ado-
lescent and adult autisticsb cannot carry out
these everyday tasks without constant supervi-
sion and assistance. Others are able to function
quite effectively in such tasks but lack the speech
needed to communicate thoughts, interests, or
even needs. Still others have good verbal skills
but find it difficult if not impossible to make
friends or to approach a stranger to ask a ques-
tion. Many autistics cannot work; others func-
tion well in customized or sheltered
employment; and still others are successful in
holding jobs, sometimes very high-level jobs, in
the community.

• The final criterion, that atypicalities are ‘not
better explained by intellectual disability or
global developmental delay’ is of little value as
a specific diagnostic marker. Cognitive impair-
ment is characteristic of a significant proportion
(but by no means all) of the ASD population
and ranges widely in severity. Developmental
delay is similarly widespread among those with
ASD and, in terms of the psychological pro-
cesses affected, variable both among and even
within individuals.

In short, autistics vary widely in diagnosis-
relevant characteristics. They also vary in how and
when in development these characteristics emerge,
the degree to which they impact daily function, the
areas of function that they impact, and ultimate diag-
nostic outcome. Furthermore, while ASD is typically
thought to be a lifelong condition, a small subgroup
of individuals not only eventually lose their autism
specific symptoms and diagnosis, but become virtu-
ally indistinguishable from typically developing chil-
dren on a variety of socialization, communication,
and language measures.15

All of this variability should not be surprising.
First, of course, given the numerous and complex
processes (e.g., neurogenesis, migration, regionaliza-
tion, synaptogenesis, synaptic pruning, and changes
in short- and long-range neural connectivity)
involved in neural development, it is apparent that
atypicality could, in principle, arise in a wide variety
of ways. Second, although atypical mental and
behavioral characteristics directly reflect atypical neu-
ral development, this is by no means a unidirectional
relationship. As atypical characteristics are expressed
in the individual’s developing interactions with a con-
stantly changing social and physical environment,
experience is likely to be atypical; and such experi-
ence, over the course of the lifespan, provides a
major source of input for continued neural

development. The processes by which the nervous
system and behavior develop and change throughout
life, in other words, are bidirectional: the nervous
system influences developing behavior and behavior
influences the developing nervous system.

NEURODEVELOPMENTAL
ATYPICALITIES: EXPLANATORY
ISSUES

Before discussing explanatory issues in ASD, it may
be useful to distinguish between two related but sepa-
rate questions of causality. The first has to do with
risk factors relevant to the occurrence of the neurode-
velopmental and cognitive atypicalities characteristic
of ASD however phenotypically expressed in behav-
ior. Roughly speaking, we can distinguish among
three categories of such factors: (1) genetic risks;
(2) environmental risks; and, because genetic and
environmental effects cannot be understood apart
from one another (3) gene–environment interactions.

The second has to do with the underlying fac-
tors that account for autistic behavior, i.e., for the
various phenotypic expressions characteristic of ASD.
Roughly speaking again, we can distinguish between
two levels of explanation in this regard: (1) neurodeve-
lopmental (theories of the developing structure and
function of the brain and nervous system); and
(2) cognitive (theories of the developing structure and
function of the mind). Examples of the first might
include early brain overgrowth,16 synaptic under-
pruning,17 over-pruning,9 imbalance between excita-
tation and inhibition,18 or impairments in long-range
neural connectivity19; examples of the second might
include deficits in theory of mind20 or in executive
functioning,21 or variations in central coherence.22,23

Although the second question is a critically
important one, addressing it would require an excur-
sion well beyond the purposes of this essay. The goal
here, therefore, is the more limited one of describing
the broad categories of factors relevant to the occur-
rence of ASD and, where evidence exists, exemplify-
ing their likely impact on phenotypic variability.

In addition, as the effects produced by factors
in each of these categories is conditioned by—and
cannot be fully understood apart from—issues of
development, we will conclude by discussing a set of
developmental issues likely to be relevant to the
explanation of ASD.

Genetic Risk Factors
There is considerable evidence, both indirect and
direct, for a significant degree of genetic risk in
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ASD.24,25 Indirect evidence includes the observation
that children who have an older sibling with ASD
are more than 10 times as likely to have ASD them-
selves as children in the general population
(e.g., see Ref 26). For twins, this rate is much
higher. Depending on the study, if one member of a
pair of monozygotic twins has an ASD diagnosis,
the proband concordance rate (the probability that
the other twin will have a diagnosis as well) ranges
from .46 to .88 or higher27 (for review, see Ref 28).
Reported proband concordance rates for dizygotic
twins, on the other hand, are much lower, ranging
from 0 to .36.29 The heritability of ASD is, there-
fore, substantial. However, it may not be as high
(.90 or so) as is typically cited.30 Indeed, one recent
twin analysis yielded an ASD heritability estimate
of .37 for autism and .38 for ASD, with 55% of
the variance attributed to shared environmental
factors.

Direct evidence comes from sources employing
a variety of approaches. One such approach involves
the study of syndromes of known single-gene origin
with autistic behavioral characteristics (often called
‘syndromic autism’31). Two of the most widely stud-
ied forms of syndromic autism involve Fragile × Syn-
drome (involving the FMR1 gene and pathogenic
mechanisms affecting synaptic plasticity and neu-
ronal connectivity) and Rett Syndrome (MeCP2 gene,
implicated in maintaining neuronal function). While
syndromes of this sort provide clear evidence that
gene-dependent neuronal pathology can be associ-
ated with autistic symptomatology, only a very small
proportion of ASD cases (e.g., approximately 3–4%
for Fragile × and Rett taken together) are
syndromic.24

Researchers have therefore also evaluated
genetic risk for nonsyndromic cases. These are cases
in which ASD is the primary diagnosis rather than
being secondary to a known genetic syndrome. Two
of the most important approaches to assessing
genetic risk for nonsyndromic ASD involve studies
evaluating gene associations and whole genome lin-
kages. Gene association studies focus on correlations
between the occurrence of the ASD phenotype and
defined genetic variants. These variants (candidate
genes) are often chosen on the basis of a priori
hypotheses concerning their probable role in aspects
of neurogenesis likely to be relevant to ASD, espe-
cially impaired synaptic function or abnormal brain
connectivity. In whole genome linkage studies,
genetic variation throughout the genome, including
rare and common inherited and de novo (present in
the child but in neither parent) mutations, is evalu-
ated for links with ASD.

Based on the evidence from almost 20 years of
gene association studies, it is clear that ASD is geneti-
cally heterogeneous. Not only are there literally hun-
dreds of genes that confer risk for ASD32 (see also
the Autism Database at https://gene.sfari.org), no sin-
gle genetic factor is present in more than a tiny frac-
tion (1–2%) of ASD cases. This heterogeneity is also
evident in research evaluating whole genome lin-
kages, even for siblings and identical twins. Thus, for
example, when scientists sequenced the complete
DNA of parents and two ASD-diagnosed siblings to
examine de novo mutations, they found that the
majority (69.4%) of the affected siblings carried dif-
ferent ASD-relevant mutations.33 This is consistent
with the fact that the kinds and severities of ASD-
associated traits that each member of a pair of identi-
cal twins manifests may vary widely even when both
have received an ASD diagnosis.34

Finally, recent analyses have provided evidence
for still another mechanism underlying genetic heter-
ogeneity in ASD. While rare inherited and de novo
variations together only contribute about 6% of the
genetic liability for ASD, a much larger contribution
derives from the influence of common variants. Com-
mon variants are inherited variations that are wide-
spread in the general population and that, taken
individually, confer only slight risk for ASD. When
present in significant numbers in the same individual,
however, the total ASD risk that they confer may be
substantial (as much as 49%30). In short, although
genetic risk is a major factor in the etiology of ASD,
the potential sources of that risk are many and
varied.

Environmental Risk Factors
As complex as it is, the environment may also be a
major source of ASD risk. This could occur, for
example, when environmental factors increase the
likelihood of de novo genetic mutations by contribut-
ing to oxidative DNA damage and/or by interfering
with DNA repair mechanisms.35 Mutagenic factors
of this sort include preconceptual exposure to heavy
metals (e.g., mercury, cadmium, and nickel) or
chlorinated solvents (e.g., trichloroethylene and vinyl
chloride) typically present in industrial pollution.
They also include residence in higher latitudes, in
cities, or in areas with increased precipitation, factors
shown to be associated with reduction in levels of
Vitamin D involved in DNA repair and protection
against oxidative stress.

Another way in which environmental factors
might confer ASD risk is by influencing the way in
which genes are expressed during development, a
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process known as ‘epigenetic variation.’ Recent evi-
dence from animal work and from research in areas
such as cancer risk indicate that a variety of higher-
level environmental factors such as diet, acoustic and
visual stimulation, stress, exposure to toxicants, and,
in humans, tobacco and alcohol use can influence
factors modulating gene expression.36,37 The power-
ful role that epigenetic variation can in turn play in
the development of ASD is evident, for example, in a
study of 50 identical twin pairs varying widely in
ASD severity and behavioral characteristics even
though they share a genome. Wong et al. examined
the entire genome of each individual for a factor
(DNA methylation) known to influence gene expres-
sion.38 Although global levels of DNA methylation
were highly correlated between members of twin
pairs, large variations in methylation were found
between pair members at numerous specific DNA
sites. Furthermore, the particular sites at which these
variations were found were not generally similar
across twin pairs but rather were specific to each
individual.

Although we now know that epigenetic
mechanisms such as DNA methylation can influence
phenotypic variation in ASD and that higher level
environmental factors can, in principle, influence
gene expression, direct evidence for the impact of
higher-level environmental risks in ASD is still rela-
tively limited. Only a small number of such factors
have been studied; research findings have frequently
been inconsistent; and the precise mechanisms by
which these factors are linked to neurodevelopmental
atypicalities are for the most part unknown.39 In
addition, most of the known environmental risk fac-
tors are associated with only small increases in ASD
risk. One such factor is parental age. Mothers over
the age of 35 are approximately 1.5 times more likely
than younger mothers to have a child with ASD. For
older fathers, the increase in risk is slightly greater,40

in part because spontaneous genetic mutations are
predominantly paternal in origin.41 Complications of
pregnancy, including gestational diabetes and gesta-
tional bleeding have been linked to increased ASD
risk, as has maternal exposure to certain chemical
substances such as valproic acid (used to treat epi-
lepsy), psychoactive medications, and pesticides.42

Although prenatal viral infection has been thought to
relate to a higher risk of ASD, the evidence is mixed,
presumably because this association is dependent on
many other factors such as the immune status of
mother and fetus, amount and type of the virus, and
stage of fetal development.

Finally, there are several converging sources of
evidence suggesting that prenatal exposure to

environmental stress may increase the risk for ASD.
Mothers of children with ASD retrospectively report
higher stress levels during pregnancy than compari-
son mothers.43 Experimental manipulation of prena-
tal stress in animals is associated with later ASD-like
behaviors (in monkeys44 and rodents45,46). And stud-
ies of ASD rates in mothers exposed to naturally
occurring stressful events suggest an increase in these
rates. One intriguing study of this sort was carried
out by Kinney et al., who began by assuming that
direct exposure to a major storm during pregnancy,
especially one that strikes a vulnerable population,
acts as an acute source of stress.47 They then
employed Louisiana weather data to identify areas of
the state affected by severe storms and assessed the
relationship between the prevalence of ASD and three
levels of storm exposure during pregnancy: high
(direct hit and high vulnerability, which the research-
ers defined as birth in New Orleans), medium
(EITHER direct hit and born outside New Orleans
OR no direct hit and born in New Orleans), and low
(no direct hit and born outside New Orleans).
Results indicated a significant increase in ASD preva-
lence rates from about 4.49 to 6.06 to 13.32 children
per 10,000 at low, intermediate, and high levels of
exposure respectively.

Gene–Environment (G × E) Interactions
One obstacle to isolating environmental factors
linked to ASD is that for every child exposed to a
given environmental factor who develops ASD, many
others exposed to the same factor do not. This has
led scientists to turn to the concept of ‘gene–
environment interaction.’ In its simplest form, this is
the idea that genetic risk factors (genotypes and
mechanisms of gene expression) in certain children
may make them especially vulnerable to particular
types of environmental risks. Atypical neural devel-
opment is presumed to result when a child with a
given genetic vulnerability is exposed to the relevant
environmental insult (e.g., a developing child whose
genetic makeup is such that the body’s ability to
process and excrete neurotoxic substances is
impaired would be particularly vulnerable to neuro-
toxins). The converse of this idea is that neither a
child who is genetically vulnerable but never exposed
to the environmental insult nor a child who is envi-
ronmentally exposed but not genetically vulnerable
will develop the related atypicality. This would
explain, for example, why only some children are
affected by exposure to potentially harmful environ-
mental events.

WIREs Cognitive Science Development of autism spectrum disorders

© 2016 Wiley Per iodica ls , Inc. 5



Although the existence of G × E interactions of
this type in ASD has received some support from
research examining ASD-like behavioral characteris-
tics in animal models,48–52 to date there are only a
few studies on humans. One such analysis, using a
candidate gene approach, examined variation in ASD
risk conferred by maternal and child genotypic fac-
tors when mothers failed to take prenatal vitamins.53

In a second analysis using the same study population
and approach, ASD risk was reduced for mothers
and children with a specific genotypic variant when
mothers took folate during the first month of preg-
nancy.54 And in a third-related analysis, ASD risk
was reported to reflect an interaction between a given
genotype and exposure to air pollution.55 Unfortu-
nately, this research suffers from a number of meth-
odological deficiencies and has not been replicated
(for a discussion of the considerable methodological
obstacles likely to be encountered in research of this
type, see Ref 56).

Developmental Factors
The fact that potentially hundreds of genetic loci,
varying in expression, may confer differing degrees
of susceptibility to (or protection from) scores of
environmental risk factors makes it clear just how
complicated the ASD causal network is likely to
be. But there is yet another and perhaps even greater
set of complications. The effects of G × E interac-
tions likely depend on when and how in the broader
course of development the relevant mechanisms come
into play.

Although a number of researchers have argued
persuasively for the importance of integrating devel-
opmental accounts into the explanation of
atypicality,36,57–62 only a few first steps have been
taken in this regard. Thus, for example, Kinney
et al. evaluated ASD prevalence in relation to storm
exposure during differing gestational periods,47 and
Thomas et al. have implemented a neurocomputa-
tional model of ASD developmental trajectories
(early onset, late onset, and regressive) as a function
of variations (onset, rate, and threshold) in a connec-
tion pruning mechanism.9

Although these first steps are important, the
potential of this approach with respect to ASD is still
largely untapped. One undoubted reason for this is
that, when taken seriously (as it should be), the
developmental approach multiplies explanatory com-
plexity by an order of magnitude. A summary of rele-
vant developmental principles distilled from the
writings of the authors identified above, taken
together with ideas derived from two researchers

who devoted their careers to the study of
development,63–65 make this evident.

Development Is First and Foremost Change
over Time
This may appear like a truism; but its implications
for our understanding of variability in ASD are far-
reaching. To date, the vast majority of ASD research
consists of comparisons between those with (or at
heightened risk for) ASD and CA- or MA-matched
typical (or other clinical) groups on measures col-
lected at a single time point. Even the relatively few
longitudinal studies that exist have been focused less
on change in phenotypic expression over time and
more on the use of data from one or more time
points to predict a later outcome (e.g., diagnosis).
Yet the phenotypic variability in ASD is not just vari-
ation in symptom expression, it is also variability in
change in symptom expression over time (both
moment-to-moment and over longer durations).
Although broad stroke developmental trajectories
(early onset, later onset, and regressive) generally
reflect the fact that symptomatic expression varies in
time, they do little to capture either the time-varying
nature of specific symptoms or the way in which
moment-to-moment changes influence development
over longer spans of time.

Developmental Change Is Change in a System
of Interacting Processes That Give Rise to
Progressively More Complex Structures
Development is not just a characteristic of time-
varying phenotypic behavior; it is a characteristic of
the way in which the interacting processes that give
rise to behavioral variation themselves change over
time. One particularly clear example of this has been
provided by Karmiloff-Smith in her neuroconstucti-
vist analysis of brain development.60 In her view,
early neural processes are low-level, relatively general
and, although somewhat more relevant to processing
one kind of input over others, by no means domain-
specific. As these processes function over the course
of development in interaction with one another and
with progressively more complicated sources of envi-
ronmental input, they become gradually more
domain-specific. In other words, the neural processes
contributing to varying typical or atypical phenotypic
behavior themselves vary developmentally over the
course of postnatal growth.

Development Is Multileveled
The processes that underlie variation in typical and
atypical phenotypic behavior are, of course, not
solely neurodevelopmental; they exist at multiple
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levels of analysis operating in an integrated system.
In addition to those involved in the formation and
operation of neural connections, they include pro-
cesses of gene expression, cognitive and socioemo-
tional growth, behavioral development, and change
in the environmental contexts (e.g., family, peers,
classrooms, and cultures) within which development
occurs. An understanding of variability in phenotypic
expression of ASD will not only require analyses at
all of these levels, each complex in its own right, it
will require an understanding of the way in which
change emerges through cross-level relationships.
How, for example, does gene expression influence
neural development? How does neural development
influence growth in the cognitive and socioemotional
bases of behavior? How does changing behavior
influence the immediate environmental contexts
within which that behavior takes places? And
because these influences are bidirectional at all levels
of analysis, we must also ask, for example, how typi-
cal or atypical behaviors are influenced by the con-
texts within which they occur. How are the neural,
cognitive and socioemotional bases of behavior
altered as the individual’s behavior changes in con-
text? And how is gene expression altered by environ-
mental factors themselves influenced by behavioral
change in context?

Development Is Systemic
At every level of analysis, the processes operating at
that level form interconnected components of higher-
order systems. Obvious in gene regulation and
expression and neural connectivity, systematicity is
equally characteristic of the numerous cognitive and
socioemotional functions that contribute to behavior.
One implication of the componential relationships
among processes is that components may develop at
varying rates and take varying forms at different
points in development. This raises at least two issues
for a developmental approach to understanding phe-
notypic variability. The first has to do with the rela-
tive timing of development across component
processes. In typical development, this timing is pre-
sumed be relatively synchronous with all components
changing appropriately in relationship to one another
such that developmental outcomes appear more or
less on schedule. In atypical development, however,
change in one or more components may be delayed
relative to change in others and variations in the
form and timing of this asynchrony can have imme-
diate and downstream effects on the pattern of emer-
gence of phenotypic outcomes. The second involves a
characteristic of development that Kagan65 labeled
‘heterotypic continuity.’ This has to do with the fact

that early processes (e.g., those involved in the emer-
gence of fear of strangers) may be continuous with
later processes (e.g., those involved in concept forma-
tion) with which they have no obvious surface simi-
larity because they are both implementations, albeit
at different points in development, of the same
underlying component process (e.g., ability to distin-
guish small variations from prototypes). The implica-
tion of heterotypic continuity for an understanding
of ASD symptom expression is that phenotypic varia-
bility may well reflect an underlying developmental
continuity.

Development Occurs through Reciprocal
Organism × Environment Interactions
As is evident from the previous discussion, at all
levels of analysis, variation in developmental pro-
cesses is best understood as a joint function of char-
acteristics of the organism and characteristics of the
environment in interaction. Here the term ‘interac-
tion’ is used to emphasize the fact that in a develop-
ing system, the relationship between two variables
almost always varies as a function of values taken on
by other (sometimes many other) contextual
variables.

Two very different examples may suffice to
make this point. The first is a high-level psychological
example from Bronfenbrenner’s ecological theory of
development.64 In Bronfenbrenner’s view, the effect
on developmental outcomes of each of the many
variables that describe the individual (e.g., IQ, tem-
perament, physical attractiveness, sociality, curiosity,
and passivity) will depend on characteristics of the
environmental contexts (e.g., family, peer group,
classroom, and culture) within which the individual
develops; and, conversely, the effect of environmental
variables (e.g., parental support, peer acceptance,
and quality of teaching) on outcome will depend on
characteristics of the developing individual. What is
effective teaching, for example, for a curious child
may not be effective teaching for a passive child.

The second example is taken from Gottlieb’s36

argument for probabilistic epigenesis. There he
describes research indicating that a known polymor-
phism in the serotonin transporter gene (5-HTT) was
associated with lower levels of serotonin (and hence
higher levels of impulsive aggression) in peer- but not
in mother-reared monkeys. In Gottlieb’s view, in
other words, phenotypic outcomes depend on an
interaction between genetic mechanisms and relevant
life experiences.

Finally, of course, both the individual and the
environment are themselves complex dynamic sys-
tems. Development, in other words, is an evolving
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process of organism-environment interaction where
both the organism and the environment are them-
selves systems of interacting and evolving processes.

CONCLUSION

ASD is characterized by phenotypic behavioral atypi-
calities emerging in varied forms and according to
different developmental trajectories. The causal
nexus underlying the emergence of these atypicalities
is exceptionally complex. It may include one but
probably many developmentally varying pathological
mechanisms. These mechanisms may be atypical var-
iations on normal developmental processes or normal
processes unfolding with developmentally inappro-
priate timing. Interacting over time with individual
and developmental differences in exposure to factors
conferring genetic and environmental risk, these
mechanisms may operate to produce variations in the
timing of development and atypicality in behavior.
Over the course of development, the effects of these
interactions may come to extend to domains well
beyond that of the original atypicality. Finally, and
importantly, delayed development and/or atypical
behavior are likely in turn to lead to atypical experi-
ences and interactions with the postnatal environ-
ment. An infant who rarely smiles or makes eye
contact, a child who tantrums uncontrollably when
small changes are introduced into a routine, or a
child who insists on spending long hours sitting in
the car because he is fascinated by cars is not likely

to gain the experiences or elicit the responses from
caregivers that are typical of normal development. As
the child grows, neural, cognitive, and socioemo-
tional atypicalities, consequent variation in behavior,
and environmental responses to that behavior can
become linked in a positive feedback loop that rein-
forces and amplifies deviations from the typical
developmental pattern. Given the complexity of this
process, it is little wonder that there is such wide
behavioral variability among those who receive an
ASD diagnosis.

NOTES
a For many, ASD equates with significant, sometimes severe
decrement in function. For these individuals, ASD is, as it
is for the DSM-5, a ‘neurodevelopmental disorder,’ one
that science should strive to understand, prevent, and reme-
diate. For others, however, ASD is viewed as a form of
neurodiversity (cf., http://autismdigest.com/neurodiversity/).
For these individuals, ASD is neither a scientific puzzle to
be solved, nor a disorder to be prevented, but a lifestyle to
be celebrated. To accommodate both views, we prefer and
will here use the phrase ‘neurodevelopmental atypicality’
rather than ‘neurodevelopmental disorder.’ That said, how-
ever, most of the research on ASD has been carried out
within a medical/disorder model and will therefore be
described in such terms.
b We follow Gernsbacher et al.14 in employing the term
‘autistic/s’ rather than ‘person/s with autism’ because the
former is the term by which autistic individuals prefer to be
called.
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