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Abstract 

Moving beyond studies of age differences in “cool” cognitive processes related to 

risk perception and reasoning, new approaches to understanding adolescent risk 

behavior highlight the influence of “hot” social and emotional factors on adoles-

cents’ decisions.  Building on evidence from developmental neuroscience, we pre-

sent a theory that highlights an adolescent gap in the developmental timing of neu-

robehavioral systems underpinning incentive processing and cognitive control.  

Whereas changes in brain regions involved in incentive processing result in 

heightened sensitivity to social and emotional rewards in early adolescence, cogni-

tive control systems do not reach full maturity until late adolescence or early 

adulthood.  Within this framework, middle adolescence represents a window of 

heightened vulnerability to peer influences toward risk-taking behavior.  At a time 

when adolescents spend an increasing amount of time with peers, research sug-

gests that exposure to peer-related stimuli sensitizes the reward system to the re-

ward value of risky behavior.  As the cognitive control system gradually matures, 

adolescents gain the capacity to exercise self-regulation in socio-emotionally chal-

lenging situations, reflected by an increasing capacity to resist peer influence.   
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Peer Influences on Adolescent Risk Behavior 

Evidence overwhelmingly points to adolescence as a period of height-

ened risk-taking in multiple domains, including experimentation with alcohol, to-

bacco, and drugs, unprotected sexual activity, and reckless driving (Reyna & Far-

ley, 2006).  Although risk-taking behavior declines as youth transition into mature 

adult roles, the public health consequences of the adolescent spike in risky deci-

sion-making are severe.  Motor-vehicle accidents are the leading cause of mortali-

ty for 15 to 20 year-olds and, despite extensive efforts to educate adolescents 

about the dangers of unsafe sex, rates of sexually transmitted diseases remain 

alarmingly high (Steinberg, 2008).  Although not all individuals who initiate sub-

stance use in adolescence will progress along trajectories of abuse and addiction, 

most adult addicts began using substances as adolescents (Chassin, Hussong, & 

Beltran, 2009).  In sum, the most severe threats to adolescent health and well-

being come not from natural causes, but rather from behavior-contingent out-

comes like automobile accidents, suicide and homicide, substance abuse, and sex-

ually transmitted diseases. 

A long tradition of research in developmental psychology points to ado-

lescents’ peer groups as important contributors to trajectories of risk-taking behav-

ior.  It is well known that one of the strongest predictors of deviant behavior in 

adolescence is affiliation with deviant peers, and this relationship is particularly 

strong for adolescent substance use and abuse (Chassin et al., 2009).  Crime statis-

tics indicate that adolescents typically commit crimes, ranging from vandalism 

and drug use to homicide, in peer groups, whereas adults typically do so alone 
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(Zimring, 1998).  Furthermore, adolescents are at greater risk of being involved in 

an automobile accident when riding in a car with multiple adolescent passengers 

(Simons-Morton, Lerner, & Springer, 2005).  

Several possible explanations have been advanced to account for the as-

sociation between deviant peer affiliation – or even the mere presence of peers – 

and adolescent risk-taking behavior.  First, a literal account of peer influence sug-

gests that peer groups socialize adolescents in specific risk-taking behaviors.  Re-

search from social learning approaches like Problem Behavior Theory (Jessor & 

Jessor, 1977) delineates potential pathways by which modeling and reinforcement 

of deviant behavior may initiate adolescents into a culture of risk-taking.  Alt-

hough the social learning perspective is consistent with extensive correlational ev-

idence linking adolescent risk-taking to deviant peer affiliation, a second approach 

suggests that most of this association may be accounted for by selection effects or 

confounding variables; that is, adolescents with inclinations toward risk-taking 

behavior are likely to find one another, and these shared personality dispositions 

account for the correlations in behavior between the individual and peer group 

(e.g., Jaccard, Blanton, & Dodge, 2005).  A third approach accounts for the more 

frequent presence of peers in adolescent risk-taking situations by arguing that ado-

lescents merely spend more time with their peers than do adults, thus increasing 

the probability that risk-taking tendencies are expressed in peer contexts (Brown, 

2004).  In the present chapter, we propose an alternative, albeit compatible, ac-

count based on experimental evidence that the mere presence of peers differential-

ly biases adolescents toward increased risk-taking behavior (Gardner & Steinberg, 
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2005).  Specifically, we propose a dual systems model of neurobehavioral devel-

opment that views adolescence as a developmental window wherein the presence 

of peers may “prime” a reward-sensitive motivational state that frequently over-

whelms the adolescent’s immature capacity for inhibitory control (Steinberg, 

2008). 

Before presenting the rationale and evidence to support our model of peer 

influences on risk-taking, we first provide a brief review of traditional decision-

making approaches to understanding increased risk behavior in adolescence.  We 

then describe a new class of dual process theories that contrast relatively automat-

ic (“hot”) with more deliberative (“cool”) modes of processing risk information, 

highlighting the role of affective states as inputs to the risk evaluation process.  In 

the final section of this chapter, we review behavioral and neuroscientific evidence 

pointing to relatively independent trajectories of development for two core sys-

tems influencing risk-taking behavior in adolescence.  The first, referred to as the 

socio-emotional reward system, undergoes dramatic remodeling around the time 

of puberty, resulting in normative increases in sensation seeking and sensitivity to 

socio-emotional stimuli.  The second, the cognitive control system, develops in a 

gradual, linear pattern, and supports improvements in self-regulation observed in 

late adolescence and young adulthood.  We present a model of adolescent risk-

taking that highlights the window of vulnerability created by a maturational gap 

between these two systems. We conclude by discussing ongoing research explor-

ing developmental differences in the influence of peer presence on the relative en-

gagement of the two systems in decision-making situations.  
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The Decision-Making Framework 

Traditional decision-making approaches, including health-belief models 

(e.g., Becker, 1990) and the theory of reasoned action (Ajzen & Fishbein, 1980), 

emphasize that individuals behave rationally in deliberately weighing perceived 

risks and rewards to arrive at a decision that reflects their underlying goals (Reyna 

and Farley, 2006).  Within this consequentialist framework, it is assumed that 

when individuals possess accurate information about their personal vulnerability 

to the consequences of risk behavior, and these risks outweigh the subjective value 

of the behavior, they should generate a risk-averse response (Loewenstein, Weber, 

Hsee, & Welch, 2001).  In short, decision-making outcomes are determined by the 

relative value of subjectively perceived costs and benefits, and the individual’s ca-

pacity to accurately weigh these inputs against each other.  It follows from this 

perspective that excessive risk-taking behavior in adolescence derives from a 

combination of the following factors: a) inaccurate perception of vulnerability to 

risk; b) a goal structure that overvalues the benefits of risk behavior; and c) imma-

ture cognitive processing of cost and benefit information. 

Empirical work has largely failed to support these predictions. In contrast 

to the long-held assumption of adolescent invulnerability, adolescents perceive 

risks and their personal vulnerability to such risks at an equal or greater level than 

adults; indeed, adolescents appear to overestimate risk relative to adults (Fisch-

hoff, 2008).  Moreover, adolescents report a level of risk-aversion that is compa-

rable to that reported by adults, which argues against an assumption of adolescent 

goal-structures that favor risk-taking (Reyna & Farley, 2006).  Finally, although 
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risk-taking in laboratory contexts appears to decline somewhat from childhood to 

adulthood, children and adults use probability and outcome information in a simi-

lar fashion (Levin, Hart, & Weller, 2007), and adolescents show logical reasoning 

abilities comparable to adults (Steinberg & Cauffman, 1996).  In sum, adolescents 

appear to possess the information and cognitive maturity to make reasoned deci-

sions about whether to engage in risk behavior.   

 The Role of Affect in Decision-Making 

 Given the failure of traditional cognitive models to account for adolescent 

risk-taking, several theorists have called for increased attention to the socio-

emotional and contextual inputs to the decision making process (e.g., Fischhoff, 

2008; Loewenstein et al., 2001; Reyna & Farley, 2006; Steinberg, 2008).  These 

approaches typically draw upon dual-process models to make the distinction be-

tween relatively slow, “cool,” analytical processing and faster, “hot,” associative, 

emotionally-driven processing.  Whereas the rational calculus of expected value 

may guide decision-making in cool situations, such models have typically failed to 

account for decision-making in hot contexts, where social and emotional factors 

must be considered. Pointing out that most laboratory studies of age differences in 

risky decision-making have purposefully minimized socio-emotional and contex-

tual factors, the present critique offers a simple and compelling answer to the 

question of why extant research has not consistently revealed differences between 

adolescents and adults that match the real-world evidence of heightened risky be-

havior in adolescence: We have been studying the wrong thing.  Showing up with 

a group of friends to a Friday night party, many (if not most) adolescents are un-
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likely to engage in a cool deliberative process of weighing the costs and benefits 

of decision options and calculating the expected value of a risky choice based on 

known probabilities of positive and negative outcomes.  Decision-making relies 

upon not only cognitive inputs, but also feelings: the excitement of being with 

friends, the thrill of crossing parental or legal boundaries, and the fear of getting 

caught are all plausible affective contributions to an adolescent’s decision of 

whether to drink at the keg party.  To ignore affect is to study something other 

than risky decision-making. 

 Research with adult populations has identified several pathways by which 

affect contributes to the decision-making process (for reviews, see Loewenstein et 

al., 2001; Winkielman, Knutson, Paulus, & Trujillo, 2007).  First, the anticipated 

emotional outcomes of behavioral alternatives contribute to cognitive assessments 

of their expected value (Loewenstein et al., 2001).  The teenager at the keg party 

might imagine that joining her friends in drinking beer will lessen her social anx-

iety and increase her positive emotion, whereas abstaining will make her feel ex-

cluded and increase her anxiety. These anticipated emotional consequences con-

tribute to her global evaluation of the desirability of the risky choice.   

Second, direct emotional responses to qualities of the choice alternatives 

– that is, anticipatory emotions -- influence their evaluation, and motivate ap-

proach or avoidance behavior (Loewenstein et al., 2001).  Research grounded in 

inferential models of the influence of emotion on cognition suggests that individu-

als adaptively consult their feelings as a source of information when making a 

judgment about a given target (e.g., “affect-as-information” (Schwarz & Clore, 
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1983)).  According to the somatic marker hypothesis, such emotional guidance of 

behavior reflects subtle affective learning from prior experience with reinforce-

ment and/or punishment outcomes associated with the target (Damasio, 1994).  

Returning to the keg party, if our teenager had a prior negative experience drink-

ing beer, she may respond with a degree of disgust to the smell of spilled beer 

around the keg, and this aversive emotion might influence her behavior either in-

directly (by contributing to a negative evaluation of the desirability of drinking) or 

directly (through heightened avoidance motivation).   

A third class of affective inputs has variously been referred to as inci-

dental emotion or background mood, and includes emotions elicited by factors not 

related to the decision itself  (Loewenstein et al., 2001).  Dating back to Zajonc’s 

seminal affective priming studies (Zajonc, 1980), research on the interplay of 

emotion and cognition has demonstrated the influence of pre-existing or experi-

mentally elicited affective states on perception, memory, judgment, and behavior 

(Winkielman et al., 2007). For instance, individuals surveyed on a sunny day rate 

their life satisfaction as higher than those contacted on a rainy day (Schwarz & 

Clore, 1983), and experimental elicitation of positive or negative emotion is asso-

ciated with corresponding shifts toward optimistic or pessimistic judgments about 

risk (Johnson & Tversky, 1983).  Importantly, recent work grounded in affective 

neuroscience suggests that emotions do not even need to be consciously felt to in-

fluence behavior.  In a clever experiment that elicited unconscious positive or 

negative emotion by presenting masked happy or angry faces, participants who 

had viewed happy faces chose to pour and drink more of a beverage than those 
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who had viewed angry faces, despite reporting no differences in subjective mood 

(Winkielman, Berridge, & Wilbarger, 2005).  The authors of this study argue that 

exposure to salient emotional stimuli, especially facial expressions, activates sub-

cortical circuits (e.g., nucleus accumbens and/or amygdala) that project to other 

subcortical and cortical regions involved in incentive processing and reward val-

uation (see also, Winkielman et al., 2007).  Thus, neural responses to emotional 

stimuli – whether consciously experienced or not – may modulate an individual’s 

sensitivity to unrelated incentive stimuli, biasing the individual toward approach- 

or avoidance-related behavior.  Returning to the keg party one last time, our hypo-

thetical teenager is likely bombarded with socio-emotional stimuli, perhaps in the 

form of a crowd of friends’ smiling faces.  This positively-valenced stimuli in turn 

may sensitize her reward system to respond appetitively to the incentive value of 

the cup of beer she is subsequently offered.  In effect, her immersion in a happy 

crowd might sensitize her to perceive the beer as more appealing. 

Despite our use of an adolescent party to illustrate these mechanisms, it is 

important to note that the models we have reviewed describe the influence of emo-

tion on risk-taking behavior as observed in adult populations.  It is therefore rea-

sonable to question the models’ power to account for heightened risk-taking be-

havior in adolescence relative to adulthood.  Two recent studies suggest that 

certain affective stimuli exert a greater influence on the risk-taking behavior of 

adolescents than adults.  In an effort to directly test a dual-systems account of age 

differences in risk-taking behavior, Figner and colleagues developed two versions 

of the same risk-taking task (the Columbia Card Task), one of which was similar 
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to traditional deliberative tasks (i.e., minimizing affective arousal), and the other 

designed to trigger affective involvement (Figner, Mackinlay, Wilkening, & We-

ber, 2009).  Both tasks presented participants with the opportunity to turn over 

cards revealing variable monetary gains and losses, after being explicitly informed 

about the magnitude and probability of the outcomes occurring.  Thus, the tasks 

were equivalent in terms of the expected value of choice behavior.  However, in 

contrast to the deliberative (“cold”) version of the task, which required partici-

pants to choose the number of cards to turn over at the beginning of each trial, the 

affective (“hot”) version instructed participants to turn over one card at a time, and 

presented feedback on gains and losses with each card.  Thus, the cold version en-

couraged participants to rationally determine the optimal choice, whereas the hot 

version provided affective feedback (e.g., rewards and punishments) to guide the 

decision-making process.  Consistent with traditional decision-making research, 

adolescents (ages 14-19) and adults (ages 20+) showed no differences in risk-

taking on the cold version of the task.  In contrast, adolescents took significantly 

more risks than adults on the hot version of the task.  Interestingly, although the 

effect was larger for adolescents than adults, both groups took more risks on the 

hot than the cold version of the task, consistent with the research reviewed earlier 

demonstrating the influence of affect on cognition in adult populations.  Further-

more, across the age groups, risk-taking in the hot task was positively correlated 

with self-reported need for arousal and negatively correlated with information use, 

providing support for the assertion that the hot task indeed captured affective in-

fluences on decision-making. 
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A more direct demonstration of the privileged role of socio-emotional 

stimuli, in particular, as an input to adolescent decision-making comes from an 

experimental study of peer context effects on risk-taking behavior (Gardner & 

Steinberg, 2005).  In this study, adolescents (mean age = 14), youths (mean age = 

19), and adults (mean age = 37) were tested on a computer driving task that mim-

icked the real-life experience of approaching a yellow light and deciding whether 

to stop and wait for the light to turn green again, or drive through the intersection 

and risk being hit by an unseen car.  Peer context was manipulated by randomly 

assigning each group of three participants to play the game either individually 

(alone in the room), or with two same-aged peers in the room. When tested alone, 

the three age groups engaged in a comparable amount of risk-taking.  However, 

when tested with peers in the room, adolescents and youth showed a significant 

increase in risk-taking, whereas adults did not.  Specifically, adolescents scored 

twice as high on an index of risky driving when tested with their peers in the 

room, relative to when they were alone, whereas the college-aged group was ap-

proximately 50% riskier, and adults showed no differences in risky driving related 

to context.  This experimental demonstration of heightened peer influence on risk-

taking in adolescence represents an important advance over prior studies correlat-

ing adolescents’ risk behavior with behavior reported by their peers, findings that 

are subject to alternative explanations like selection or opportunity effects.  At 

least in this one study, the presence of peers appeared to motivationally bias ado-

lescents toward riskier behavior in a manner which was not apparent for adults.  In 

the remainder of this chapter, we present a psychobiological model of adolescent 
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development that offers a plausible account for this maturational window of in-

creased susceptibility to peer influence on risk-taking. 

A Social Neuroscience Perspective on Adolescent Risk-Taking 

Developmental theories of risk-taking must account for two distinct tra-

jectories observed in real-world behavior. First, risk-taking increases sharply from 

childhood to adolescence.  Second, risk-taking steadily declines from late adoles-

cence through the early adult years.  Building on the dual-systems approaches de-

scribed above, and incorporating recent evidence from developmental neurosci-

ence, we argue that these two trajectories are related to normative maturational 

processes occurring in the brain over the course of adolescence and early adult-

hood.  Specifically, we propose that risk-taking increases around the time of pu-

berty due to changes in what we refer to as the brain’s socio-emotional reward 

system, resulting in increased sensitivity to social and emotional stimuli and 

heightened motivation toward reward-seeking.  Furthermore, we propose that risk-

taking decreases in the transition to adulthood due to gradual maturation of the 

brain’s cognitive control system, which supports advancements in self-regulatory 

control over goal-directed behavior, as well as a decrease in reward sensitivity as 

individuals mature into adulthood.  Because of the gap in maturational timing of 

the two systems, mid-adolescence represents a window of vulnerability to social 

and emotional influences toward risk-taking behavior that are relatively un-

checked by an immature capacity for self-regulation.  We now briefly review the 

neurobiological and behavioral evidence for this model; the reader is referred to 
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the original presentation of the theory for a more extensive review (Steinberg, 

2008). 

Development of the Socio-Emotional Reward System 

The emerging field of developmental neuroscience is quickly amassing 

evidence indicating dramatic structural and functional changes in the human brain 

occurring around the time of puberty.  One of the most important of these devel-

opments is the remodeling of the dopaminergic system within limbic and paralim-

bic areas (including the amygdala, ventral striatum, orbitofrontal cortex, medial 

prefrontal cortex, and superior temporal sulcus), a network of interconnected re-

gions that we refer to as the socio-emotional reward system.  This network is cen-

trally involved in the processing of social and emotional stimuli (e.g., face recog-

nition, social judgments, social reasoning (Adolphs, 2003) and, importantly, 

includes neural circuits that mediate reward processing (Spear, 2009). Moreover, 

there is considerable overlap within this network between regions showing activa-

tion in response to social stimuli and regions that are differentially activated in re-

sponse to variations in reward magnitude (e.g., the ventral striatum and medial 

frontal areas (Steinberg, 2008)). 

 Research with animal models points to a pattern of proliferation and prun-

ing of dopamine receptors in the striatum and prefrontal cortex (PFC) during ado-

lescence, a pattern which is more pronounced in males that females (Sisk & Fos-

ter, 2004).  Developmental changes in the mesocorticolimbic dopamine system, in 

particular, appear to parallel adolescent shifts in reward-related behavior (Spear, 

2009).  Briefly, this system includes dopamine neurons projecting from the mid-
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brain (substantia nigra (SN) and ventral tegmental area (VTA)) to the striatum (in-

cluding the nucleus accumbens (NAcc)) and PFC. Converging evidence points to 

adolescent changes in dopamine receptor density and subsequent neurotransmis-

sion in the striatum and PFC. Dopamine receptor binding in the rat striatum peaks 

in adolescence at levels that are 30-45% greater than levels observed in adulthood 

(e.g., Teicher et al., 1995).  Furthermore, excitatory dopamine input to the PFC 

shows adolescent peaks in both rodent (Spear, 2009) and non-human primate pop-

ulations (Rosenberg & Lewis, 1995).  Despite evidence for lower basal levels of 

dopamine release in adolescent (relative to adult) rats, adolescent rats evince 

greater dopamine release than adults in response to certain reward stimuli (Lavio-

la, Pascucci, & Pieretti, 2001).  

Although the nature and implications of dopaminergic remodeling remain 

hotly contested, one account suggests that changes in the mesocorticolimbic do-

pamine system facilitate heightened sensitivity to rewards in adolescence, relative 

to childhood or adulthood (for discussion of alternative views, see Spear, 2009).  

Supporting this account, recent functional neuroimaging studies of age differences 

in reward processing have shown increased activation in adolescents of reward-

relevant subcortical regions (especially the nucleus accumbens) in response to re-

ward receipt (e.g., Galvan et al., 2006).  Note, however, that opposite results were 

found in an fMRI study of age differences in reward anticipation (rather than re-

ceipt), with adolescents showing decreased accumbens activation relative to adults 

(Bjork et al., 2004).  Importantly, Galvan and colleagues (2006) also reported a 

significant correlation between accumbens activity and self-reported risk-taking 
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behavior, providing convergent evidence that adolescent reward sensitivity con-

tributes to a heightened propensity toward risky behavior.  Furthermore, these 

neuroimaging findings are consistent with the observations from animal models of 

adolescence indicating elevated dopamine neurotransmission in frontostriatal cir-

cuits, described above (e.g., Laviola et al., 2001).   

Consistent with this neuroimaging evidence for heightened reward sensi-

tivity following puberty, adolescents report higher levels of sensation-seeking than 

children or adults, a pattern that appears more closely related to pubertal develop-

ment than age (Martin et al., 2002).  Moreover, this peak in sensation-seeking is 

mirrored in adolescent rodents, who show a marked increase in novelty-seeking 

behavior (Spear, 2009).  Further evidence for curvilinear developmental changes 

in reward behavior comes from a recent study that examined age differences in 

reward processing, risk taking, and psychosocial maturity in a large population of 

individuals (N=935) ranging from 10 to 30 years old (for a complete review of 

study findings, see Steinberg, Cauffman, et al., in press).   This study provided ev-

idence for peaks (followed by declines) in early-to-middle adolescence of self-

reported risk preference (Steinberg, Cauffman, et al., in press) and sensation-

seeking (Steinberg, Albert, et al., 2008), as well as behavioral indicators of reward 

sensitivity (on a modified version of the Iowa Gambling Task; Cauffman et al., in 

press) and preference for immediate over delayed rewards (Steinberg, Graham, et 

al., 2009).  In contrast to this curvilinear pattern of development observed for 

measures of reward processing, age differences on measures of psychosocial ma-

turity not directly related to reward processing (e.g., future orientation, impulse 
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control, strategic planning) evinced a pattern of linear maturation extending across 

adolescence and into early adulthood (Steinberg, Cauffman, et al., in perss).  We 

return to the latter findings in our discussion of the development of cognitive con-

trol. 

In sum, evidence is beginning to accumulate suggesting that ongoing 

maturation of dopaminergic systems in adolescence contributes to changes in re-

ward-system functioning coincident with heightened reward sensitivity and sensa-

tion-seeking. It should be noted, however, that this dopaminergic remodeling has 

not been directly linked to puberty-related gonadal hormones.  Research with 

gonadectomized rodents demonstrates normative patterns of dopaminergic prolif-

eration and pruning, indicating that such neural development is not steroid-

dependent (Spear, 2009).  Puberty-coincident changes in dopaminergic systems 

may result from steroid-dependent processes (some of which are activated pre- or 

peri-natally), steroid-independent processes, or interactions between these pro-

cesses (Steinberg, 2008). 

Whereas there is little evidence for direct effects of gonadal hormones on 

dopaminergic remodeling, puberty-related increases in gonadal hormones have 

been linked to a proliferation of receptors for oxytocin within the limbic system, 

including such structures as the amygdala and nucleus accumbens (Spear, 2009).  

Oxytocin neurotransmission has been implicated in a variety of social behaviors, 

including facilitation of social bonding and recognition and memory for positive 

social stimuli (Insel & Fernald, 2004).  This evidence for puberty-related increases 

in gonadal hormones and oxytocin receptors is consistent with changes in a con-
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stellation of social behaviors observed in adolescence.  In addition to reporting a 

spike in interest in opposite-sex relationships, adolescents begin to spend more 

time interacting with peers, and report the highest degree of happiness when they 

are doing so (e.g., Csikszentmihalyi, Larson, & Prescott, 1977).  This behavioral 

shift toward peer affiliation appears highly conserved across species; adolescent 

rats also spend more time than younger or older rats interacting with peers, while 

showing evidence that such interactions are highly rewarding (Spear, 2009).  

Moreover, recent developmental neuroimaging studies indicate that, relative to 

children and adults, adolescents show heightened activation within the socio-

emotional reward system in response to a variety of social stimuli, such as facial 

expressions and social feedback (Blakemore, 2008).  Finally, consistent with ado-

lescent reports of heightened emotional intensity, several recent studies have 

demonstrated puberty-related increases in emotional reactivity, as indexed by 

heightened startle reflex, pupillary reactivity, and cortisol and cardiovascular re-

sponse (for a review, see Dahl & Gunnar, 2009). 

Taken together, this evidence for puberty-coincident remodeling of the 

brain’s socio-emotional reward system and associated elevations in sensation-

seeking, reward salience, and sensitivity to social and emotional stimuli suggests a 

number of compelling possible answers to the question of why risk-taking behav-

ior increases between childhood and adolescence.  Based on the observed changes 

in adolescent reward system functioning, a first answer is simply that adolescents 

who have undergone remodeling of the dopaminergic system may be more re-

sponsive to the reward-value of risky choices than their younger counterparts.  
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Building on this foundation, we propose a second mechanism: Not only are ado-

lescents potentially more responsive to rewards, but due to puberty-related in-

creases in sensitivity to social and emotional stimuli, this inclination toward ap-

proaching risky rewards is exacerbated when adolescents are in the presence of 

their peers.  Such an explanation is consistent with the experimental evidence re-

viewed above showing that adolescents took twice as many risks on a driving 

simulation task when seated in-between two peers, compared to when they com-

pleted the task alone (Gardner & Steinberg, 2005).  Furthermore, empirical and 

theoretical work detailing the influence of affective states on decision-making 

suggests plausible neurobiological mechanisms for how such a peer effect might 

be instantiated in the brain.  Recall our earlier description of a study demonstrating 

increased consummatory behavior in response to subliminal presentation of posi-

tively valenced, emotionally expressive faces (Winkielman et al., 2005).  Pointing 

to the extensive structural overlap of neurobiological systems mediating pro-

cessing of socio-emotional and incentive stimuli, the authors argued that positive 

emotional responses may sensitize incentive circuitry toward activation of ap-

proach responses to appetitive stimuli.  Given evidence of puberty-related intensi-

fication of socio-emotional reactivity in adolescence, we suggest that adolescents 

are more likely than their younger counterparts to strongly activate such circuitry 

when in the presence of their peers, resulting in greater sensitization to the reward 

value of risky choices.  At the conclusion of this chapter, we describe preliminary 

results of an ongoing neuroimaging study that begins to test these hypotheses.  
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First, we turn to the question of why risk-taking declines as adolescents mature in-

to adulthood. 

Development of the Cognitive Control System 

In contrast to the relatively sudden changes in social, emotional, and re-

ward processing that occur around the time of puberty, cognitive capacities sup-

porting mature self-regulation appear to develop in a gradual, linear pattern over 

the course of adolescence (and often into early adulthood) (Steinberg, 2008).  A 

growing body of evidence from cognitive neuroscience suggests that these im-

provements in cognitive control are supported by structural and functional matura-

tion of a phylogenetically recent brain system that includes the lateral PFC, parie-

tal association cortices, and parts of the anterior cingulate cortex, as well as 

enhanced connectivity between this system and limbic circuitry (for a review, see 

Casey, Getz, & Galvan, 2008). 

Recent advances in structural neuroimaging techniques have permitted 

identification of two broad patterns of brain development occurring over the 

course of adolescence.  First, after peaking between ages 10 and 12, the volume of 

gray matter in the frontal and parietal lobes decreases in the teenage years, a pat-

tern commonly interpreted as reflective of synaptic pruning, the process by which 

infrequently activated neuronal connections are eliminated (Giedd, 2008).  Im-

portantly, among the last regions to complete the process of gray matter loss is the 

dorsolateral PFC (DLPFC), a region implicated as crucial for cognitive control by 

functional neuroimaging studies employing a variety of complex control tasks 

(Casey et al., 2008).  A second feature of adolescent brain development is a 
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whole-brain, linear increase in white matter that extends well into the twenties 

(Giedd, 2008).  Increases in white matter volume are thought to reflect mye-

lination, the process by which axons are wrapped in an insulating sheath, thereby 

supporting greater integrity and speed of neuronal transmission.  Studies employ-

ing Diffusion Tensor Imaging (DTI), a technique for imaging white matter tracts 

and estimating their relative structural integrity, have provided further evidence 

for continued myelination over the course of adolescence (Giedd, 2008).  Evi-

dence of a prolonged course of myelination of neuronal connections within corti-

cal regions, and between cortical and limbic regions, has led to predictions of im-

proved processing efficiency on complex cognitive control tasks, as well as 

advances in the coordination of cognition and affect supporting goal-directed be-

havior.  Indeed, such behavioral developments closely parallel the timetable for 

biological maturation we have just described. 

Consistent with evidence for early adolescent synaptic pruning in the 

PFC, improvements in basic information processing and logical reasoning capaci-

ties thought to rely upon the PFC are still evident over the course of early-to-

middle adolescence, but show few maturational advancements beyond approxi-

mately age 16 (Steinberg, 2008).  For instance, in the large-scale study of age dif-

ferences in capacities contributing to risk-taking that we described previously, no 

developmental improvements in relatively simple measures of working memory or 

verbal fluency were evident after age 16 (Steinberg, Cauffman, et al., in press).  

When developmental gains in basic cognition do extend into later adolescence, 

they are typically seen on more demanding tasks with strong processing efficiency 
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requirements, which likely rely on enhanced inter-cortical connectivity (Steinberg, 

2008). 

In contrast to the relatively limited adolescent gains in basic cognition, 

developmental improvements in higher-order executive functions known to simul-

taneously recruit multiple sub-regions of the PFC are evident across the course of 

adolescence and into early adulthood, consistent with the enhanced neural connec-

tivity provided by ongoing myelination.  For instance, improved performance is 

evident in late adolescence on tasks assessing response inhibition (e.g., Luna et al., 

2001), strategic problem solving (e.g., Luciana, Collins, Olson, & Schissel, 2009), 

and flexible rule use (e.g., Crone, Donohue, Honomichl, Wendelken, & Bunge, 

2006).  Furthermore, consistent with gains in cortical-subcortical connectivity, 

improved coordination of cognitive and affective processes is also evident in late 

adolescence and early adulthood (Steinberg, 2008).  For instance, self-report and 

behavioral evidence indicates a pattern of linear growth in impulse control extend-

ing through adolescence and into the twenties (Steinberg, Albert, et al., 2008). 

The proposed link between structural brain maturation and gains in self-

regulatory behavior is further supported by convergent evidence from functional 

neuroimaging studies of developmental differences in the neural correlates of cog-

nitive control.  Imaging studies utilizing a variety of cognitive control paradigms 

(e.g., Go-No/Go, Stroop, flanker tasks, antisaccade) suggest that adolescents re-

cruit the control network – especially the DLPFC – less efficiently than adults 

(Casey et al., 2008).  In general, adolescents show stronger activation than chil-

dren of the DLPFC while engaging in cognitive control tasks, consistent with 
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structural maturation of the region in early adolescence (e.g., Luna et al., 2001).  

In contrast, between adolescence and adulthood, differences in activation appear 

to reflect a process of refinement in the recruitment and coordination of structural-

ly mature regions, rather than gross differences in level of activation.  Specifically, 

adolescents show increasingly focal engagement of task-relevant regions support-

ing cognitive control, a functional advancement that may reflect the increased in-

tegrity and efficiency of inter-regional connections resulting from ongoing mye-

lination (Durston et al., 2006).     

Interactions Between Reward and Control Systems 

To summarize thus far, we have presented evidence that dopaminergic 

remodeling coincident with puberty is associated with heightened sensitivity in the 

socio-emotional reward system in early adolescence, whereas synaptic pruning 

and myelination over the course of adolescence likely support gradual improve-

ments in the efficiency of the cognitive control system.  Is adolescent risk-taking 

then simply a matter of an overactive socio-emotional reward system dominating 

an immature control system?  This idea of competitive dominance has been pro-

posed as a mechanism contributing to risky or impulsive decision-making in con-

texts as diverse as drug use, cost/reward valuations, social information processing, 

and adolescent risk-taking (Steinberg, 2008).   For instance, recent fMRI studies 

have shown correlations between activity in the socio-emotional reward system 

and preference for immediate over delayed rewards (McClure et al., 2004) and 

risky decision-making (Ernst et al., 2004).  Furthermore, evidence from an exper-

imental study utilizing transcranial magnetic stimulation demonstrated increased 



24  

risk-taking following disruption of activity in the right DLPFC, a region consist-

ently implicated in studies of cognitive control (Knoch et al., 2006).  Together, 

these studies suggest that risk-taking may result from overactivity in the socio-

emotional reward system, underactivity in the cognitive control system, or a com-

petitive imbalance between the two systems. 

A second, complementary approach to understanding developmental 

changes in the interaction between the socio-emotional reward system and the 

cognitive control system is to focus on age differences in coordination between the 

two systems.  That is, mature decision-making does not necessarily reflect devel-

opmental changes in the relative dominance of one system or the other, but rather 

the extent to which the two systems are simultaneously recruited and engage in 

“cross-talk” to produce a response that effectively integrates bottom-up (i.e., so-

cio-emotional) and top-down (i.e., cognitive control) inputs.  Given the steady 

gains in connectivity between cortical and subcortical regions observed over the 

course of adolescence, we would expect parallel gains in the capacity to integrate 

emotion and cognition.  Indeed, adolescents evince gradual improvement of ca-

pacities reflecting self-regulatory control of emotionally-driven behavior, includ-

ing impulse control, planning, and future orientation (Steinberg, 2008).  However, 

improved coordination of emotion and cognition is not only reflected in the capac-

ity to override emotional inputs, but also in the ability to adaptively utilize affec-

tive information to guide decision-making.  For instance, research using a variety 

of affective learning paradigms (i.e., variants of the Iowa Gambling Task) demon-

strates steady gains over the course of adolescence in the extent to which emo-
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tional feedback guides mature decision-making (e.g., Cauffman et al., in press).  

Most importantly for the present argument, this improved coordination of bottom-

up and top-down processing should facilitate growth in the capacity to regulate the 

influence of peers in risk-taking situations.  Consistent with this prediction, a re-

cent study demonstrated gradual, linear improvement in resistance to peer influ-

ence through at least age 18 (Steinberg & Monahan, 2007).   

Recent neuroimaging work also supports the proposed association be-

tween improved neural connectivity and parallel gains in resistance to peer influ-

ence.  For instance, one innovative fMRI study assessed a group of 10-year-olds 

with varying degrees of self-reported resistance to peer influence on their respons-

es to emotionally arousing video clips (i.e., angry vs. neutral biological motion) 

(Grosbras et al., 2007).  Children reporting a relatively high degree of resistance to 

peer influence demonstrated greater functional connectivity in their responses to 

the emotional scenes, such that activity in motor-perception areas (i.e., dorsal 

premotor cortex) was correlated with activity in cognitive control regions (i.e., 

DLPFC).  A second study demonstrated that individual differences within a group 

of 12-18 year-olds (after controlling for age) in resistance to peer influence were 

correlated with the extent of structural connectivity between prefrontal and premo-

tor areas (Paus et al., in press).  Although research relating age differences in 

structural and functional connectivity to maturation of behavior is in its infancy, 

these findings are nonetheless suggestive of the need to move beyond examining 

age differences in recruitment of specific regions and toward a consideration of 

developmental changes in coordinated neural activity. 
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Future Directions 

We are currently engaged in a program of research in our lab designed to 

test the neurobiological account of adolescent risk-taking proposed in this chapter.  

Building on experimental work showing age differences in the degree to which 

peer presence facilitates risky behavior (Gardner & Steinberg, 2005), we have at-

tempted to bring peer context into the scanner (Chein et al., 2009).  Using an 

event-related fMRI design, we are examining age differences in neural activation 

at the moment of decision-making in two different risk-taking tasks (i.e., the Stop-

light Game (Steinberg, Albert et al., 2008) and the Balloon Analogue Risk Task 

(Lejeuz et al., 2002)).  To manipulate peer context, we measure task-related neural 

activation for each participant during two separate sessions.  In one session, the 

participant completes the tasks while their peers are observing their performance 

from the scanner control room; in the other session, the participant completes the 

task with no observation.  In each case, the participant is made aware of the condi-

tion.  Consistent with our predictions, preliminary data indicates that adolescents 

activate socio-emotional reward regions (e.g., medial PFC, ventral striatum) more 

strongly when making risky decisions while being observed by their peers than 

when they do so alone.  In contrast, these early data suggest that adults show few 

differences related to peer context in activation of socio-emotional reward centers, 

but instead show stronger activation of cognitive control regions (e.g., lateral PFC, 

posterior parietal) in the peer observation condition.  Future analyses will also ex-

plore age differences in functional connectivity between cognitive control and so-
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cio-emotional reward regions that may mediate age differences in risk-taking be-

havior on these tasks. 

Conclusion 

Research efforts to account for developmental trajectories of risk-taking 

in adolescence have arrived at an exciting new stage.  Moving beyond laboratory 

studies of age differences in “cool” cognitive processes related to risk perception 

and reasoning, new approaches have begun to incorporate insights from a rich lit-

erature describing the many pathways by which social and emotional factors in-

fluence the decision-making process.  Combining these insights with emerging ev-

idence from developmental neuroscience, we have outlined a theory that 

highlights a neuro-maturational gap between early adolescent remodeling of the 

socio-emotional reward system and a gradual, prolonged strengthening of the cog-

nitive control system.  Within this framework, middle adolescence represents a 

window of heightened vulnerability to peer influences toward risk-taking behav-

ior.  At a time when adolescents spend an increasing amount of time with their 

peers, research suggests that peer-related stimuli may sensitize the reward system 

to respond to the reward value of risky behavior.  As the cognitive control system 

gradually matures over the course of the teenage years, adolescents grow in their 

capacity to coordinate affect and cognition, and to exercise self-regulation even in 

emotionally arousing situations.  These capacities are reflected in gradual growth 

in the capacity to resist peer influence. 
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