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Abstract
Aim: Rapid global change is impacting the diversity of tree species and essential ecosystem 
functions and services of forests. It is therefore critical to understand and predict how the 
diversity of tree species is spatially distributed within and among forest biomes. Satellite 
remote sensing platforms have been used for decades to map forest structure and func-
tion but are limited in their capacity to monitor change by their relatively coarse spatial 
resolution and the complexity of scales at which different dimensions of biodiversity are 
observed in the field. Recently, airborne remote sensing platforms making use of passive 
high spectral resolution (i.e., hyperspectral) and active lidar data have been operationalized, 
providing an opportunity to disentangle how biodiversity patterns vary across space and 
time from field observations to larger scales. Most studies to date have focused on single 
sites and/or one sensor type; here we ask how multiple sensor types from the National 
Ecological Observatory Network’s Airborne Observation Platform (NEON AOP) perform 
across multiple sites in a single biome at the NEON field plot scale (i.e., 40 m × 40 m).
Location: Eastern USA.
Time period: 2017–2018.
Taxa studied: Trees.
Methods: With a fusion of hyperspectral and lidar data from the NEON AOP, we as-
sess the ability of high resolution remotely sensed metrics to measure biodiversity 
variation across eastern US temperate forests. We examine how taxonomic, func-
tional, and phylogenetic measures of alpha diversity vary spatially and assess to what 
degree remotely sensed metrics correlate with in situ biodiversity metrics.
Results: Models using estimates of forest function, canopy structure, and topographic 
diversity performed better than models containing each category alone. Our results 
show that canopy structural diversity, and not just spectral reflectance, is critical to 
predicting biodiversity.
Main conclusions: We found that an approach that jointly leverages spectral prop-
erties related to leaf and canopy functional traits and forest health, lidar derived 
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1  |  INTRODUC TION

A fundamental goal in community ecology is to understand and pre-
dict the spatial distributions of species, traits, and biodiversity across 
ecosystems (Keddy,  1992). However, taxonomic, functional, and 
phylogenetic dimensions of biodiversity address different ecological 
questions. Taxonomic diversity counts the number of species or taxa 
in an area and their relative abundance and can therefore be related 
to hypotheses about community assembly (Chase, 2010). Functional 
diversity quantifies the range of functional variation (e.g., leaf nutri-
tional or physiological properties, shade tolerance, canopy height, 
leaf area) in an area, and studies have shown that higher functional 
diversity is associated with more resilient (Schmitt et al., 2019) and 
productive ecosystems (Roscher et al., 2012). Phylogenetic diversity 
measures the relatedness of species within an area and is therefore 
related to the evolutionary history of a landscape and its occupants 
(Morlon et al., 2010; Srivastava et al., 2012).

Each dimension of biodiversity may be driven by distinct abiotic 
and biotic factors and ecological processes, while following unique 
spatial and temporal patterns (Gaston, 2000; Lomolino et al., 2010). 
For example, tree taxonomic diversity is affected by biotic interac-
tions, environmental drivers and change, as well as homogeniza-
tion due to management practices and disturbance regimes (Baiser 
et al., 2012; Li et al., 2020; Olden & Rooney, 2006). Plant functional 
diversity is critical for determining biodiversity–ecosystem function 
relationships (Baiser & Lockwood,  2011; Flynn et  al.,  2011) and is 
driven by niche availability, community assembly, and interac-
tions with species at higher trophic levels (Petchy & Gaston, 2006). 
Phylogenetic diversity is influenced by the spatial clustering of closely 
related species that occupy similar environments and is driven by 
long-term biogeographical processes (Cavender-Bares et al., 2009).

The influence of these different dimensions of biodiversity on 
the observable properties of forest canopies is not well known, but is 
critical to characterize because forest canopies link the atmosphere 
and the vast majority of Earth’s terrestrial biomass (Bonan,  2008; 
Ozanne et al., 2003), provide key ecosystem services such as car-
bon sequestration (Bunker et al., 2005; Hooper et al., 2012; Isbell 
et al., 2015), and are impacted by rapid global change (e.g., Brook 
et  al.,  2008; Cardinale et  al.,  2012; Parmesan & Yohe,  2003; 
Urban, 2015). Because different dimensions of biodiversity may re-
flect specific drivers of ecosystem functioning and respond to global 
change in unique ways, a multidimensional approach is essential to 
better understand the emergent response of ecosystems and plant 
biodiversity to these drivers.

Much of the current understanding of the spatial distribution of 
dimensions of biodiversity at broad spatial extents has come from 
coarse spatial grain (30  m and greater) satellite remote sensing 
products (Bush et al., 2017; Duro et al., 2007; Pettorelli et al., 2014; 
Skidmore et  al.,  2021; Turner et  al.,  2003). For example, remotely 
sensed products have helped clarify the scale-dependence of vari-
ation in topography and biogeography as drivers of patterns of 
tree biodiversity (Read et al., 2019; Record et al., 2020; Zarnetske 
et al., 2019). Even though remote sensing products capable of pro-
viding standardized measurements for the investigation of veg-
etation function and diversity have been available over a range of 
spatial scales for decades (He et  al.,  2015), ecologists still heavily 
rely on ground-based biodiversity observations due to differences 
in scale between individual organisms and remotely sensed products 
(Tews et al., 2004). Ecological observations at coarse spatial grains 
can lead to dominant landscape features homogenizing measure-
ments (Boyce, 2006; Cooper et  al., 2019), leading to the omission 
of fine-scale heterogeneity and patterns, which can significantly im-
pact the characterization of ecosystem functioning.

Fine-resolution airborne remote sensing platforms are trans-
forming the spatial scale of observation (< 30 m) and may help resolve 
scale mismatches between field observations and the estimation of 
vegetation diversity at larger spatial extents. The National Ecological 
Observatory Network’s Airborne Observation Platform (NEON AOP) 
simultaneously collects both passive optical high spectral resolution 
imaging spectroscopy, or ‘hyperspectral’ (e.g., 380–2,500 nm; 5-nm 
bands), and active lidar measurements of canopy optical and struc-
tural properties (Kampe et al., 2010). These data are collected near-
annually at a network of 81 systematically sampled sites across the 
United States with ground data at individual field plots within the 
remote sensing footprint (Barnett et al., 2019; Kampe et al., 2010; 
Thorpe et al., 2016). Airborne lidar has been used to measure met-
rics critical to mapping biodiversity across landscapes, such as the 
structural diversity of forests (e.g., Cosovic et  al.,  2020; Kamoske 
et  al., 2019; Shao et  al., 2019; Stark et  al., 2015) and topographic 
diversity (Dahlin et al., 2012). Similarly, hyperspectral imagery has 
been used to measure the spectral diversity of ecosystems at fine 
spatial scales, which can be related to plant biodiversity (Cavender-
Bares et al., 2017; Dahlin, 2016; Gholizadeh et al., 2019; Laliberté 
et al., 2020; Wang & Gamon, 2019). Hyperspectral and lidar fusion, 
or the combination of these two data types through statistical analy-
ses for deeper understanding of landscape properties, allows for the 
detection of more subtle variations within forest types than using 
either sensor type alone (Dalponte et al., 2008).

estimates of forest structure, fine-resolution topographic diversity, and careful con-
sideration of biogeographical differences within and among biomes is needed to ac-
curately map biodiversity variation from above.

K E Y W O R D S
airborne lidar, biodiversity, forest canopies, forest diversity, hyperspectral imagery, landscape 
ecology, remote sensing
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While enthusiasm for the application of hyperspectral and lidar 
remote sensing to map biodiversity has grown in recent years (Jetz 
et  al.,  2019; Stavros et  al.,  2017), most studies have focused on 
within-site diversity mapping in a single site using hyperspectral im-
agery (Dahlin, 2016; Gholizadeh et al., 2018, 2019; Wang et al., 2018) 
or cross-site studies focused on lidar (Gough et  al.,  2020). Yet, to 
operationalize a biodiversity mapping program (e.g., the Group on 
Earth Observations' Biodiversity Observation Networks'' Essential 
Biodiversity Variables; Jetz et al., 2019; Skidmore et al., 2021), meth-
ods must work across multiple sites and biomes and address various 
dimensions of biodiversity. Resolving relationships between differ-
ent types of canopy observations and different dimensions of bio-
diversity within and among ecosystems is essential to advance our 
understanding of the patterns of and changes in biodiversity as well 
as the nature of diversity–function relationships (LaRue et al., 2019).

In this study, we focus on the variation in these three dimensions 
of alpha diversity at multiple NEON sites across a broad (10°) lati-
tudinal gradient of temperate forests. We address three questions 
critical to understanding forest biodiversity in this temperate forest 
latitudinal gradient: (a) How do these different dimensions of biodi-
versity vary within and among these forest regions? (b) Which re-
motely sensed metric, or combination of metrics, best predicts alpha 
taxonomic, functional, and phylogenetic diversity across a latitudinal 
gradient of temperate forest regions? and (c) Are predictions univer-
sal, or does incorporating information about the abiotic environment 
and geography improve estimates? We hypothesized that taxonomic 
and functional diversity would decrease with increasing latitude, as 
more southern sites are ‘older’ due to their lack of glaciation and 
the prevalence of these patterns globally (e.g., Kreft & Jetz, 2007; 
Swenson et al., 2011). In contrast, we expected phylogenetic diver-
sity would increase with latitude as more seasonal variation would 
lead to more competitive advantages for gymnosperms based on 
the literature (e.g., Massante et  al.,  2019). We also expected that 
remotely sensed vegetation information would be able to capture 
the variation in these dimensions of biodiversity without the need 
for additional environmental information, as has been suggested in 
the remote sensing literature (e.g., Meireles et al., 2020; Skidmore 
et al., 2021).

2  |  MATERIAL S AND METHODS

2.1  |  Study sites

Field measurements and remote sensing data were acquired from 
five climatically and ecologically diverse NEON sites located along 
a latitudinal gradient of eastern US temperate forests (Figure  1). 
These sites include, from south to north, Talladega National Forest 
(TALL), Oak Ridge National Laboratory (ORNL), Mountain Lake 
Biological Station (MLBS), the Smithsonian Environmental Research 
Center (SERC), and Harvard Forest (HARV). Though all temper-
ate forests, these forests are from multiple forest regions (e.g., 
Dyer,  2006; Southern mixed oak-pine, mesophytic Appalachian 

oaks, Oak-hickory, Northern hardwoods). Across all sites, mean an-
nual precipitation ranges from 967 to 1,350 mm, mean annual tem-
perature ranges from 8 to 17 °C, mean canopy height ranges from 18 
to 38 m, elevation ranges from 15 to 1,126 m, and airborne imagery 
collection extents range from 110–355 km2 (Appendix A).

2.2  |  Calculating tree diversity metrics within 
NEON field plots

To quantify tree taxonomic, functional, and phylogenetic diversity 
at the NEON plot scale (i.e., 40 m × 40 m), we downloaded woody-
plant species data from the NEON data portal (National Ecological 
Observatory Network, 2020) for the same year that the NEON AOP 
flights and our fieldwork were conducted (i.e., 2018 for all sites, ex-
cept 2017 for SERC) and filtered it to retain only living trees. We 
then used the stem diameters of each individual tree to calculate the 
relative abundance of each species per plot by summing the total 
basal area of each species and dividing it by the total basal area of 
all species in each plot (Auclair & Cottam, 1971; Whitehead, 1978). 
We elected to use basal area, instead of individual or stem count, for 
relative abundance to generate metrics more similar to the remotely 
sensed data; for example, we would expect a plot dominated by a few 
large trees to be more spectrally and structurally homogeneous than 
a plot composed of the same number of stems, but a more even size 
distribution. To quantify alpha taxonomic diversity within each field 
plot we used these relative abundance values to calculate Shannon’s 
diversity index (Spellerberg & Fedor,  2003). To calculate phyloge-
netic and functional diversity, we compiled functional trait data from 
two sources: the TRY-db trait database (Kattge et al., 2020) and a 
compilation of published trait values for North American tree spe-
cies (Stevens et  al., 2020). We used a published tree species phy-
logeny (Potter & Koch, 2014; Potter & Woodall, 2012) that includes 
all species present in the field plots described above. We calculated 
abundance-weighted phylogenetic and functional diversity metrics 
using basal area to represent species abundances (Appendix B). We 
resolved any discrepancies in species names using the most recent 
taxonomy listed by the International Union for Conservation of 
Nature and Natural Resources (IUCN; http://iucnr​edlist.org). Since 
some species had at least one missing functional trait value (~15% 
of species for most traits; Appendix H), we used the phylogeny to 
impute the missing values, assuming an Ornstein–Uhlenbeck evo-
lutionary model. We imputed the missing data using the phylopars 
function from the Rphylopars R package (Goolsby et al., 2017; R Core 
Team, 2021). Next, we created a Gower distance matrix of normal-
ized functional traits using the imputed trait dataset and phylogeny 
for all the species (Read et al., 2019). We then created a cophenetic 
distance matrix based on the tree species phylogeny data. Next, we 
calculated a community-level mean pairwise distance (MPD) met-
ric for both functional and phylogenetic datasets. While there are 
many different methods to calculate taxonomic, functional, and phy-
logenetic diversity (Jost,  2006, 2007), we used the above metrics 
because they are widely used and easily interpreted. Furthermore, 

http://iucnredlist.org
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the metrics we used average all pairwise distances so that very 
distantly related, or functionally distinct species pairs, are more 
heavily weighted (Read et al., 2019). Because these diversity met-
rics increase when distantly related or highly functionally disparate 
species pairs co-occur, they tend to emphasize functionally relevant 
differences.

Several of the plots only had one species present, thus we could 
not calculate functional and phylogenetic diversity metrics at those 
plots (Read et  al.,  2019). After removing these from the dataset, 
there were 19 plots for TALL, 14 plots for ORNL, 32 plots for MLBS, 
14 plots for SERC, 17 plots for HARV, and 96 plots overall.

2.3  |  Remote sensing data

To better understand the role of canopy observations on different 
dimensions of biodiversity we processed airborne lidar and hyper-
spectral data (e.g., 1-m spatial resolution) from the NEON AOP into 
43 metrics related to spectral diversity, vegetation health, canopy 
structure, and topography (Appendices C–E, respectively). All re-
motely sensed data were collected during peak greenness as defined 
by Moderate Resolution Imaging Spectroradiometer normalized dif-
ference vegetation index (NDVI) (Kampe et al., 2010). Two different 

lidar systems operated at the same specifications were used for 
these collections (Appendix A; Kamoske et al., 2019).

2.4  |  Forest structural and topographic diversity 
from lidar remote sensing

To calibrate lidar structural diversity estimates with Beer–Lambert 
extinction coefficients, we collected hemispherical photographs 
across each site at locations representing the diversity of tree spe-
cies and stand structures in conjunction with NEON AOP flights 
following the methodology outlined in Kamoske et al. (2019). This 
method entailed taking hemispherical photographs in at least 10 
plots, with four photographs each, representing the diversity of 
species and stand types at each site. We then calculated plant 
area index [e.g., hereafter referred to as leaf area index (LAI); 
Miller, 1967], which is widely used as a proxy for LAI due to the 
difficulty of correcting for non-foliage elements (Richardson 
et al., 2009), using the Digital Hemispherical Photography software 
(dhp; Leblanc et  al.,  2005) and setting the zenith angle to match 
the scanning angle of each lidar sensor (Appendix  A; Korhonen 
et  al.,  2011; Richardson et  al.,  2009; Sabol et  al.,  2014; Solberg 
et al., 2006). Because this approach relied on our own field data 

F I G U R E  1  Map showing National Ecological Observatory Network (NEON) field sites used in this study (orange squares) and the 
three most common tree species for each site based on NEON field observations. Individual site information and abbreviations found in 
Appendix A 
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collection, the number of NEON sites used was limited by our 
field campaign. NEON does collect hemispherical photographs; 
however, these did not meet our data quality standards for LAI 
estimation.

To estimate three-dimensional canopy structural diversity, we 
processed the lidar data for leaf area density (LAD; the total leaf 
area per unit of volume) at a 10 m × 10 m spatial resolution using 
our canopyLazR R package (Kamoske et al., 2019; http://github.com/
akamo​ske/canop​yLazR), which is similar to other published methods 
(MacArthur & Horn, 1969; Solberg et al., 2006; Stark et al., 2012; 
Sumida et al., 2009; Zhao & Popescu, 2009). First, we normalized the 
point cloud to height above the ground and then calculated LAD by 
counting the number of lidar pulses that enter and exit each voxel in 
each vertical column of data that has at least one ground return. Due 
to this relatively coarse lidar data exhibiting noise caused by topo-
graphic variation in the LAD results and to have an easily compara-
ble dataset, we removed the LAD estimates from the bottom 5 m 
of the canopy (Kamoske et al., 2019). We then calibrated the LAD 
estimates for each individual site using a Beer–Lambert extinction 
coefficient derived by calculating the slope of a regression equation 
between hemispherical photograph derived LAI and lidar estimated 
LAI (e.g., Appendix  F; Richardson et  al.,  2009; Sabol et  al.,  2014). 
To remove non-forest pixels, we applied a canopy height and LAI 
mask to the upper end of each LAD dataset using Tukey’s outlier 
test (k = 1.5) and then removed all pixels where LAI equalled zero 
(Kamoske et al., 2019). With these masked LAD rasters, we calcu-
lated 21 forest structural metrics at a 10 m × 10 m resolution for 
each field plot (Appendix  D). To quantify topographic diversity at 
each site, we calculated nine variables using qgis (QGIS, 2022) and 
the 10 m × 10 m lidar derived digital terrain model (Appendix E).

2.5  |  Hyperspectral remote sensing 
reflectance metrics

We processed the atmospherically corrected hyperspectral im-
agery from the NEON AOP before analysis using our hypRspec 
R package on GitHub (Kamoske et  al.,  2020; http://github.com/
akamo​ske/hypRspec). After removing all flight lines re-flown due 
to cloudiness, we visually identified noisy bands in the data (e.g., 
moisture and atmospheric absorption) and removed all wavelengths 
that were below 500 nm, between 1,350 and 1,450 nm, between 
1,800 and 2,000  nm, and above 2,400  nm. We then calculated a 
narrowband NDVI mask (red = 674 nm; nir = 830 nm; NDVI >  .5) 
to remove all unlikely-to-be-vegetated pixels from further analysis 
(Dahlin et al., 2014). To remove all shaded pixels, to maintain consist-
ent conditions between pixels, we used Tukey’s outlier test (k = 1.5) 
where all pixels that had a reflectance below the lower threshold 
were considered outliers and removed (Kamoske et al., 2020). We 
then applied a topographic correction to reduce the effects of ter-
rain, view, and illumination (Soenen et al., 2005) and a bidirectional 
reflectance distribution function effects correction (BRDF) with a 
thick Ross kernel and a dense Li kernel to remove the anisotropic 

scattering properties of vegetation that result in flight line artifacts 
(Colgan et  al.,  2012; Collings et  al.,  2010; Schlapfer et  al.,  2015; 
Wang et al., 2020; Wanner et al., 1995; Weyermann et al., 2015).

Using this corrected hyperspectral data, we calculated 13 hyper-
spectral reflectance and principal component analysis (PCA) derived 
metrics (Appendix C) by extracting reflectance spectra from all pix-
els within each field plot and using the mean value if a pixel occurred 
in multiple flight lines. To calculate the PCA based metrics, which 
were used to capitalize on the reflectance across all wavelengths, 
we used the extracted data from all plots as a single dataset and PCA 
to reduce the dimensionality of this subset of the data (Venables 
& Ripley, 2002). We used the first two principal components (PCs), 
which captured 97.6% of the overall variation in the plot spectra, 
in subsequent analyses. We elected not to include remotely sensed 
estimates of plant traits (e.g., Wang et al., 2020) as these were not 
available for all our study sites at the time of the analysis, and recent 
work has suggested that NEON-produced trait estimates do not 
necessarily reflect on-the-ground measurements (Pau et al., 2021).

2.6  |  Influence of biodiversity on remote 
sensing metrics

In total, we had 43 possible predictor metrics. We calculated each 
metric at its nominal resolution, and then aggregated the results to 
produce a single value for each NEON plot (i.e., 40 m × 40 m), cal-
culating the mean, minimum, maximum, range, and standard devia-
tion of each metric that did not already produce a single value (e.g., 
convex hull volume). This resulted in 191 possible predictors over-
all. To quantify the relative importance of these metrics related to 
the structural, spectral, and topographic heterogeneity of eastern 
temperate forests for different dimensions of alpha diversity we 
used a combination of linear mixed effect (LME) modelling (Gotelli & 
Ellison, 2013; Pinheiro & Bates, 2000) and stepwise Akaike informa-
tion criterion (AIC) model selection (Burnham et al., 2011; Mascaro 
et  al., 2011). To allow for direct comparison between model coef-
ficients, we standardized all metrics and the three diversity variables 
(Gelman, 2008; mean = 0, SD = .5).

For each dimension of biodiversity, we calculated a single LME 
model for each predictor type individually (i.e., hyperspectral, lidar, 
and topography) and a single mixed effects model with all predictors 
combined. To avoid multicollinearity (e.g., Pearson’s R > .5) we first 
tested the correlation between each pair of predictor variables and 
kept the variable most correlated with each dimension of biodiver-
sity for further analysis. Using the remaining variables, we then de-
veloped an LME model using each of these variables as a fixed effect 
and site (e.g., TALL, ORNL) as a random effect to allow for inferences 
to extend to differences between sites in general rather than be-
tween the five sites for which we had data (Gotelli & Ellison, 2013; 
Pinheiro & Bates,  2000). We included these site level differences 
to help account for critical large-scale biogeographical and manage-
ment differences between sites (Bengtsson et al., 2000; Dambrine 
et al., 2007; Dupouey et al., 2002; Reich et al., 2001).

http://github.com/akamoske/canopyLazR
http://github.com/akamoske/canopyLazR
http://github.com/akamoske/hypRspec
http://github.com/akamoske/hypRspec
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We then used stepwise AIC model selection to determine the 
best combination of predictor variables for each model (Safken 
et al., 2021). We tested backward, forward, and bidirectional step-
wise variable selection, all of which resulted in the same predictor 
variables for each model. We then removed any remaining variables 
with non-significant coefficients (p >  .05) and evaluated final LME 
models with site as a random effect. Lastly, we performed LME par-
tial regression analysis using the final metrics in each model grouped 
by type (i.e., hyperspectral, lidar, and topography) to determine the 
proportion of the final model’s R2 value assigned to each group of 
metrics (i.e., metric R2/final model R2).

We also tested the individual correlations between remote sens-
ing metrics used in each final model and the associated biodiversity 
variable to better understand the relationship between biodiversity 
and individual observable canopy properties.

3  |  RESULTS

3.1  |  Variation of biodiversity and remote sensing 
metrics

In sites with spatially distinct broadleaf and needleleaf stands (i.e., 
TALL, HARV) there was more variability of spectral and structural 
diversity metrics compared to sites dominated by broadleaf spe-
cies (i.e., SERC, ORNL, and MLBS; Figure 2). However, topographic 

variables did not follow these same patterns. Functional diversity 
variation was uniform among sites, but phylogenetic diversity was 
more variable within mixed forest sites (i.e., TALL and HARV) com-
pared to the other broadleaf dominated sites (Figure 2). Moreover, 
the three dimensions of biodiversity were highly variable within 
each site, meaning that there are high and low diversity plots within 
each site, not a distinct latitudinal gradient as we hypothesized.

Furthermore, there were no strong linear relationships between 
remotely sensed metrics found in the final model and the associated 
dimension of biodiversity, with the highest significant R2 just .19 
(Figure 3). Lidar-derived metrics related to forest structure showed 
both positive and negative correlations in varying degrees, with hy-
perspectral and topographic metrics following the same pattern. 
Also, none of the individual metrics found in the final models had 
strong correlations to the biodiversity metrics.

3.2  |  LME models

Models that included metrics derived from all three predictor 
types (i.e., hyperspectral, lidar, and topography) performed better 
than each individual predictor type (Figure 4; Table 1). In the best 
performing models, fixed effects explained all the variation in the 
taxonomic and functional diversity models, whereas random ef-
fects (i.e., site) had the largest influence on the phylogenetic model 
with the model R2 increasing from .33 to .70 with the inclusion of 

F I G U R E  2  Boxplots showing variation 
of normalized metrics used in final linear 
mixed effect (LME) models. Metric 
abbreviations found in Table 1, with the 
last symbol signifying mean (m), minimum 
(−), range (r), or standard deviation (s). 
Site abbreviations found in Section 2.1 
and Appendix A. Coloured bar plots show 
the interquartile range, solid horizontal 
lines are medians, vertical lines show 
largest and smallest value within 1.5 
times the interquartile range, outliers are 
indicated with open circles 
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F I G U R E  3  Boxes show the correlation between each diversity metric and remotely sensed metric; abbreviations for each metric and for 
site names are found in Table 1 and Appendix A, respectively, with the last symbol signifying mean (m), minimum (−), range (r), or standard 
deviation (s). Adjusted R2 and p-values are listed above each plot and normalized values for each metric were used. Dotted lines show lines 
of best fit for all significant (p < .05) correlations
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site (Table 1). This influence of site on phylogenetic diversity may 
be related to the inclusion of both conifer and broadleaf species, 
compared to sites that only have broadleaf species. The three best 
models included significant hyperspectral, lidar, and topographic 
metrics (Table 1); however, of the individual models, lidar explained 
the most taxonomic and functional diversity variation (Appendix G), 
showing the importance of relationships between forest structure 
and different dimensions of biodiversity. Given the improved model 
performance using all three predictor types in a single model, with 
higher R2s and lower AICs (Appendix G), we used these full models 

to further examine the ability to predict different dimensions of 
biodiversity.

To further understand model performance, we examined ob-
served versus predicted plots, residuals, normalized coefficient 
values, and the performance of each group of metrics in the final 
models (Figure 5). All models showed randomly dispersed residuals 
that were not clustered by functional group (i.e., broadleaf, needle-
leaf, or mixed forest) or by site (Figure 5b; Appendix G). All models 
included the range of maximum LAD heights within a plot metric, an 
important variable from Hardiman et al.  (2011) that describes 3-D 

F I G U R E  4  Marginal (only fixed effects, 
i.e., remote sensing-based metrics) and 
conditional (fixed and random effects, i.e., 
broader site-level differences) R2 values 
for each model representing each sensor 
individually and all sensors combined. 
On the x axis, All refers to models 
utilizing hyperspectral (HSI), lidar (forest 
structure), and topographic metrics; HSI 
refers to models with only hyperspectral 
metrics; Lidar refers to models with 
only lidar derived metrics related to 
forest structure; and Topography 
refers to models with only topographic 
metrics 



    |  9KAMOSKE et al.

canopy structural diversity, and several of the models included simi-
lar metrics (i.e., minimum slope and the minimum first PC). Moreover, 
metrics representing an individual sensor type were not universally 
positive or negative, instead showing a wide range of influence on 
each of the final models (Figure 5c; Appendix G). Within the final 
taxonomic and functional diversity models, lidar metrics had the 
largest influence, representing 65 and 52% of the total model R2, 
respectively, while site had the largest influence on the phylogenetic 
model, representing 60% of the total model R2 (Figure 5d).

4  |  DISCUSSION

We used airborne remote sensing to measure different dimensions of 
biodiversity across eastern US temperate forest ecosystems, show-
ing that spectral diversity, canopy structural heterogeneity, and to-
pography together can explain a substantial amount of the variation 
in biodiversity dimensions within and across sites. Importantly, our 
results show that remotely sensed metrics derived from lidar and 
hyperspectral sensors vary in their ability to capture in situ measure-
ments of biodiversity from field plots in these forested sites. Many 
studies have used hyperspectral (Asner & Martin, 2016; Cavender-
Bares et al., 2016; Feret & Asner, 2014) or lidar (Bergen et al., 2009; 
Cosovic et al., 2020; Simonson et al., 2012) data to measure biodi-
versity in a range of ecosystems; however, far fewer have combined 
these data (Leutner et al., 2012; Zhao et al., 2018). While most of 
these studies have focused on taxonomic diversity or leaf functional 
traits, we show that an integration of lidar and hyperspectral remote 

sensing data can be used to explain variation in multiple dimensions 
of alpha diversity.

To estimate biodiversity across temperate forests, an approach 
that jointly leverages spectral properties related to leaf and canopy 
functional traits and forest health, lidar derived estimates of forest 
structure, and fine-resolution topographic diversity is needed; ap-
proaches that focus on a single or subset of these categories will likely 
fall short. To this end, our models included hyperspectral derived met-
rics (Appendix C) related to a canopy’s spectral reflectance in the vis-
ible, near-infrared, and shortwave-infrared wavelengths [i.e., principal 
component 1 (PC1); Oldeland et al., 2010], vegetation greenness [i.e., 
normalized difference vegetation index (NDVI); Rouse et al., 1974], and 
the red-edge, which has been shown to be critical to mapping vegeta-
tion health [red edge normalized difference vegetation index (RND); 
Gitelson & Merzlyak, 1994]. These models also included lidar derived 
metrics (Appendix D) related to the location within a canopy where 
the most leaf material occurs [i.e., mean leaf area density height (LAM); 
Hardiman et al., 2013], the ratio of the canopy that contains plant ma-
terial [i.e., canopy filled voxel ratio (FVR); Hardiman et al., 2013], the 
relationship between the distribution of leaf material within a canopy 
and near-by canopies [i.e., within canopy rugosity (WIC); Hardiman 
et al., 2011], and the ratio of the canopy that does not contain plant 
material [i.e., canopy porosity ratio (CPR); Hardiman et  al.,  2013]. 
Lastly, topographic metrics (Appendix E) that were significant in our 
final models included elevation of all objects [i.e., digital surface model 
(DSM)], slope (SLO), how eastward a pixel’s slope is facing [i.e., east-
ness (EAS)], and the difference in elevation between a central cell and 
its surrounding cells [i.e., topographic roughness index (TRI)].

TA B L E  1  Final linear mixed effect (LME) model results, showing marginal R2, conditional R2, and relative RMSE

Marginal R2 Conditional R2
Root Mean Square 
Error (RMSE) Type Variable Abbreviation

Taxonomic 
diversity

.46 .46 .36 Lidar Maximum leaf area density height LAH

Within canopy rugosity WIC

Canopy filled voxel ratio FVR

Topography Eastness EAS

Digital surface model DSM

Slope SLO

Hyperspectral Principal component 1 PC1

Phylogenetic 
diversity

.33 .70 .36 Lidar Maximum leaf area density height LAH

Topographic Topographic roughness index TRI

Hyperspectral Normalized difference vegetation 
index

NDV

Red-edge normalized difference 
vegetation index

RND

Functional 
diversity

.31 .31 .41 Lidar Maximum leaf area density height LAH

canopy porosity ratio CPR

Topographic Slope SLO

Hyperspectral Principal component 1 PC1

Note: Only airborne remote sensing derived predictor variables used in final models are shown. Metrics may include range, minimum, maximum, 
mean, or standard deviation found within each National Ecological Observatory Network (NEON) plot, where appropriate, and are signified as such in 
the figures and appendices All metrics calculated in this study with definitions and references can be found in Appendices C–E.
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Moreover, within this joint analysis framework lidar-derived 
3-D forest structure had the strongest relationship with taxonomic 
and functional biodiversity within the temperate forest biome 
(Figure 5c). This structure–function relationship has been reported 
in other temperate forest ecosystems (Gough et al., 2019; Hardiman 
et al., 2011, 2013), further demonstrating the importance of includ-
ing structure, not just reflectance, in considerations of forest prop-
erties. This is also congruent with growing understanding of the role 
of canopy structural and environmental heterogeneity – features 
to which lidar is uniquely sensitive – in determining forest function 
(Bonan et al., 2021).

Site-level differences also had a large influence on our phylo-
genetic diversity model, contributing more than 35% to predic-
tion of variance (70% overall, the strongest diversity prediction). 
Phylogenetic diversity in our study area was largely driven by 
whether a plot or site was dominated by broadleaf (angiosperm) or 
a mix of broadleaf and needleleaf (gymnosperm) trees. The impor-
tance of site to predicting phylogenetic diversity suggests that at 
this spatial scale and within eastern US temperate forests, phyloge-
netic diversity metrics may be driven by inter-site differences within 
forest regions related to the spatial distribution of plant functional 
types. And while environmental drivers may be implicated in the dis-
tributions of plant functional types, topography – the environmen-
tal driver that we studied – predicted < 20% of taxonomic diversity 
across sites. This suggests that any factor driving the site differences 
mostly varies on a scale larger than plots within sites, potentially in-
cluding biogeographical factors such as the pool of available species 
in the region surrounding each site.

In contrast, site was rarely a significant predictor in our mod-
els of taxonomic and functional diversity. Thus, while our results 
show that we can explain a substantial fraction of field plot func-
tional and taxonomic biodiversity across eastern US temperate 
forests (Table 1), the inclusion of finer-grained, within-site metrics 
related to soils, forest age, disturbance history, and climate could 
improve prediction. For instance, there are known differences in 
current and historic land use among and within NEON sites, which 
strongly influence vegetation (e.g., prescribed burns at TALL and 
historic land use at HARV; Foster,  1992) and patterns of diver-
sity (Flatley et al., 2015; Paillet et al., 2010) and around the world 
there is increasing recognition of the role of humans in long-term 
ecosystem development (Ellis et  al.,  2021). At the scale of sites 
within a biome, the identity of stand-dominating species or taxa 
may also play a role in all components of diversity, particularly the 

difference between broadleaf and needleleaf dominance, which 
dramatically alters structure and function (Atkins et  al.,  2018). 
Identifying forest composition and stand history with remote 
sensing data from characteristic structural patterns would com-
plement the investigation of diversity and forest structure (e.g., 
Grabska et al., 2019; Sun et al., 2019); future diversity models will 
likely be improved by conditioning on this information. Finally, we 
note that because our study was confined to eastern US temper-
ate forests with data collected only during peak greenness, isolat-
ing high NDVI pixels, lidar and hyperspectral variation was subtle; 
including phenological time series data could improve detection of 
relevant differences. More research will also be needed into how 
the presence of unhealthy, stressed and/or disturbed vegetation 
impacts these relationships.

Remote sensing of biodiversity studies can contain many sources 
of error and uncertainty related to sensors, resolution, and statisti-
cal methodologies. The remote sensing data used in this study were 
collected over multiple years using two different lidar sensors. Using 
lower pulse density lidar data also requires a coarser spatial resolu-
tion (i.e., 10 m × 10 m; Kamoske et al., 2019) than the hyperspectral 
data (i.e., 1 m × 1 m). While these data are derived at these nominal 
resolutions, they are ultimately aggregated to match the spatial grain 
of the field plots (i.e., 40 m × 40 m) and may be representing pro-
cesses occurring at different scales. We also relied on hyperspectral 
diversity metrics, instead of hyperspectrally estimated trait maps. 
In the future, accurate trait maps could improve our models’ perfor-
mance, especially in predicting functional diversity; however, cur-
rently trait maps are not available for all sites (Wang et al., 2020) and 
where they have been challenged, some trait maps have been shown 
to differ substantially from field measurements (Pau et  al.,  2021). 
Estimating biodiversity metrics based on field data can also vary 
depending on methods; here we chose to use basal area weighted 
values, expecting that these would be more closely related to the 
metrics captured from above. As measures of biodiversity become 
a core component of environmental conservation, it is critical that 
researchers clarify exactly what they are measuring and mapping, 
both from the ground and from above.

With the increasing availability of airborne and spaceborne hy-
perspectral and lidar platforms like the NEON AOP, NASA Goddard’s 
Lidar, Hyperspectral, & Thermal Imager (G-LiHT; Cook et al., 2013), 
the Global Ecosystem Dynamics Investigation (GEDI; Stavros 
et al., 2017), and the proposed Surface Biology and Geology Mission 
(SBG; Cawse-Nicholson et al., 2021) there is a unique opportunity to 

F I G U R E  5  Results of final linear mixed effect (LME) models showing (a) observed versus predicted values, (b) residuals versus predicted 
values, (c) model coefficients, and (d) model percentage of R2 of each sensor. Row (a) shows normalized observed versus predicted values 
from the final LME models, with the dotted line showing a 1:1 relationship. In rows (a) and (b), BL, NL, and Mixed refer to the percentage 
of functional types within each National Ecological Observatory Network (NEON) plot [i.e., BL = > 66% broadleaf species, NL = > 66% 
needleleaf species, Mixed = mixed broadleaf and needleleaf species (i.e., between 33 and 66% broadleaf)]. Site abbreviations found in 
Appendix A. Row (c) is labelled using metric abbreviations found in Table 1, with the last symbol signifying mean (m), minimum (−), range 
(r), or standard deviation (s) for each metric within the NEON field plot. In row (d), HSI refers to only hyperspectral derived remote sensing 
metrics, Lidar refers to lidar derived forest structure metrics, Topo refers to topographic metrics, and Site refers to random effects 
associated with broader site level differences 
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ask and answer questions related to the spatial distribution of dif-
ferent dimensions of biodiversity not only within a given biome, but 
also across continents. While this study focuses on a single biome 
representing multiple forest types at the fine spatial grain of indi-
vidual field plots, these findings can be applied to studies focused 
on continental scales. At continental scales, an important question 
will be whether universal models or ones conditioned within biomes 
will perform better and reveal more about biodiversity and forest 
structure. With an abundance of hyperspectral and lidar data being 
collected across a variety of biomes with new space and airborne 
remote sensing platforms, we have an opportunity to expand these 
methodologies to unlock important insights into how different di-
mensions of biodiversity vary and respond to global change. While 
more research is needed to assess these relationships across differ-
ent ecoregions and at continental scales, the ever-increasing avail-
ability of hyperspectral and lidar data, in concert with targeted field 
campaigns, will provide new and exciting opportunities (Cavender-
Bares et al., 2022).

5  |  CONCLUSIONS

To facilitate the use of remote sensing for biodiversity monitoring, we 
present a reproducible methodology to calculate lidar, hyperspec-
tral, and topographic derived metrics that are related to different 
dimensions of alpha diversity within the North American temperate 
forest biome. We show that a fusion of metrics derived from these 
different sensor types performs better at measuring biodiversity 
than each predictor type alone and that forest structure plays a sig-
nificant role in all models. Moreover, our results suggest that while 
there are significant intra-site differences between our biodiversity 
variables due to differing local forest stand types (i.e., broadleaf and 
needleleaf), there are few inter-site differences between plots of the 
same stand type. Our results show that accurately mapping within-
biome variation in biodiversity, and biodiversity change, from above 
will require a suite of active and passive remote sensing tools along 
with careful consideration of biogeographical differences within and 
among biomes.
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APPENDIX A . Field site names and locations, abbreviations, and attributes, listed from South to North

Name and state Abbr.
Latitude 
(°) Elev. (m) MAP (mm) MAT (c) MCH (m) Area (km2) Collection dates

Lidar 
system

Harvard Forest, 
Massachusetts

HARV 42.54 351 967 8 26 340 28 August–5 
September 
2018

Gemini

Smithsonian 
Environmental 
Research Center, 
Maryland

SERC 38.89 15 1,107 14 38 110 31 July 2017 Gemini

Mountain Lake Biological 
Station, Virginia

MLBS 37.38 1,126 1,030 13 18 170 15 June 2018 Riegl

Oak Ridge National 
Laboratory, 
Tennessee

ORNL 35.96 334 1,222 15 28 355 11 May–13 May 
2018

Riegl

Talladega National 
Forest, Alabama

TALL 32.95 135 1,350 17 25 150 27 April–30 April 
2018

Riegl

Note: Collection dates refer to when the National Ecological Observatory Network Airborne Observation Platform (NEON AOP) collected airborne 
remote sensing data; Lidar system refers to the lidar sensor brand.
Abbreviations: MAP, mean annual precipitation (mm); MAT, mean annual temperature (°C); MCH, mean canopy height (m); Area, total area of AOP 
collection (km2).

APPENDIX B . Functional traits and phylogeny used in this study

Trait Unit References

Bark thickness cm Kattge et al. (2020), Stevens et al. (2020)

Specific leaf area mm2/mg Kattge et al. (2020), Stevens et al. (2020)

Leaf N content by mass mg/g Kattge et al. (2020), Stevens et al. (2020)

Leaf P content by mass mg/g Kattge et al. (2020), Stevens et al. (2020)

Leaf thickness mm2/mg Kattge et al. (2020), Stevens et al. (2020)

Stomatal conductance per unit leaf area mmol m2/s Kattge et al. (2020), Stevens et al. (2020)

Photosynthetic rate per unit leaf area μmol m/s Kattge et al. (2020), Stevens et al. (2020)

Specific stem density (wood density) mg/mm3 Kattge et al. (2020), Stevens et al. (2020)

Seed dry mass mg Kattge et al. (2020), Stevens et al. (2020)

Rooting depth m Kattge et al. (2020), Stevens et al. (2020)

Maximum life span years Kattge et al. (2020), Stevens et al. (2020)

Tree species phylogeny NA Potter and Koch (2014); Potter and Woodall (2012)

BIOSKE TCH

This research team aims to better understand and quantify 
ecosystem processes and forest diversity through the fusion of 
emerging technologies, including air- and space-borne remote 
sensing and spatial statistics, with in situ data. They are inter-
ested in refining our understanding of ecosystem function and 
biodiversity to improve our ability to predict how ecosystems will 
change in the future.

How to cite this article: Kamoske, A. G., Dahlin K. M., Read 
Q. D., Record S., Stark S. C., Serbin S. P., & Zarnetske P. L. 
(2022). Towards mapping biodiversity from above: Can fusing 
lidar and hyperspectral remote sensing predict taxonomic, 
functional, and phylogenetic tree diversity in temperate 
forests? Global Ecology and Biogeography, 00, 1–21. https://

doi.org/10.1111/geb.13516 
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APPENDIX C . Hyperspectral variables used in this study

Variable Abbreviation Description References

Convex hull volume CHV Range based spectral diversity metric 
generated from the smallest possible 
convex hull volume within a plot

Dahlin et al. (2016)

Sum of squares SS Variance based spectral diversity metric 
generated from the sum of the total 
spectral variance of the principal 
components

Laliberté et al. (2020)

Total variance TV Variance based spectral diversity metric 
describing the total spectral variance of 
the principal components

Dahlin et al. (2016)

Principal component 1 PC1 Value of the first principal component Oldeland et al. (2010)

Principal component 2 PC2 Value of the second principal component Oldeland et al. (2010)

Coefficient of variation CV Variance based spectral diversity metric 
based on the relative variability of 
reflectance measurements within a 
plot

Gholizadeh et al., 2019

Normalized difference vegetation 
index

NDV Vegetation health remote sensing index Rouse et al. (1974)

Photochemical reflectance index PRI Light use efficiency remote sensing index Gamon et al. (1992)

Red-edge vegetation stress index RVS Plant stress remote sensing index Merton and Huntington (1999)

Red-edge normalized difference 
vegetation index

RND Vegetation health remote sensing index Gitelson and Merzlyak (1994)

Shortwave infrared 1 mean 
reflectance

SW1 Mean reflectance of wavelengths from 
1,500 to 1,800 nm

Ollinger (2011)

Shortwave infrared 2 mean 
reflectance

SW2 Mean reflectance of wavelengths from 
2,000 to 2,400 nm

Ollinger (2011)

Near infrared mean reflectance NIR Mean reflectance of wavelengths from 
800 to 1,350 nm

Ollinger (2011)

APPENDIX D. Lidar derived variables used in this study

Variable Abbreviation Description References

Canopy height CH Height (m) of canopy within a given pixel Lefsky et al. (1999)

Canopy empty volume EV Volume of the space within the canopy that does not 
contain plant material

Lefsky et al. (1999)

Canopy euphotic depth ED Depth (m) of the uppermost 65% of plant material within 
the canopy

Lefsky et al. (1999)

Canopy euphotic leaf area ELA Total amount of plant material within the uppermost 65% of 
plant material within the canopy

Lefsky et al. (1999)

Canopy euphotic volume CEV Volume of the uppermost 65% of plant material within the 
canopy

Lefsky et al. (1999)

Canopy filled voxel ratio FVR Ratio (%) of voxels within a column of the canopy that 
contain plant material

Hardiman et al. (2013)

Leaf area index LAI The one-sided leaf area per unit of ground area Chen and Black (1992)

Maximum leaf area density MLA Largest leaf area density measurement within a column of 
the canopy

Hardiman et al. (2013)

Maximum leaf area density height LAH Height (m) of the largest leaf area density measurement 
within a column of the canopy

Hardiman et al. (2013)

Mean leaf area density height LAM Mean height (m) of the total amount of leaf material within 
a column of the canopy

Hardiman et al. (2013)

Canopy oligophotic leaf area OLA Total amount of plant material within the bottommost 35% 
of plant material within the canopy

Lefsky et al. (1999)
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Variable Abbreviation Description References

Canopy oligophotic volume COV Volume of the bottommost 35% of plant material within the 
canopy

Lefsky et al. (1999)

Canopy porosity ratio CPR Ratio (%) of voxels within a column of the canopy that do 
not contain plant material

Hardiman et al. (2013)

Leaf area density 10th quantile L10 Height (m) of the 10th quantile of leaf material within a 
column of the canopy

Shi et al. (2018)

Leaf area density 25th quantile L25 Height (m) of the 25th quantile of leaf material within a 
column of the canopy

Shi et al. (2018)

Leaf area density 50th quantile L50 Height (m) of the 50th quantile of leaf material within a 
column of the canopy

Shi et al. (2018)

Leaf area density 75th quantile L75 Height (m) of the 75th quantile of leaf material within a 
column of the canopy

Shi et al. (2018)

Leaf area density 90th quantile L90 Height (m) of the 90th quantile of leaf material within a 
column of the canopy

Shi et al. (2018)

Standard deviation of leaf area 
density

LSD The standard deviation of the leaf area density 
measurement within a column of the canopy

Hardiman et al. (2011)

Top of canopy rugosity CR Sum of the intercell difference between the central cell and 
their CHlidar measurements converted to a volume

Lefsky et al. (1999)

Within canopy rugosity WIC The standard deviation of the central cell and the eight 
surrounding pixels based on their LADSD measurement

Hardiman et al. (2011)

Leaf Area Density LAD The total leaf area per unit of volume Weiss et al. (2004)

APPENDIX E . Topographic variables used in this study

Variable Abbreviation Description References

Topographic variable Digital surface model DSM Elevation (m) of all objects on Earth’s surface qgis, 2022

Digital terrain model DTM Elevation (m) of the Earth’s surface qgis, 2022

Eastness EAS How eastward a pixel’s slope is facing: derived from 
sin(aspect)

qgis, 2022

Latitude LAT Latitude (°) of the pixel centroid qgis, 2022

Longitude LON Longitude (°) of the pixel centroid qgis, 2022

Northness NOR How northward a pixel is: derived from cos(aspect) qgis, 2022

Slope SLO Slope of pixel (°) qgis, 2022

Topographic position index TPI The intercell difference between the central cell and 
the mean of the eight surrounding cells

qgis, 2022

Topographic roughness index TRI The mean difference between the central cell and the 
eight surrounding cells

qgis, 2022

APPENDIX F. Beer–Lambert coefficients

Site Year Beer–Lambert coefficient

TALL 2018 .4982

ORNL 2018 .8354

MLBS 2018 .8776

SERC 2017 .6784

HARV 2018 .7796
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APPENDIX G . Results from all individual models

Sensor Marginal R2 Conditional R2

Root Mean 
Square Error 
(RMSE) AIC Variable Coefficient

Taxonomic 
diversity

All .46 .46 .36 122.7 Maximum Leaf Area Density Height - Range .3308

Principal Component 1 - Min −.2982

Canopy Filled Voxel Ratio - SD −.4171

Digital Surface Model - SD .1972

Within Canopy Rugosity - SD .1874

Slope - Min −.1724

Eastness - Mean .2081

HSI .13 .13 .46 144.9 Near Infrared Mean Reflectance - SD .3268

Principal Component 1 - SD −.2681

Lidar .41 .41 .38 126.3 Maximum Leaf Area Density Height - Range .3144

Canopy Filled Voxel Ratio - SD −.4086

Canopy Euphotic Leaf Area - Min .2446

Leaf Area Density 90th Quantile - SD .2686

Within Canopy Rugosity - Min −.2167

Canopy Filled Voxel Ratio - Max −.1804

Topography .09 .18 .46 148.6 Digital Surface Model - SD .2609

Slope - Min −.2990

Phylogenetic 
diversity

All .33 .70 .36 123.7 Maximum Leaf Area Density Height - Range .3004

Topograhic Roughness Index - Min −.2610

Normalized Difference Vegetation Index 
- Mean

.5557

Red-Edge Normalized Difference Vegetation 
Index - SD

.2823

HSI .29 .50 .39 130.3 Principal Component 2 - Min −.3275

Normalized Difference Vegetation  
Index - Mean

.7163

Red-Edge Normalized Difference Vegetation 
Index - SD

.3737

Photochemical Reflectance Index - Range −.3438

Lidar .19 .38 .41 133.5 Canopy Euphotic Leaf Area - Min .2785

Maximum Leaf Area Density Height - Range .2936

Topography .17 .30 .42 136.1 Topographic Position Index - Mean −.2649

Topographic Rougness Index - Min −.3200

Functional 
diversity

All .31 .31 .41 131.9 Maximum Leaf Area Density Height - Range .3336

Canopy Porosity Ratio - SD −.2451

Principal Component 1 - Min −.3058

Slope - Min −.1884

HSI .13 .14 .46 140.5 Principal Component 1 - Min −.3632

Lidar .22 .27 .43 133.5 Maximum Leaf Area Density Height - Range .4103

Canopy Porosity Ratio - SD −.3147

Topography .06 .13 .47 147.8 Slope - Min −.2483
Abbreviation: AIC, akaike information criterion.
Additional information about variables available in Appendices C-E.
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APPENDIX H . Missing species per trait

Trait Number of species Number of missing species Percent of traits missing

Bark Thickness 60 8 13.3%

Leaf Nitrogen 60 9 15%

Leaf Phosphorus 60 9 15%

Leaf Photosynthetic Area 60 20 33.3%

Leaf Thickness 60 26 43.3%

Plant Life Span 60 27 45%

Rooting Depth 60 9 15%

Seed Dry Mass 60 8 13.3%

Specific Leaf Area 60 11 18.3%

Stem Specific Density 60 10 16.7%

Stomata Conductance Area 60 26 43.3%
Additional information about each trait in Appendix B.
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