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Abstract 

The present study examined age differences in performance on the Tower of London (TOL), a 

measure of strategic planning, in a diverse sample of 890 individuals between the ages of 10 and 

30.  Although mature performance was attained by age 17 on relatively easy problems, 

performance on the hardest problems showed improvements into the early twenties.   

Furthermore, whereas age-related performance gains by children and adolescents (ages 10-17) on 

the hardest problems were partially mediated by maturational improvements in both working 

memory and impulse control, improved performance in adulthood (ages 18+)  was fully 

mediated by late gains in impulse control.  Findings support an emerging picture of late 

adolescence as a time of continuing improvement in planned, goal-directed behavior. 
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There is broad consensus that the protracted maturation of the prefrontal cortex (PFC) 

and its reciprocal connections to other regions contributes to the relatively late gains in efficiency 

of cognitive control processes in adolescence (e.g., Casey, Getz, & Galvan, 2008).  Cognitive 

control processes, often referred to as executive functions, include a suite of abilities enabling 

successful planning and enactment of goal-directed behavior.  Recent research suggests that 

developmental gains in cognitive control in late adolescence contribute to the progressive 

capacity to make mature decisions, particularly in risky contexts (Steinberg, 2008).  Whereas 

young adolescents evince an adult-like capability to reason logically about the costs and benefits 

of decision alternatives, aspects of psychosocial maturity reflecting self-regulatory control (e.g., 

resistance to peer influence, impulse control, future orientation) show improvements across the 

course of adolescence and often into the early twenties (Albert & Steinberg, 2011).   

Importantly, research charting age differences in such capacities is increasingly consulted 

as a source of guidance for social and legal policies concerning adolescents.  For instance, in a 

landmark Supreme Court decision overturning the juvenile death penalty for individuals under 

18 years old (Roper v. Simmons, 2005), the majority opinion specifically cited evidence from 

developmental science to argue that adolescents lacked the psychosocial maturity to be held 

culpable for their crimes to the same degree as adults (Steinberg, Cauffman, et al., 2009).  

Furthermore, interventions aimed at reducing adolescent risk behavior, to the degree that they are 

successful, must capitalize on an understanding of adolescents’ strengths and weaknesses in the 

self-regulatory domain (Albert & Steinberg, 2011).  A fuller understanding of the normative 

course of self-regulatory development is therefore critical for informing legal and social policies 

relevant to the health, well-being, and judicial treatment of adolescents.  
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The planning and enactment of future-directed behavior is likely to involve a variety of 

higher-order control processes, including inhibition of attention to distracting stimuli, sustained 

suppression of impulsive responding, and the capacity to maintain goal representations in 

working memory (Unterrainer & Owen, 2006).  Luna and colleagues (2004) found that 

oculomotor indices of processing speed, response inhibition, and working memory did not reach 

adult levels of maturity until middle-to-late adolescence, with working memory the last to reach 

asymptote, at age 19.  Each process showed a steep increase in performance from childhood 

through adolescence, followed by a plateau from adolescence through adulthood, similar to the 

age function identified for synaptic pruning in the prefrontal cortex (Huttenlocher, 1990) 

Luciana and colleagues found that adolescents reached adult-level performance at 

progressively later ages for nonverbal working memory tasks requiring increasing levels of 

executive control, with a measure of strategic self-organization showing the latest gains, through 

ages 16-17 (Luciana, Conklin, Hooper, & Yarger, 2005).  The authors interpreted the findings as 

evidence for a functional dissociation between performance on tasks requiring only the 

maintenance of information in working memory, which relies primarily on ventrolateral PFC 

(VLPFC), versus tasks requiring strategic self-monitoring and executive control of the contents 

of working memory, which heavily recruit dorsolateral PFC (DLPFC), one of the last brain 

regions to reach structural and functional maturity in late adolescence (Giedd, 2008). 

Perhaps the most informative research on controlled problem solving utilizes the Tower 

of London (TOL) task, created by Shallice (1982) to study deficits in goal-directed behavior 

commonly observed among patients with frontal lobe lesions.  On the classic version of the TOL, 

participants are presented with a test instrument that consists of three differently colored balls 

placed in a variable configuration on three rods of progressively smaller size.  The object of each 
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trial is to re-arrange the balls, one at a time and in the minimum number of moves, to match a 

separately presented goal configuration.  Trials are designed to vary in difficulty based on the 

minimum number of moves required to achieve the solution.  Whereas simpler trials may be 

solved directly through a perceptual match-to-sample strategy, trials with a high minimum 

number of moves require a sequence of intermediate moves to reach the final goal state.  Thus, 

difficult trials assess complex, integrative problem solving by requiring goal directedness, 

strategic planning of subgoals (including removal of obstacles), inhibition of prepotent 

responses, and recall-guided action (Berg & Byrd, 2002).  In short, the difficult TOL trials 

require planning and sustained cognitive control of behavior toward a goal. 

Evidence from lesion, pathology, and neuroimaging studies employing the TOL clearly 

demonstrates the importance of the PFC, and specifically dorsolateral and rostral portions of the 

PFC, for complex problem solving.   Deficits in efficient problem solving have been reported 

among patients with a variety of unilateral or bilateral frontal-lobe lesions (Unterrainer & Owen, 

2006), as well as patients with diverse pathologies of the frontal lobes or frontostriatal system, 

including schizophrenia (Morris, Rushe, Woodruffe, & Murray, 1995), Parkinson’s disease 

(Owen et al., 1992), Huntington’s disease (Watkins et al., 2000), and attention deficit 

hyperactivity disorder (ADHD) (Young, Morriss, Toone, & Tyson, 2007).  Furthermore, fMRI 

findings suggest that specific activation of DLPFC and rostrolateral PFC support performance on 

the most difficult TOL problems (Wagner, Koch, Reichenbach, Sauer, & Schlösser , 2006; van 

den Heuvel et al., 2003).  Given evidence that these brain regions are among the last to reach 

structural and functional maturity in adolescence (Giedd, 2008), it is reasonable to predict that 

optimal performance on the TOL will not be attained until late adolescence or early adulthood. 



Strategic Planning        6 

In the largest study to date of age differences in TOL performance, significant age gains 

were seen in the ability to perfectly solve TOL problems across a sample of 800 children aged 5 

to 12 (Korkman, Kemp, & Kirk, 2001).  However, because these data derived from a NEPSY 

standardization study that did not include an adolescent or adult comparison group, they do not 

address the question of when TOL problem solving reaches developmental maturity.  Several 

studies utilizing broader age ranges have shown TOL performance gains through the adolescent 

years.  For example, a TOL study of four different age groups (7-, 11-, 15-, and 21-year olds) 

found continued gains in problem-solving efficiency between ages 15 and 21 (Huizinga, Dolan, 

& van der Molen, 2006).  Asato, Sweeney, and Luna (2006) reported similar findings in a study 

of individuals between 8 and 30, with increasing age predicting better performance on more 

difficult trials of the TOL (>3 minimum moves).  Other cross-sectional studies of age differences 

in TOL performance have identified performance plateaus as occurring somewhere between ages 

15 and 30, depending on the variation of the TOL task employed and the construction of age 

comparison groups (Anderson, Anderson, Northam, Jacobs, & Catroppa, 2001; DeLuca et al., 

2003; Luciana & Nelson, 2002; Raizner, Song, & Levin, 2002).   

Because of the relatively small sample sizes and restricted age ranges that are common to 

these studies, it is difficult to conclude whether problem solving performance is largely mature 

by middle adolescence (i.e., closer to 15), or whether subtle performance gains continue into 

early adulthood.  Furthermore, most studies utilized TOL problems with a restricted range of 

difficulty (typically between two and five minimum moves), decreasing the likelihood of 

identifying performance differences between adolescents and young adults, which are typically 

observed for only the most difficult problems.  In order to fully describe the developmental 

course of cognitive processes undergirding TOL performance, it is necessary to have (1) a large 
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enough sample to differentiate among chronological ages, (2) an age range that spans the teens 

and twenties, and (3) sufficient variability in problem difficulty. 

A second question concerns the degree to which developmental improvements in 

planning and problem solving on the TOL are dependent upon advances in cognitive abilities 

like working memory (WM) capacity, manipulation of information in WM (i.e., WM updating), 

and inhibitory processing, all of which are known to mature between middle and late 

adolescence (Steinberg, 2008).  To plan a solution on a difficult TOL trial, one must mentally 

represent a path from the start state to the goal state, requiring multiple intermediate steps 

organized as subgoal operations.  As one subgoal operation is mentally enacted, the problem 

state representation must be updated and new alternative operations evaluated, a process that 

must be repeated until the goal state is reached and the sequence of operations can be 

behaviorally reproduced.  Clearly, there are basic processing efficiency and capacity 

prerequisites for mastering such a complex cognitive task, including but not necessarily limited 

to visuospatial reasoning skills.  For more difficult problems, the ability to maintain and update 

the problem state representation across successive subgoal operations may require a relatively 

advanced capacity to select what information goes into working memory, hold that information 

in working memory across a delay, and accurately update the contents of working memory as 

new information is processed.  Likewise, optimal performance on the TOL may require a mature 

inhibitory processing system, including the ability to inhibit attention to distracting stimuli, to 

avoid making seemingly obvious but actually counterproductive “trap” moves, and more 

generally to delay immediate responding while completing the full planning phase. 
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The few studies that have investigated the contributions of WM and inhibitory processing 

to age-related gains on the TOL have reported inconsistent results.  Asato and colleagues (2006) 

found that oculomotor measures of response inhibition (antisaccades) and WM capacity (i.e., 

memory guided saccades) predicted TOL solution efficiency across their 8- to 30-year-old 

sample. In contrast, Huizinga and colleagues (2006) found WM capacity and WM manipulation 

did not significantly predict age differences in TOL performance across four age groups: 7, 11, 

15, and 21; only a measure of response inhibition on a modified Stroop task was a significant 

predictor, and only among 21-year-olds.  Adult studies are also mixed.  Whereas some studies 

have predicted TOL problem solving from visuospatial WM (Gilhooly et al., 2002; Welsh et al., 

1999) and response inhibition (Miyake et al., 2000; Welsh et al), others have failed to replicate 

these associations and instead point to contributions from basic measures of fluid, visuospatial 

intelligence (Unterrainer et al., 2004; Zook et al., 2004). 

Although these divergent findings can be explained in large part by differences in the 

structure and scoring of TOL and TOH task variants (see Berg & Byrd, 2002), the inconsistent 

findings for response inhibition (RI) merit closer analysis. The studies described above typically 

assessed RI using either the Stroop (i.e., the degree to which an individual can resist attentional 

interference from salient stimuli), or one of several tasks assessing the capacity to inhibit an 

automatic motor response (e.g., Go/No-Go, Stop Signal, or oculomotor anti-saccade).  Friedman 

and Miyake (2004) aptly described these and similar tasks as measures of prepotent response 

inhibition, a latent subclass of RI representing the capacity to inhibit automatic (i.e., prepotent) 

attention or motor responses.  Given that the TOL does not establish a strong prepotent response 

to inhibit, it is not surprising that performance on prepotent RI tasks is inconsistently related to 

age and individual differences in TOL performance.   
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Then what aspect of inhibitory processing is important for planned problem solving on 

the TOL?  One possible alternative is suggested by a measure derived from the TOL itself -- the 

capacity to delay responding until planning is complete.  Assessed as the length of time that an 

individual waits before initiating a solution for a given problem, first-move latency is 

consistently predictive of TOL performance, such that individuals with longer average first-move 

latency correctly solve more trials in fewer moves (Mitchell & Poston, 2001), and instructing 

participants to fully plan a solution before acting is associated with both increased first-move 

latency and problem solving efficiency (Unterrainer et al., 2003).  This inverse association 

between planning time and performance has been cited as one possible explanation for the TOL 

deficits seen in children and adults with ADHD.  For instance, a recent study found that, whereas 

healthy adults progressively increased their planning time as problems grew in difficulty, adults 

with ADHD (matched on age, IQ, and social class) waited no longer to act on difficult than on 

easy problems, and consequently performed worse on difficult problems relative to healthy 

controls (Young et al., 2007).  It is also plausible that developmental changes in the tendency to 

wait before responding on the TOL could account for age-related variance in problem-solving 

performance.  In a previous report that utilized response time (but no other TOL outcome) data 

from the present dataset, we demonstrated linear age gains in first-move latency from 10 through 

30 years, with 26-30 year olds waiting significantly longer to act than all other age groups 

(Steinberg et al., 2008).  

In sum, it is likely that longer waiting times on the TOL reflect not only the inhibition of 

immediate, automatic responding, but also the capacity to sustain this inhibition in support of 

planning an optimal solution; as such, we consider TOL first-move latency as an index of 

impulse control.  This distinction between prepotent RI and a higher-order capacity for impulse 



Strategic Planning        10 

control is consistent with evidence that children show a dissociation between performance on 

tasks requiring management of conflicting attentional demands (i.e., a sub-class of RI) and tasks 

requiring sustained delay of behavior, which the authors also referred to as measures of impulse 

control (Carlson & Meltzoff, 2008).  At a broader level, we view impulse control as a higher-

order self-regulatory capacity, similar to Nigg’s (2000) “executive inhibition” construct, which 

he associates with relatively late developmental gains in conscientiousness, agreeableness, and 

planful control, alongside a parallel decline in impulsivity.  Whereas aspects of visuospatial 

reasoning, working memory and prepotent response inhibition are likely essential prerequisites 

for planned problem solving on the TOL, we predict that an additional component contributes to 

optimal TOL performance – the development of impulse control, reflected by prolonged 

planning of behavior prior to action.   

The present study examines age differences in strategic planning on the TOL in a large 

and ethnically diverse sample ranging from 10 to 30 years old.  Consistent with lesion and 

neuroimaging evidence that optimal performance on the TOL recruits anterior portions of the 

PFC, and longitudinal MRI findings suggesting that these brain regions are among the latest to 

mature, we hypothesize that developmental improvements on the TOL will be evident well into 

the late adolescent years.  Furthermore, we hypothesize that age differences in TOL problem 

solving will be partially mediated by developmental improvements in visuospatial reasoning, 

WM capacity, WM updating, and prepotent RI.  In addition, we predict that unique age-related 

variance in performance will be accounted for by age gains in impulse control, operationalized as 

the amount of time an individual waits before acting. 

Method 

Participants 
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 Data for the present study were collected from five sites: Denver, Irvine (California), Los 

Angeles, Philadelphia, and Washington, D.C.  The combined sample includes 935 individuals 

ranging in age from 10 to 30 years old.  This age range was selected to allow for examination of 

age differences within the adolescent decade, as well as comparison of adolescent subgroups to 

individuals in their late teens and early-to-mid twenties, an age period when the PFC is still 

maturing, and to individuals in their late twenties, a period in which PFC maturation is, 

presumably, largely complete (Giedd, 2008).  Due to data recording errors associated with the 

computerized version of the TOL, 39 participants had invalid data on primary TOL outcome 

measures, and were therefore dropped from the analysis.  In addition, 6 individuals were dropped 

due to missing demographic data, resulting in an analytic sample of 890 individuals.  Because all 

missing cases resulted from technical or administrative error, such cases can be considered 

missing at random; no significant differences were found between age groups in the proportion 

of valid cases (Χ2 (6, N = 935) = 8.67, ns).  To facilitate analysis of age differences with 

sufficient statistical power, we created the following age groups: 10-11 years (n = 109; 56 F), 12-

13 years (n = 130; 63 F), 14-15 years (n = 122; 55 F), 16-17 years (n = 140; 74 F), 18-21 years (n 

= 141; 68 F), 22-25 years (n = 133; 73 F), and 26-30 years (n = 115; 64 F).   

 The sample was evenly split between males (49%) and females (51%) and was ethnically 

diverse, with 29% African Americans, 15% Asian Americans, 22% Latino(a)s, 24% Whites, and 

10% Others.  Participants were predominantly working- and middle-class.  Each site contributed 

an approximately equal number of participants, although site contributions to ethnic groups were 

disproportionate, reflecting the demographics of each locale. 

Procedure 
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Prior to data collection, all site project directors and research assistants met at one 

location for several days of training to ensure consistent task administration across data 

collection sites.  The project coordinators and research assistants conducted on-site practice 

protocol administrations prior to enrolling participants. 

Participants were recruited via newspaper advertisements and flyers posted at community 

organizations, Boys and Girls clubs, churches, community colleges, and local places of business 

in neighborhoods targeted to have an average household education level of “some college” 

according to 2000 U.S. Census data.  Individuals who were interested in the study were asked to 

call the research office listed on the flyer. Members of the research team described the nature of 

the study to the participant over the telephone and invited those interested to participate.  Given 

this recruitment strategy, it was not possible to know how many participants saw the 

advertisements, what proportion responded, and whether those who responded are different from 

those who did not. 

Data collection took place at an office at a participating university or a location in the 

community where it was possible to administer the test battery in a quiet and private location.  

Before beginning, participants were provided verbal and written explanations of the study, their 

confidentiality was assured, and their written consent or assent was obtained.  For participants 

who were under the age of 18, informed consent was obtained from either a parent or guardian.   

Participants completed a 2-hour assessment that consisted of a series of computerized 

tasks, a set of computer-administered self-report measures, a demographic questionnaire, and an 

assessment of IQ.  The tasks were administered in individual interviews.  Research assistants 

were present to monitor the participant’s progress, reading aloud the instructions as each new 

task was presented and providing assistance as needed.  To keep participants engaged in the 
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assessment, participants were told that they would receive $35 for participating in the study and 

that they could obtain up to a total of $50 (or, for the participants under 14, an additional prize of 

approximately $15 in value) based on their performance on the computer tasks.  In actuality, we 

paid all participants ages 14-30 the full $50, and all participants ages 10-13 received $35 plus the 

prize.  This strategy was used to increase the motivation to perform well on the tasks but ensure 

that no participants were penalized for their performance.  All procedures were approved by the 

IRB of the university associated with each data collection site.   

Measures 

 The present analyses utilize data from the demographic questionnaire, a self-report 

measure of impulsivity, a standardized assessment of intelligence, two computerized tests of 

working memory, a computerized test of prepotent response inhibition, and a computerized 

version of the Tower of London task.   

 Demographics.  Participants reported their age, gender, ethnicity, and household 

education. The age groups did not differ with respect to gender, although they did marginally 

differ with respect to ethnicity (X2 (24, N = 890) = 36.62, p = .048).  To locate the source of this 

difference, we examined standardized residuals for each cell, which represent the degree to 

which an ethnic group was over- or under-represented in a given age group; residuals greater 

than z = +/- 1.96 were considered significant at p < .05.  Among 16-17 year-olds, there were 

more African-American (z = 3.3) and fewer European-American (z = -3.5) participants than 

expected, and among 18-19 year-olds, there were fewer African-American (z = -2.0) and more 

Asian-American (z = 2.4) participants than expected.  No other significant age differences in 

ethnic composition were found.  To index household education, we utilized reports of parents’ 

highest education level for individuals under 18, and individuals’ own educational attainment for 
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those 18 and older. We recognize that using respondents’ current level of attainment as a 

household educational index among college-enrolled individuals aged 18 and older may 

misrepresent these individuals’ actual background, because college students who are adults are 

coded as having attained “some college” when in fact their parents may have attained more or 

less than this.  However, a strength of the present study is that our young adult sample is not 

exclusively comprised of college undergraduates, but rather includes both students and non-

students.  There is no consensus, when studying young adults, about how best to characterize 

their household education.  Although an omnibus ANOVA showed a marginally significant 

difference between the age groups in household education (F(6, 874) = 2.11, p = 0.05), further 

examination utilizing the Tukey post-hoc procedure for multiple comparisons  revealed no 

significant differences between any two age groups.  Gender, ethnicity, and household education 

are specified as covariates in all subsequent analyses.   

Impulsivity.  A widely used self-report measure of impulsivity, the Barratt 

Impulsiveness Scale, Version 11 (Patton, Stanford, & Barratt, 1995), was part of the 

questionnaire battery, and has been shown to have good construct, convergent, and discriminant 

validity. The scale has 30 items comprising 6 subscales, including motor impulsivity (e.g., “I act 

on the spur of the moment”), inability to delay gratification (e.g., “I spend more money than I 

should”), lack of perseverance (e.g., “It's hard for me to think about two different things at the 

same time”), attention (e.g., “I am restless at movies or when I have to listen to people”), 

cognitive complexity (“I am a great thinker”), and self-control (“I plan for my future”).  Each 

item is scored on a 4-point scale (Rarely/Never, Occasionally, Often, Almost Always/Always), 

with higher scores indicative of greater impulsivity.  Item responses were averaged to form a 

total impulsivity score. Inter-item reliability of the full scale was acceptable in the current sample 
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(α = .80).  Because each of the individual subscales demonstrated unacceptably low reliability 

(all α coefficients <  0.7), we only utilized full-scale impulsivity scores in the present analyses. 

Intelligence.  The Wechsler Abbreviated Scale of Intelligence (WASI) Full-Scale IQ 

Two-Subtest (FSIQ-2) (Psychological Corporation, 1999) was used to produce an estimate of 

general intellectual ability based on two subtests corresponding to crystallized and fluid 

intelligence (Vocabulary and Matrix Reasoning, respectively).  The WASI can be administered 

in approximately 15 minutes and is correlated with the Wechsler Intelligence Scale for Children 

(r = .81) and the Wechsler Adult Intelligence Scale (r = .87).  It has been normed for individuals 

between the ages of 6 to 89 years.  Small but significant differences were found between the age 

groups in Full-Scale IQ (F(6, 882) = 4.17, p < .001), such that 10-11 year-olds scored higher 

than 14-15 or 16-17 year-olds, and 16-17 year olds also scored lower than 22-25 year-olds.  To 

account for the possibility that potential age differences in TOL performance result from IQ 

differences between the age groups, IQ was specified as a covariate in analyses examining age 

effects on the TOL. 

Because a second set of analyses specifically examines the cognitive capacities that 

potentially mediate age differences in TOL performance, we also derived a measure of 

visuospatial reasoning based on raw scores from the WASI’s Matrix Reasoning subtest.  For 

each Matrix Reasoning problem, the participant is instructed to examine a visuospatial pattern 

with a missing component, and identify which of 5 possible choices best completes the pattern.  

Raw scores are recorded as the number of problems answered correctly.  In contrast to the Full-

Scale IQ score, which is standardized based on age norms, this measure of visuospatial reasoning 

preserves age differences in performance. 
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Prepotent Response Inhibition.  A computerized version of the classic Stroop color-

word task was administered to assess prepotent response inhibition (Stroop, 1935).  On each 

trial, the participant was presented a color-word (e.g., “blue”, “yellow”) and instructed to identify 

the color in which the word was printed (while ignoring the semantic meaning of the word) by 

pressing a corresponding key as quickly as possible.  Trials varied on whether the color-word 

and the printed color of the word were congruent or incongruent.  Participants completed two 48-

trial experimental blocks.  The first block included an equal mix of congruent and incongruent 

trials, and the second included a greater number of congruent than incongruent trials.  Utilizing 

all trials, we calculated interference effects for response time and accuracy as the difference in 

average response time and ratio of accurate responses, respectively, on incongruent versus 

congruent trials. In order to allow interpretation of Stroop results as a capacity, we reverse-

scored the interference effects for RT and accuracy, such that higher scores represent stronger 

inhibition of attention to distracting stimuli, and fewer inaccurate responses.  Descriptive 

analysis of the Stroop inhibition effect based on RT scores revealed a small but counterintuitive 

relation with age (r = -.083, p < .05), suggesting a weak age trend toward less effective 

inhibition.  Because inaccurate response trials do not contribute to the index of RT interference, 

we suspect that this negative correlation with age is an artifact reflecting the greater frequency of 

inaccurate responses in younger age groups.  We therefore opted to utilize the Stroop 

interference effect on accuracy as our index of prepotent response inhibition; this measure 

showed a modest but positive correlation with age (r = .167, p < .001). 

 Working Memory.  The test battery included two measures of working memory.  The 

first, which we refer to as Working Memory Capacity, was based on a standard test of Forward 

Digit Span.  Participants heard a series of 13 sequences of digits (beginning with two digits and 
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increasing to eight) that they were asked to recall.  A WM Capacity score was computed based 

on the highest number of digits correctly recalled within the 13 trials.   

In addition, we derived a measure of Working Memory Updating using an item 

recognition memory task (Thompson-Schill et al., 2002).  On each trial of this task, participants 

saw four probe letters on the screen, followed by a brief delay.  They were then presented a 

single target letter and asked whether the target was among the four probes.  In half of the trials, 

the probe item was a member of the target data set (i.e., “positive” trials); in the other half of the 

trials, the probe item was not a member of the target data set (i.e., “negative” trials).  To respond 

accurately, participants pressed a key corresponding to yes for positive and no for negative trials. 

Each subject completed 4 blocks of experimental trials and 1 block of control trials; each 

block included 40 trials.  For experimental trials, the trial sequence was manipulated to vary the 

degree to which items from previous trials would interfere with accurate recognition of target 

items on current trials.  “Recent” trials used probe letters that appeared in the previous target set 

(not the one against which participants are currently comparing).  Thus, recent trials introduce 

interference to the task; if participants fail to effectively update the working memory buffer by 

clearing items from previous trials and adding items from the current trial, they might 

inaccurately identify the probe as a member of the target set of letters.  “Non-recent” trials used 

probe letters that did not appear in either of the previous two target sets, and thus are not as 

subject to interference effects.  This resulted in an equal number of 4 different types of trials 

(recent-positive, recent-negative, non-recent-positive, non-recent-negative), pseudo-randomly 

distributed throughout the experimental blocks.  Following the analytical strategy outlined by 

Thompson-Schill et al. (2002), we calculated an interference effect as the difference in response 

accuracy for recent-negative versus non-recent-negative trials.  In order to reduce overlap in 
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terminology with the Stroop interference effect, we refer to the WM interference effect as 

working memory updating; to the degree that subjects effectively update the contents of WM on 

a trial-by-trial basis, interference created by recent target items is diminished.  Analogous to our 

transformation of Stroop results, we reverse scored the WM Updating data, such that higher 

scores represent greater competence. 

Tower of London.  A computerized version of the classic Tower of London task was 

administered to assess planning and problem solving (Berg & Byrd, 2002; Shallice, 1982).  On 

each trial, the subject is presented with pictures of two sets of three colored balls distributed 

across three rods, the first of which can hold three balls, the second only two balls, and the last, 

only one ball.  The first picture shows the starting position of the three balls, and the second 

depicts the goal position.  The subject is asked to move the balls in the starting arrangement to 

match the other arrangement in as few moves as necessary, using the computer cursor to “drag” 

and “drop” each ball.  Five sets of four problems are presented, beginning with those that can be 

solved in three moves and progressing to those that require a minimum of seven moves. 

In the administration of the task, the starting and goal positions are displayed, and the 

subject takes as much (or as little) time as necessary before making each move.  The subject is 

instructed to click a button indicating completion of the trial when the solution picture matches 

the goal picture.  The trial is considered successfully solved if the solution is correctly submitted 

within a time limit of 160 seconds.  If the submitted solution does not match the goal 

presentation, or if the participant does not submit a solution within 160 seconds, the trial is 

considered unsolved.  After each trial, feedback is presented indicating whether the trial was 

solved in the minimum number of moves, solved with extra moves, or incorrectly solved. 
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For each level of problem difficulty, our primary outcome variable is the percent of trials 

with perfect solutions (i.e., trials solved in the minimum number of moves), a measure of optimal 

planning and execution of the task.  We also computed a measure of relative performance on 

problems that were not perfectly solved (i.e., accurate solutions achieved with a varying number 

of extra moves), but because the resulting index was highly correlated with average perfect 

solutions (r = .89), and showed a nearly identical pattern of age differences, we henceforth limit 

our analyses to the percent of perfect solutions.  This decision reflects our greater interest in the 

development of strategic planning, as opposed to “on-line” trial-and-error problem solving.   

 In addition, we utilized a measure of first-move latency, calculated as the length of time 

between the problem presentation and the participant’s first move.  As described in the 

Introduction, first-move latency significantly predicts overall performance on the TOL and is 

commonly interpreted as a measure of the extent to which an individual plans before acting.  

Because first-move latency data from the present study (but no performance data) were presented 

in detail in a prior report (Steinberg et al., 2008), we refer the reader to that paper for a full 

discussion of age differences and their implications for understanding the maturation of impulse 

control.  In the present report, first-move latency is utilized as an index of impulse control, which 

we examine alongside measures of visuospatial reasoning, WM, and prepotent RI as potential 

mediators of age differences in problem solving performance. 

Results 

Raw correlations between all study variables are presented in Table 1.  Means and 

standard deviations for Tower of London outcomes, across the age groups and for the sample as 

a whole, are presented in Table 2.  Descriptive statistics for visuospatial reasoning,WM capacity, 

WM updating, prepotent RI, and self-reported impulsivity are presented in Table 3.   
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Age Differences in Performance on the Tower of London 

 Age differences in perfect solutions were examined using a repeated measures analyses 

of covariance (ANCOVA). Performance at each level of difficulty (from three to seven minimum 

move trials) was specified as a five-level within-subject factor.  Age group, sex, and ethnicity 

were entered as independent variables, and household education and IQ were entered as 

covariates.  An alpha level of .01 was applied for the repeated measures ANCOVA, as well as 

follow-up univariate ANCOVAs at each level of problem difficulty when the omnibus 

ANCOVA was significant.  Significant univariate effects were further examined using post-hoc 

comparisons of pairwise differences between age groups, using a Bonferroni adjustment for a 

group-wise alpha of .05 (i.e., the cumulative alpha of all post-hoc pairwise comparisons between 

age groups for a given univariate test was equal to 0.05). 

 As predicted, analyses revealed a significant main effect for age, with older subjects 

achieving proportionately more perfect solutions than younger subjects (F(6, 802) = 19.49, p < 

.001).  In addition, a significant within-subjects effect of problem difficulty confirmed that, 

across the age groups, fewer trials were solved perfectly as problems became more difficult (F(4, 

799) = 10.44, p < .001).  Importantly, we also found a significant interaction between age and 

problem difficulty, such that age differences in performance varied at different levels of problem 

difficulty (F(24, 3208) = 2.96, p < .001) (Figure 1). To further examine this interaction, we 

conducted univariate ANCOVAs at each level of problem difficulty, again controlling for IQ and 

household education.  Although the main effect for age was significant at each level of problem 

difficulty, age accounted for more variance in performance on the hardest problems, reflected in 

the larger effect size for seven-move problems relative to all other difficulty levels (3-move η2 = 

.05; 4-move η2 = .03; 5-move η2 = .02; 6-move η2 = .02; 7-move η2 = .11).   
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Post-hoc age comparisons revealed that the age of mature performance (assessed as the 

youngest age group that was not significantly different than the highest-performing age group) 

also varied according to problem difficulty. Whereas adult performance was demonstrated by 16-

17 on 3-move problems, the youngest to perform at a mature level on the seven-move problems 

was the 22-25 year-old group.  A polynomial contrast analysis of age differences (adjusting for 

unequal age intervals) in proportion of perfect solutions averaged across all levels of difficulty 

showed strong linear improvement by age (F(1, 883) = 116.5, p < .001).  In addition, a 

significant quadratic effect (F(1,883) = 15.78, p < .001) reflected the leveling off of performance 

in the late teens (i.e., no age gains in performance were seen beyond ages 16-17 on perfect 

solutions averaged across all levels of difficulty).  These linear and quadratic trends were 

significant at each level of problem difficulty, with the exception of 6-move problems, which 

showed a linear but not a quadratic effect. No higher-order polynomial contrasts were 

significant, nor were significant ANCOVA main effects or interactions found for gender, 

ethnicity, or household education, although a main effect was found for IQ (F(1, 802) = 100.91, 

p < .001).  As expected, a follow-up regression showed that IQ significantly predicted percentage 

of perfect solutions, averaged across difficulty levels (β = 0.31, t = 9.33, p < .001, ∆R2 = .08).    

Together, these data suggest that optimal problem solving, which presumably requires strategic 

planning to attain a solution without any error, continues to mature through middle adolescence 

and only reaches adult maturity on the most challenging problems between ages 22 and 25.   

Mediation of Age Differences in Problem Solving by WM Capacity, WM Updating, 

Visuospatial Reasoning, Prepotent RI, and Impulse Control 

 To assess the degree to which developmental gains in WM capacity, WM updating, 

visuospatial reasoning, prepotent RI, and impulse control account for age-related variance in 
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planned problem solving, we conducted a series of hierarchical regressions on the average 

percentage of perfect solutions on the TOL, across levels of problem difficulty.  In all analyses, 

we specified ethnicity, gender, and household education as covariates in the first step of the 

hierarchical regression.  We did not included full-scale IQ as a covariate, but instead utilized raw 

scores from the Matrix Reasoning subtest of the WASI as an index of visuospatial reasoning, 

which we examine as a potential mediator.  Our rationale for this decision is two-fold: a) 

Because IQ scores are standardized to age norms, they do not represent age-related variance in 

intelligence, and thus are not well-suited for a test of whether intellectual development mediates 

age gains in TOL performance; and b) In contrast to the full-scale IQ score (which is jointly 

determined by Vocabulary and Matrix Reasoning scores on the two-subtest WASI), the Matrix 

Reasoning subtest provides a specific assessment of visuospatial reasoning capacity, a plausible 

predictor of performance on the TOL, a visual problem solving task. 

Mediation analyses proceeded as follows.  After confirming that age (entered as a 

continuous variable in Step 2 of the hierarchical regression) accounted for unique variance in 

TOL performance (β = 0.32, t = 9.95, p < .001, ΔR2 = .10, total R2 = .125), we examined whether 

the simultaneous introduction of all potential mediators eliminated or reduced this age effect.  As 

expected, the full model significantly predicted TOL performance (F(12, 830) = 30.9, p < .001, 

R2 = .31), and the introduction of the mediator variables significantly improved model fit (F-

change (5, 830) = 41.3, p < .001, ΔR2 = .17).  Furthermore, although age remained a significant 

predictor in the full model (β = 0.17, t = 5.21, p <  .001), indicating that age differences in TOL 

performance were not fully mediated by developmental gains in any of the examined mediators, 

the amount of unique variance predicted by age dropped from 10% (i.e., ΔR2 = .10) to 2.3% (ΔR2 
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= .023).  These results suggest that one or more of the hypothesized mediator variables indeed 

contributed to the age differences observed on the TOL. 

To formally examine which specific mediator variables were responsible for this effect, 

we conducted a series of regressions following the procedure outlined by Baron and Kenny 

(1986).  First, we tested whether age significantly predicted the potential mediator variable, 

controlling for gender, ethnicity, household education, and all other potential mediator variables.  

We then tested the degree to which the mediator predicted perfect solutions, using the same 

covariates, and whether its introduction into the model reduced the predictive effect of age.  If 

these first two criteria for mediation were satisfied, we then conducted a Sobel test to determine 

the degree of significance of the mediation effect (Sobel, 1982).  For ease of interpretation, all 

regression coefficients are reported as standardized betas; Sobel tests were conducted using 

unstandardized beta coefficients and corresponding error terms.  The regression and Sobel test 

results for each hypothesized mediator are presented in Table 4. 

Working Memory Capacity.   Consistent with its potential role as a mediator, we found 

that WM capacity (i.e., forward digit span) was significantly predicted by our full covariate 

model (F(11, 831) = 9.43, p < .001), and was specifically predicted by age (β = 0.18, t = 4.96, p 

< .001, ΔR2 = .026).  Furthermore, WM capacity accounted for unique variance in TOL perfect 

solutions (β = 0.09, t = 2.89, p < .005, ΔR2 = .007), and a Sobel test revealed that WM capacity 

partially mediated the age effect (z' = 2.4, p = .02).  Thus, results suggest that WM capacity 

partially – but not fully – mediates age differences in problem solving performance on the TOL. 

Working Memory Updating.  WM updating was also predicted by the full covariate 

model (F(11, 831) = 5.53, p<.001), with unique prediction by age (β = 0.14, t = 3.8, p<.001, ΔR2 

= .016).  However, WM updating did not predict unique variance in TOL performance (β = 0.05, 
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t = 1.72, ns), and there was no evidence for mediation by WM updating of the relation between 

age and TOL performance (Sobel z' = 1.54, p=0.12). 

 Visuospatial Reasoning.  Utilizing raw scores on the Matrix Reasoning subtest of the 

WASI, we also examined whether developmental gains in visuospatial (VS) reasoning capacity 

mediated age differences in TOL performance.  Although VS reasoning was significantly 

predicted by the full covariate model (F(11, 831) = 10.39, p < .001), the unique age prediction 

was only marginally significant, and in the direction opposite to what was expected (β = -0.07, t 

= -1.84, p = .07, ΔR2 = .004).  Given the lack of a significant bivariate correlation between age 

and VS reasoning (r = .05, p = .14), this trend-level effect is likely an artifact of residual variance 

from competing covariates representing cognitive processing.  VS reasoning did predict unique 

variance on the TOL (β = 0.14, t = 4.38, p < .001, ΔR2 = .016), confirming its role as a 

contributor to problem solving, although not a mediator of age differences in TOL performance. 

 Prepotent Response Inhibition.  Prepotent RI – operationalized as resistance to the 

interference effect on Stroop accuracy – was significantly predicted by the full covariate model 

(F(11, 831) = 3.48, p < .001), and was specifically predicted by age (β = 0.15, t = 3.87, p < .001, 

ΔR2 = .017).  However, controlling for age, demographic variables, and all other potential 

mediators, prepotent RI did not predict unique variance on the TOL (β = 0.04, t = 1.21, p = .23, 

ΔR2 = .001), and the Sobel test of mediation was non-significant (z' = 1.03, ns).  To insure that 

the absence of a mediation effect did not result from our choice to examine the Stroop 

interference effect in terms of accuracy (rather than response time (RT)), we re-conducted the 

analyses with RT interference as the hypothesized mediator.  Consistent with findings for 

accuracy, the RT interference effect did not predict unique variance (or mediate the age effect) in 

TOL performance.  Furthermore, these results for accuracy and RT interference held whether we 
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examined Stroop outcomes separately or combined across trial blocks (equal vs. unequal 

proportions of congruent vs. incongruent trials).  

 Impulse Control.  Finally, we examined whether the tendency to take more time to 

consider solutions before acting would partially mediate the relation between age and perfect 

solutions on the TOL. As predicted, average first-move latency was significantly predicted by 

the full covariate model (F(11, 829) = 16.72, p < .001), with unique prediction by age (β = 0.34, t 

= 10.33, p < .001, ΔR2 = .104).  Furthermore, first-move latency significantly predicted unique 

variance in TOL performance (β = 0.38, t = 11.9, p < .001, ΔR2 = .118) above and beyond all 

other hypothesized mediators.  Finally, a Sobel test supported our prediction that first-move 

latency partially mediates the relation between age and TOL performance (z' = 8.05, p < .001).   

 Given the possibility that the strong relation between first-move latency and perfect 

solutions is due to shared method variance between the two measures, we ran parallel analyses 

using standardized scores on a self-report measure of impulsivity as the mediation variable, in 

place of first-move latency.  (Recall that first-move latency is significantly negatively correlated 

with self-reported impulsivity.)  Significant results for self-reported impulsivity would further 

confirm the role of impulse control as a mediator, unconfounded by common method variance.  

Consistent with findings for first-move latency, self-reported impulsivity was significantly 

predicted by the full covariate model (F(11, 831) = 7.54, p<.001), including a unique effect for 

age (β = -0.15, t = -4.43, p < .001, ΔR2 = .02).  In addition, self-reported impulsivity significantly 

predicted unique variance in TOL performance (β = -0.11, t = -3.41, p = .001, ΔR2 = .011), and a 

Sobel test confirmed that impulsivity partially mediated the relation between age and problem 

solving on the TOL (z' = 2.59, p < .01).  In sum, although self-reported impulsivity did not 

explain as much variance in TOL performance as first-move latency, the parallel findings for 
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these two measures suggest that developmental gains in impulse control contribute to age-related 

maturation of planned problem solving.   

Differential Predictors of Early and Late Gains in TOL Performance 

 The analyses presented thus far have broadly examined the hypothesis that TOL problem 

solving gradually matures over the course of adolescence, while investigating the contributions 

of developmental gains in core cognitive competencies to this general improvement in problem 

solving capacity.  However, it is also plausible that the specific cognitive advances supporting 

age-related gains in problem solving differ at distinct stages of development and at varying levels 

of cognitive challenge.  Based on our finding that performance plateaus were attained at a much 

earlier age (16-17) for relatively easy 3-move problems than for the hardest 7-move problems 

(ages 22-25), we hypothesized that the ability to solve easier problems (i.e., those requiring less 

extensive planning and manipulation of items in WM) may depend on relatively early maturation 

of VS reasoning, whereas perfectly solving the most difficult problems may require more 

advanced WM and impulse control, competencies that continue to mature through adolescence. 

To test these hypotheses, we repeated the mediation analyses described above, with two 

adjustments.  First, we ran separate analyses examining age gains in performance on 3- versus 7-

move problems, allowing us to test the prediction that age mediation effects seen for higher-

order cognitive competencies are specific to the most challenging problems.  In addition, we 

examined the mediation effects separately for two subsamples: a child and adolescent group 

(ages 10-17; n = 501), and an adult group (18-30; n = 389).  This framework allowed us to 

examine whether age gains in performance were dependent upon the same or different cognitive 

advances during each broadly-defined stage of development.  Our rationale for splitting the 

sample at age 17 followed from the finding that most gains in TOL performance reached 
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asymptote by this age, whereas performance on the most difficult problems extended into early 

adulthood.  Thus, for the older group, we expected age to predict significant variance in 

performance only on the 7-move problems.  By splitting the sample, we were able to isolate the 

cognitive gains that contributed to this late development in performance.  Consistent with prior 

analyses, regressions controlled for all demographic variables (i.e., gender, ethnicity, household 

education).  After first examining whether age significantly predicted performance, we then 

added the cognitive competency variables to examine potential mediation effects.  We here 

report mediation findings only for the variables that significantly predicted TOL performance.   

Comprehensive results organized by problem difficulty and age range are presented in Table 5. 

Results from the regression predicting perfect solutions on 3-move problems confirmed 

the pattern of age differences reported in the ANCOVA analyses, such that age significantly 

predicted performance for the child/adolescent group (β = 0.19, t = 4.09, p<.001, ΔR2 = .033), 

but not for adults (β = -.033, t = -.68, ns). Within the younger group, the only significant 

predictor beyond age was VS reasoning (β = 0.15, t = 3.24, p < .001, ΔR2 = .02).  However, VS 

reasoning was not significantly predicted by age in the younger group (β = -.04, t = -.78, ns), and 

therefore did not satisfy the criteria for mediation of the age effect.  Neither WM, prepotent RI, 

nor impulse control were significant predictors of performance on 3-move problems in the 

younger group.  Within the older group, significant predictors included VS reasoning (β = 0.13, t 

= 2.37, p < .05, ΔR2 = .011) and impulse control (β = 0.21, t = 3.87, p < .001, ΔR2 = .036).  

Because age was not predictive in this subsample, we did not conduct mediation analyses. 

In contrast to the 3-move problem regressions, results from analyses predicting perfect 

solutions on 7-move problems demonstrated significant age effects for both the child/adolescent 

(β = 0.29, t = 6.72, p < .001, ΔR2 = .085) and adult (β = 0.11, t = 2.22, p < .05, ΔR2 = .012) 
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subsamples.  Within the younger group, the addition of the cognitive competency variables to the 

model reduced the unique variance explained by age (from 8.5% to 3.3%), but did not eliminate 

its significance (β = 0.196, t = 4.44, p < .001, ΔR2 = .033).  Beyond age, the younger group’s 

performance on 7-move problems was significantly predicted by WM capacity (β = 0.1, t = 2.27, 

p < .05, ΔR2 = .009) and impulse control (β = 0.32, t = 7.51, p < .001, ΔR2 = .095).  Consistent 

with partial mediation, age significantly predicted WM capacity (β = 0.23, t = 5.06, p < .001, 

ΔR2 = .048), and a Sobel test was significant (z' = 2.11, p < .05).  Similarly, impulse control was 

significantly predicted by age (β = 0.16, t = 3.48, p = .001, ΔR2 = .024), and the mediation effect 

was supported by a significant Sobel test (z' = 3.07, p < .01).   

Within the adult group, the introduction of the mediator variables to the regression 

completely eliminated the significance of the age effect (β = 0.06, t = 1.23, p = .22, ΔR2 = .003), 

and only impulse control significantly predicted solutions on the hardest problems (β = 0.4, t = 

7.97, p < .001, ΔR2 = .138).  Furthermore, age significantly predicted impulse control (β = 0.18, t 

= 3.44, p < .001, ΔR2 = .029), and a Sobel test (z' = 3.17, p < .01) confirmed that impulse control 

significantly mediated the age gains in performance seen after age 17 on difficult TOL problems. 

In sum, on the easiest TOL problems – those presumably requiring little planning of 

successive subgoal operations to attain the final goal state – age gains were only seen prior to age 

18, and these age differences were not explained by any of the cognitive competence variables 

measured in this study.  In contrast, on the harder problems, age gains were seen in both the 

child/adolescent and adult subsamples (although the age effect was considerably smaller among 

adults).  Age gains in performance within the child and adolescent period were partially 

mediated by both WM capacity and impulse control, consistent with results reported for 

regressions predicting average perfect solutions in the full sample.  In contrast, age gains in 
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performance on 7-move problems observed in the adult subsample were unrelated to WM 

capacity, and were instead fully mediated by protracted maturation of impulse control. 

Discussion 

 Consistent with neurobiological evidence showing gradual and prolonged maturation of 

brain systems implicated in cognitive control, we found that performance on a standard measure 

of strategic planning and problem solving – the Tower of London (TOL) – continues to improve 

well into late adolescence and early adulthood.  Although developmental gains were evinced 

across our sample of 10- to 30- year-olds for problem-solving at all difficulty levels, the greatest 

age differences in performance were seen on the hardest problems, which require planning and 

execution of multiple intermediate subgoals to reach a correct solution.  Using the most stringent 

criterion – the ability to plan and enact perfect solutions on 7-move problems – adult 

performance was not attained until between ages 22 and 25, suggesting that the ability to plan a 

perfect solution to a difficult problem continues to develop into early adulthood. 

 Many researchers have questioned whether developmental improvements on the TOL 

represent advances in strategic planning and control of behavior, or whether age differences in 

performance can be accounted for by maturation of basic cognitive processing abilities like 

visuospatial reasoning, working memory, and prepotent response inhibition.  Although our 

findings confirmed the importance of working memory capacity for TOL performance, they also 

demonstrated an important and unique role for impulse control in support of optimal problem 

solving.  Specifically, whereas individual differences in working memory capacity (but not 

working memory updating, visuospatial reasoning, or prepotent response inhibition) partially 

mediated age-related gains in the ability to perfectly solve problems, an additional, unique 

mediation effect was found for average first-move latency, the amount of time the individual 
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inhibited responding (and presumably engaged in planning) before initiating a solution.  

Furthermore, results demonstrating a parallel mediation effect for self-reported impulsivity 

suggest that this effect is not a mere artifact of common task variance.  In sum, we find age-

related gains in working memory capacity and impulse control in a large and diverse sample 

spanning two decades of development, and these gains predict stronger performance on the TOL. 

 Our results also suggest that not all TOL problems are created equally.  The ability to 

execute perfect solutions on the easiest TOL problems – those that presumably require little 

planning and execution of intermediate subgoal operations – does not show improvement beyond 

age 17.  Furthermore, the gains in simple problem solving that are apparent before this age are 

not mediated by parallel gains in any of the cognitive capacities we measured.  In contrast, age 

gains are evident within both the younger and older group in perfectly solving the hardest TOL 

problems.  Across the child and adolescent period, advances in working memory capacity and 

impulse control both partially mediate these age gains in performance, whereas only impulse 

control mediates age gains among adults on the hardest problems.   

 At first glance, it may appear puzzling that impulse control mediates age gains in 

problem solving but prepotent response inhibition does not, given that both constructs reflect 

aspects of inhibitory processing.  Upon closer examination, the contrasting findings suggest an 

interesting distinction between cognitive control mechanisms at two different levels of 

processing.  We operationalized prepotent response inhibition in terms of the Stroop interference 

effect on accuracy – that is, the degree to which individuals were able to resist interference from 

salient but irrelevant stimuli and maintain control over goal-directed behavior.  Inaccurate 

responses represent a failure to suppress automatic behavioral reactions to irrelevant stimuli, and 

thus poor cognitive control over prepotent behavior.  In light of the TOL task structure, which 
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does not “train” a strong prepotent response or directly challenge the participant with distracting 

stimuli, it is not surprising that Stroop did not predict TOL performance.  In contrast, the 

measure of impulse control used in this study – the amount of time an individual waited before 

attempting to solve a problem – was a robust predictor of TOL performance, a finding that has 

been consistently reported in the TOL literature.  Again, this relation is not very surprising, given 

perfectly solving a multi-step problem is likely to benefit from increased planning.  In our view, 

impulse control represents not only the successful inhibition of immediate responding, but a 

further sustained delay of responding in support of effortful planning of future behavior.  This 

conceptual distinction is consistent with current formulations suggesting that impulse control is 

part of a higher-order “executive inhibition” factor representing mature self-regulation (Nigg, 

2000).  Although early childhood growth in analogous capacities like “effortful control” has been 

well studied (e.g., Rothbart, Ahadi, Hershey, & Fisher, 2001), research on the continued 

maturation of self-regulatory capacities in adolescence and adulthood remain sparse, and 

constitutes an important goal for future research. 

The finding that TOL performance was predicted by a basic measure of WM storage 

capacity but not WM updating is more surprising. Given that WM updating requires greater 

control of information in WM than simple storage capacity (i.e., holding information across a 

delay), we expected that maturation of WM updating would support age gains in TOL 

performance.  However, it is possible that planning solutions on TOL problems does not require 

this specific level of control over WM.  Whereas our WM updating task included a rapid series 

of trials requiring clearing the WM buffer of old information and introducing new information, 

TOL trials were self-paced (within a 160s limit) and lacked an explicit “interference” challenge.  

Furthermore, our study did not explicitly examine visuospatial WM, which may be particularly 
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important for solving inherently visual problems on the TOL (e.g., Gilhooly et al., 2002).  In 

sum, our findings demonstrate that WM, at a minimum, plays a support role in planning 

solutions on the TOL, consistent with significant mediation by WM capacity of age gains in 

problem solving.  We suspect that some form of “executive” WM also contributes to TOL 

performance; future research should utilize measures of WM requiring concurrent storage and 

manipulation of visuospatial information to identify this active WM component. 

Evidence that performance gains in planned problem solving extend well into late 

adolescence and early adulthood is consistent with previous studies of age differences on the 

TOL (Anderson et al., 2001; Asato et al., 2006; DeLuca et al., 2003; Huizinga et al., 2006; 

Luciana & Nelson, 2002).  However, to our knowledge, the present study is the first to utilize a 

large, diverse, and broad enough sample to confidently identify an approximate age of 

maturation.  That strategic planning continues to improve until ages 22-25 adds to a growing 

body of evidence that cognitive control processes are only gradually consolidated over the course 

of adolescence, coincident with ongoing structural and functional maturation of the PFC (Casey 

et al., 2008).  In particular, adolescent improvements in cognitive control are evidenced by 

performance gains on tasks known to activate the dorsolateral PFC, including relatively difficult 

tests of response inhibition (Luna & Sweeney, 2004), spatial working memory (Conklin, 

Luciana, Hooper, & Yarger, 2007), flexible rule use (Crone, Donohue, Honomichl, Wendelken, 

& Bunge, 2006), and strategic self-organization (Luciana et al., 2005).  Given the strong 

evidence for the role of the DLPFC in optimal problem solving on the TOL (van den Heuvel et 

al., 2003), our finding of TOL performance gains into the early-to-mid twenties provides further 

indirect support for the link between DLPFC maturation and improvements in cognitive control.   

Limitations 
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Several limitations to the current study must be acknowledged when drawing conclusions 

about the developmental course of strategic planning.  Although the TOL is widely used to study 

planning, the task cannot be considered a “pure” planning measure, given the diverse array of 

cognitive abilities likely required for optimal problem solving.  However, our finding that first-

move latency (widely considered an indicator of planning time) strongly predicted performance 

and partially mediated the impact of age on performance suggests that strategic planning plays a 

key role in solving TOL problems.  Because first-move latency in this study is derived from the 

TOL task itself, it is possible that its strong correlation with performance relies to some degree 

on shared method variance.  Although we addressed this concern by replicating findings for first-

move latency with a self-report measure of impulsivity, future research should incorporate an 

independent behavioral measure of impulse control to further confirm its importance to TOL 

problem solving.  Finally, our suggestions concerning the role of structural and functional brain 

maturation in the development of TOL performance are necessarily speculative.  Although 

research examining TOL performance in children and adults with PFC lesions has generally 

demonstrated deficits in planned problem solving (Unterrainer & Owen, 2006), several studies 

suggest that the relation between frontal functioning and problem solving varies depending on 

the specific location of the lesion and the aspect of problem solving under investigation (Morris, 

Kotitsa & Bramham 2005).   

Conclusions 

Despite these limitations, the research reported here provides important new evidence 

that strategic planning and problem solving undergo continued refinement well into late 

adolescence and, in some respects, early adulthood.  Adolescents may evince adult-like 

competence in basic cognitive capabilities by the time they are 15 or 16 (Steinberg, Cauffman, et 
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al., 2009), but the ability to marshal these abilities in the implementation of a plan may not fully 

mature until some years later.  Although steady gains in core cognitive processes clearly 

contribute to this achievement, the present study suggests that a higher order process is also at 

work – namely, the emergence of mature self-regulation.  Indeed, late adolescence increasingly 

looks like a time for consolidation of gains in a variety of self-regulatory domains, including 

impulse control (Steinberg et al., 2008), future orientation (Steinberg, Graham, et al., 2009), 

reward and punishment learning (Cauffman et al., 2010), emotion regulation (Dahl, 2001), and 

resistance to peer influence (Steinberg & Monahan, 2007).  Perhaps it is this consolidation of 

self-regulatory competence that best distinguishes the passage from adolescence to adulthood. 
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Table 1 

Raw Correlations among Study Variables 

     (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)  

1. Age    X .34*** .05 .10** .05 .24*** .17*** .17*** .35** -.20*** 

2. TOL Perfect Solutions    X .32*** .10** .26*** .21*** .13*** .12*** .47*** -.21*** 

3. Full-scale IQ      X .29*** .69*** .21*** .13*** .10** .23*** -.19*** 

4. Household Education      X .15*** .12*** .10** .06 .13*** -.05 

5. Visuospatial Reasoning       X .15*** .11** .07* .19***  -.15*** 

6. Working Memory Capacity       X .17*** .12*** .13*** -.13*** 

7. Working Memory Updating        X .07* .06 -.05 

8. Prepotent Response Inhibition         X .06 -.08* 

9. Impulse Control (TOL latency)          X -.13*** 

10. Self-Reported Impulsivity            X 

Note:  Asterisks represent significance level of bivariate Pearson’s correlation coefficients (p<.05*, p<.01**, p<.001***).  
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Table 2 

Means and Standard Errors of Tower of London Outcomes, Averaged Across All Trials 

   First-Move Latency  % Perfect Solutions  

   ________________________________________ 

Age Group  Mean  S.E.  Mean  S.E. 

________________________________________________________________________ 

10-11   5.23*** 0.44  38.9*** 1.4    

12-13   5.67*** 0.39  43.1*** 1.3    

14-15   5.82*** 0.53  45.3*** 1.7    

16-17   6.73*** 0.36  51.6  1.2    

18-21   7.35*** 0.36  50.6  1.2    

22-25   8.39*  0.35  52.8  1.1    

26-30   9.98  0.39  55.1  1.3    

Total   7.03  0.15  48.2  0.5    

________________________________________________________________________ 

Note:  All values adjusted for IQ and Household Education.  Ns are as follows: 10-11 
years (N=109), 12-13 years (N=130), 14-15 years (N=122), 16-17 years (N=140), 18-21 
years (N=141), 22-25 years (N=133), and 26-30 years (N=115).  Asterisks indicate a 
significant difference between the mean for a given age group and the mean for the 
highest performing age group (p < .05*, p < .01**, p < .001***).  All significance tests 
were Bonferroni corrected for group-wise α=.05.  Means and SDs at each level of 
problem difficulty are available in table form on request from the author
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Table 3 

Means and Standard Errors of Variables Examined for Mediation 

  VS Reasoning  WM Capacity  WM Updating  Prepotent RI  S-R Impulsivity 

  ________________________________________________________________________________________ 

Age Group Mean      (S.E.) Mean      (S.E.) Mean      (S.E.) Mean      (S.E.) Mean     (S.E.) 

____________________________________________________________________________________________________  

10-11  25.34    (0.54) 6.58***  (0.10) -0.69**   (0.09) -0.097*** (0.010) 2.29***   (0.03) 

12-13  24.53    (0.45) 6.69***  (0.09) -0.86*** (0.09) -0.072      (0.008) 2.26**     (0.02) 

14-15  25.09    (0.38) 7.02       (0.09) -0.56    (0.07) -0.075*     (0.009) 2.27**     (0.02) 

16-17  25.03    (0.45) 7.26    (0.08) -0.49    (0.05) -0.060      (0.007) 2.19       (0.02) 

18-21  25.73    (0.38) 7.21    (0.08) -0.44    (0.06) -0.067      (0.010) 2.19       (0.02) 

22-25  25.55    (0.44) 7.29    (0.08) -0.46    (0.05) -0.049      (0.007) 2.16       (0.03)  

26-30  25.55    (0.50) 7.37    (0.08) -0.32    (0.07) -0.040      (0.006) 2.12       (0.02) 

Total  25.26    (0.17) 7.07    (0.03) -0.54    (0.03) -0.065      (0.003) 2.21       (0.01) 

____________________________________________________________________________________________________  
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Note: Asterisks indicate a significant difference between the mean for a given age group and the mean for the highest performing age 
group (p < .05*, p < .01**, p < .001****).  All significance tests were Bonferroni corrected for group-wise α=.05. Abbreviations: VS 
Reasoning = Visuospatial Reasoning; WM Capacity = Working Memory Capacity; WM Updating = Working Memory Updating; 
Prepotent RI = Prepotent Response Inhibition; S-R Impulsivity = Self-Reported Impulsivity.   
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Table 4 

Summary of Regressions Testing Mediation of Age Differences in TOL Perfect Solutions Averaged Across All Difficulty Levels 

   Age prediction of mediator    Mediator prediction of TOL solutions         Sobel  

 ______________________________________________________________________________________________________ 

Mediator  Std. ß      Unstd. ß (S.E.)  ΔR2  Std. ß      Unstd. ß (S.E.)  ΔR2         z-test  

____________________________________________________________________________________________________________

VS Reasoning  -.067  -.060 (.033)  .004   .135***  .015 (.003)  .016        -1.71 

WM Capacity   .179***  .032 (.007)  .026   .089**  .048 (.017)  .007         2.40* 

WM Updating   .141***  .020 (.005)  .016   .051   .035 (.021)  .002         1.54 

Prepotent RI   .146***  .002 (.001)  .017   .037   .214 (.172)  .001         1.06 

Impulse Control  .348***  .253 (.024)  .110   .378***  .051 (.004)  .118         8.05***  

S-R Impulsivity -.149*** -.007 (.002)  .020  -.109** -.217 (.065)  .011         2.59** 

    

Note: Significance levels are indicated by corresponding asterisks (p < .05*, p < .01**, p < .001***).  Regressions controlled for 
gender, ethnicity, household education, and competing mediators (except S-R Impulsivity, which was examined as a “substitute” for 
Impulse Control).  Abbreviations: VS Reasoning = Visuospatial Reasoning; WM Capacity = Working Memory Capacity; WM 
Updating = Working Memory Updating; Prepotent RI = Prepotent Response Inhibition; S-R Impulsivity = Self-Reported Impulsivity.  
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Table 5 
 
Differential Prediction of TOL Perfect Solutions by Age and Problem Difficulty 

      3-Move Problems      7-Move Problems 

           Ages 10-17          Ages 18-30          Ages 10-17          Ages 18-30 

Variable   Std. ß        Std. ß        Std. ß        Std. ß      

Age (pre-mediators)    .219***     .004    .293***    .128* 

Age (post-mediators)   .194***   -.033    .196***    .060 

VS Reasoning    .153**    .129*    .044     .029 

WM Capacity    .031     .005    .100** ($$)     .035 

WM Updating   -.048     .015    .057    -.016 

Prepotent RI    .029     .014    .016     .010 

Impulse Control   .081     .210***   .324*** ($$)    .395*** ($$) 

Note: All regressions controlled for gender, ethnicity, household education, and all other hypothesized mediating variables. Asterisks 
indicate significant beta coefficients (p < .05*, p < .01**, p < .001***).  Dollar signs indicate that the variable significantly mediated a 
portion of the age effect, as confirmed by a Sobel test (p < .05 $, p < .01 $$).  Abbreviations: VS Reasoning = Visuospatial Reasoning; 
WM Capacity = Working Memory Capacity; WM Updating = Working Memory Updating; Prepotent RI = Prepotent Response 
Inhibition.   
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Figure 1:  Age Differences in Percentage of Perfect Solutions by Problem Difficulty 
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