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Abstract

In this paper we present a developmental approach to-
ward creating intelligent systems. Although embracing
an emergent paradigm, we also propose an architecture
such that symbols have their proper place. To explore
this methodology, we are developing our system on real
robots. Robotic approaches usually invoke the so-called
“symbol grounding problem” (Harnad 1990). However,
our developmental approach bypasses the problem by
generating the symbols. Thus, in a sense, the symbols
are inherently grounded to the physical objects they des-
ignate. We argue that a general theory of intelligence
that takes a top-down perspective will be inherently in-
complete.

Creating Intelligent Systems
The road to creating completely autonomous, intelligent sys-
tems turned out to be much rougher than anyone expected.
At the onset of the trip, almost 50 years ago when the field
of artificial intelligence (AI) was being created, researchers
imagined that it would be a Sunday afternoon drive. Just two
years into the trip, Herbert Simon and Allen Newell wrote:

It is not my aim to surprise or shock you... [b]ut the
simplest way I can summarize is to say that there are
now in the world machines that think, that learn and
create. Moreover, their ability to do these things is go-
ing to increase rapidly until—in the visible future—the
range of problems they can handle will be co-extensive
with the range to which the human mind has been ap-
plied. (Simon & Newell 1958)

Simon and Newell weren’t alone in their early optimism.
For example, Marvin Minsky, another founder of AI, said in
1967:

...within a generation the problem of creating ‘artifi-
cial intelligence’ will be substantially solved. (Minsky
1967)

Understandably, people outside the field asked persis-
tently “are we there yet?” In the following two decades,
the early hype turned to lost hope. By 1982, Minsky was
quoted as saying that “the AI problem is one of the hardest

Copyright c
�

2002, Blank, Kumar, and Meeden. All rights re-
served.

science has ever undertaken.” (Kolata 1982). Today, arti-
ficial intelligence is an active research area; however, there
are few researchers actually pursuing the goal of creating
completely autonomous, intelligent systems.

AI researchers, cognitive scientists, and philosophers are
divided in opinion on how one could build an intelligent sys-
tem. However, the field has developed a number of models
and techniques which could form the foundation of a the-
ory of machine intelligence. We see these models and tech-
niques falling into two opposing methodological camps de-
fined broadly as follows.

Symbolic AI is a top-down, centralized methodology based
on the formal properties of well-defined symbols and log-
ical reasoning. Expert systems and theorem provers are
two examples of such systems.

Emergent AI is a bottom-up, decentralized methodology
based on the self-organized interaction of many local sub-
systems. Artificial neural networks and evolutionary sys-
tems are two examples of such techniques. This camp is
most often called “subsymbolic,” but it has been argued
elsewhere that the most important features of the models
in this category are the emergent properties they exhibit.
(Blank 2001).

Researchers are split over which of these two very differ-
ent paradigms is the proper framework onto which to build
a general theory that will scale-up to general intelligence.
Most AI researchers probably advocate a symbolic frame-
work, especially for generally intelligent systems.

Perhaps the best known quest for general machine intel-
ligence is Douglas Lenat’s Cyc project (Lenat 1998). Lenat
uses symbolic AI techniques in the Cyc project to reason
about the world by using a database of commonsense sym-
bolic knowledge. For example, Cyc has been told that “trees
are usually outdoors,” that “once people die they stop buy-
ing things,” and that “glasses of liquid should be carried right
side-up” (Cycorp 2002). Cyc applies logical reasoning to all
relevant facts in order to make deductions, plans, etc.

One can imagine the infinite bits of trivia that Cyc would
need to be told in order to reason about our world in an in-
telligent manner. Furthermore, such a system must have a
representation that will scale-up as the size of the knowl-
edge base increases. Human performance actually speeds
up with additional experience; however, typical top-down



systems bog down with increased information.
Rather than spoon feed each nugget of wisdom into a

database, we are taking the approach that a system can ex-
perience the world as we do. In this approach, common-
sense facts need not be explicitly elaborated, rather the sys-
tem would be able to reason with knowledge gained through
experience.

Our ultimate and longterm goal is to have a system with
which we could talk, in English, about any general topic.
For that, we will of course need a connection to a symbolic
system. However, before we even begin to think about that
level, we hope to have symbol-like representations form in a
developmental, bottom-up fashion. Therefore, we are inter-
ested in robotics systems with the following properties:

Embodied: The robot is physically embedded. That is, it
has a three dimensional physical structure in real space.

Sensors: It is endowed with some sensory apparatus that is
used to perceive its environment.

Actuators: It is capable of physically changing the environ-
ment in some way, either by moving around or manipulat-
ing objects.

Symbols: Modeling of the behavior of the robot is carried
out in a symbolic representation and reasoning system.

Our decision to use robots to explore general intelligence
does not necessarily dictate that we use emergent tech-
niques. There are a wide variety of methods that have been
applied to robotics. But because the intelligent system prob-
lem is so difficult, it is no surprise that most of the solutions
available thus far are either ad hoc and/or are based on very
small-scale empirical studies, largely carried out in simu-
lated domains.

We are, therefore, committed to using real robots to expe-
rience a realistic environment due to our choice to explore
the emergent paradigm. The rest of this paper defines such
an approach to building an intelligent robot.

Developmental robotics
A number of cognitive science researchers have recently ar-
gued that understanding the developmental processes in the
brain is crucial to understanding intelligence (Elman et al.
1996). This surge of interest in development has led to the
formation of a new conference on development and learning
(ICDL1) and to a new subfield of robotics.

Rather than considering the task-oriented, largely top-
down, approach to designing robots and behavior models,
we are interested in a holistic, bottom-up approach to de-
signing robot behaviors. In our approach, robots begin with
a reflex model and slowly, over time, via interactions with
the environment, acquire the knowledge necessary to exist
in the environment in a purposeful way. Robots learn not
only about their environment, but also about their own capa-
bilities via this process (Kuipers 2000).

The bottom-up approach to self-learning, learning about
its environment, and the actions it can perform, can be

1www.egr.msu.edu/icdl02

largely unsupervised, though incorporated in a hierarchi-
cal learning and control architecture described below. Ul-
timately, we envision this learning process to result in a
symbolic model, not necessarily different from those used
in top-down approaches. However, in the developmental ap-
proach, the robot’s learning process gives “birth” to these
symbolic concepts. As with the top-down approaches, the
architecture is multi-layered but with a different decompo-
sition since each layer is responsible for the development
of ‘higher-level’ concepts. One of the goals or our research
is to explore the range of middle-level representations re-
quired. At present, we are concentrating on at least three dif-
ferent levels: self-motivated sensory-motor control, quasi-
symbolic representations of learned purposeful behaviors,
and symbolic representations of acquired concepts and be-
haviors.

Related Work
Weng, one of the first advocates of the developmental ap-
proach to robotics, argues that automated development re-
lieves human engineers from the explicit design of repre-
sentations (Weng et al. 1999). His project, called SAIL
(Self-organizing, Autonomous, Incremental Learner), relies
on human trainers to guide a robot’s behavior through ex-
plicit instruction. The robot’s controller can never be di-
rectly altered by its teachers, but can only be updated via
learning. In contrast, our approach is not teacher directed,
but instead relies on self-discovery and a bootstrapping pro-
cess to learn.

Heikkonen and Koikkalainen were some of the first re-
searchers to demonstrate the feasibility of using a self-
organizing map that associates sensors and motors as a con-
troller (Heikkonen & Koikkalainen 1997). Furthermore,
they showed that this association map could be developed
incrementally through trial and error explorations using a
simple learning rule. Their experiments were done in sim-
ulation and focused on the specific task of reaching a goal
point given a global goal heading. In contrast, our work
focuses on real, physical robots, which only have local sen-
sor information, and does not attempt to solve any particular
task. The goal of our work is broader—the discovery of con-
cepts rather than success at a given task.

Millan uses reinforcement learning combined with a self-
organizing map to incrementally develop a robot controller
(J. del R. Millán 1997). Rather than learning from scratch,
his architecture uses two types of bias: domain knowledge
and advice. These can serve to accelerate learning and to
focus the search on the most promising areas of the action
space first. Although the right kind of bias can be beneficial,
the wrong kind of bias can be detrimental. Because robots
have very different sensory abilities than humans, the kinds
of distinctions that are easy for us may be hard for robots and
vice versa. Thus human advice may not be very helpful. Our
approach allows the robot to discover appropriate categories
based on its own sensory abilities.

Kuipers and Beeson have recently shown how a robotic
system can “bootstrap” itself from knowing little about it-
self, to having detailed knowledge about its sensors and
physical form (Kuipers & Beeson 2001). One major dif-



ference between their work and our own is that our system’s
internal representations do not need to be justified to an out-
side observer. For example, our system uses self-organized,
distributed representations to encode information about sen-
sors and motors, whereas Kuipers and Beeson’s system must
show that information explicitly in a manner that makes
sense to human observers. In addition, we aim to make our
system self-motivated such that it has the ability and “de-
sire” to explore unknown areas.

Neural networks for modeling development
Our architecture is primarily constructed from two types of
neural network models: self-organizing maps and simple re-
current networks.

Self-organizing maps (SOMs) were pioneered by Koho-
nen in the 1980’s and 1990’s(Kohonen 2001). Briefly, a
SOM is a mapping of a typically high-dimensional input
vector to a particular cell in a low-dimensional matrix. The
matrix is topologically arranged in a unsupervised manner
such that very similar input vectors map to the same cell,
and slightly similar input vectors map to nearby cells.

Specifically, similarity is computed by comparing an in-
put vector with a model vector associated with each cell. The
model vector that is closest (as determined by the smallest
sum of squared differences to the input vector) is designated
as the winner. The model vector of the winner and the model
vectors of the cells in its neighborhood are updated to more
closely match the given input vector.

The SOM idea is quite simple and effective. Any infor-
mation that can be turned into a vector of numeric values
can be self-organized into such a map. The idea has been
applied in a wide variety of problems ranging from creat-
ing maps for classifying the World Wide Web to analyzing
financial data. Resulting SOMs are useful for two related
reasons: their ability to automatically find abstractions, and
their ability to help visualize complex data (Kohonen 2001).

The simple recurrent network (SRN) was created by El-
man in the late 1980’s (Elman 1990). To understand its sig-
nificance, one must realize that there are two main classes
of artificial neural networks: those that are feed-forward (all
activation flows in one direction) and those that are recur-
rent (activation is allowed to flow forward and backwards).
In order to deal with time-dependent tasks, a feed-forward
network usually requires a fixed window of the past inputs,
while a recurrent network can take the current input alone
and build up a contextual memory of the past inputs. El-
man’s SRN has the simplicity of a feed-forward network
with the power of a recurrent network. Like SOMs, SRNs
are also simple and effective. They have been applied to an-
alyzing many types of sequential processing, including lan-
guage and music.

Overview of a developmental architecture
Figure 1 shows an overview of the archtecture of our system.
The architecture is both hierarchical and cyclical. It is hier-
archical in that there are four distinct levels and each level
builds abstractions based on the representations formed at
the previous levels. It is cyclical in that the subsequent lev-
els can feed their discovered abstractions back to previous

Level 1:

Level 3:

Level 0:
motor generator

Level 2:

robot

protoplan SRN

sensor/motor SOM

conceptual SOM

Human
observer

naming

Figure 1: Architecture of our system



levels. This combination of hierarchy and feedback is essen-
tial to creating a continually evolving understanding of the
world and how to behave in it. In this way, simple reactive
behavior can develop into time-dependent planned behavior.

Innate knowledge is provided at Level 0, but in order to
eliminate any preconceived notion of representation we as-
sume that the relevant set of features at every subsequent
level is unknown. Instead, the neural network components
discover appropriate representations through the robot’s in-
teractions with the environment.

In order to start the entire developmental process, the sys-
tem needs to experience the world. Only then will the robot
have motor and sensor data to organize. However, it is ex-
actly this control that we wish to develop. Our solution to
this chicken and egg dependency is to begin with a very ba-
sic control law and bootstrap our way up.

Level 0 is a motor generator intended to model innate re-
flexes. These reflexes could be represented as a collection
of basic if-then rules from perceptual situations to actions.
Initially this is all the system knows how to do.

Level 1 observes the sensor and motor values that are pro-
duced as Level 0 controls the robot. Through this observa-
tion, Level 1 begins to form associations between sensors
and motors and abstractions about sensors and motors within
its self-organizing map. Eventually, when Level 1 has suc-
cessfully captured the control information from Level 0, it
can subsume control of the robot.

This subsumed control is similar in function to that de-
fined by (Brooks 14 23). However, our method of subsump-
tion is a by-product of the architecture of the system rather
than designed by human engineers.

It is important to note that Level 0 may only know how to
respond to particular sensor modalities, such as range sens-
ing, and know nothing about how to respond to other modal-
ities, such as vision. However, while Level 1 is learning to
mimic Level 0, it is also learning about how all of the sen-
sory modalities are correlated with one another. Thus, Level
1 will be able to respond appropriately to visual input, al-
though Level 0 could not. This bootstrapping effect is cru-
cial to the developmental process.

Level 2 observes the sensor/motor associations developed
within the self-organizing map of Level 1. Level 2 is trained
to predict what the next Level 1 state will be given its current
state. This prediction task will force Level 2 to use its re-
current connections to recognize sequences of sensor/motor
associations through time. Previous work (Meeden 1994;
1996) has shown that this type of simple recurrent network
will develop representations of multi-step behaviors, that
have been termed protoplans.

Level 3 observes the protoplans developed within Level
2 and begins to categorize them. The behavior concepts
formed in Level 3 are fed back into Level 1 and can serve
as longer-term goals. A human observer can watch the robot
behaving and attach names to the various behaviors such as
“approaching a wall”, “following a wall”, “avoiding an ob-
stacle on the left”, and so on. Once these labels have been
attached to the emergent concepts of Level 3, the robot can
be directed by a planner to perform particular behaviors by
activating the appropriate units in Level 3.

Level 3 is where traditional symbolic representations are
formed. We intend to use the SNePS BDI architecture to in-
terface as a planner with this level (Kumar 1996). This archi-
tecture has an integrated model of acting and inference that
is based on several semantic, architectural, and ontological
commitments that are important to the integration of low-
level learning abilities (Kumar & Meeden 1998). Agents
modeled using the BDI architecture are capable of represent-
ing conceptual entities about which they can have beliefs,
reason about them, and act on them. The agent’s represen-
tations of conceptual entities could be formed as a result of
interactions with a human as well as via concept discovery
from lower level learning mechanisms.

Next we present the experimental results from our initial
explorations into the feasibility of this developmental archi-
tecture.

All of our experiments are being carried out on actual
physical robots. We have access to several robots of vary-
ing sensorimotor capabilities: Pioneer 2’s, Nomads, B21R,
and Kheperas. Given the developmental nature of our ap-
proach, it will be essential to carry out the entire develop-
mental process from scratch on each robot platform. Our
aim is to demonstrate the viability of our architecture by
reporting consistent results on several different robot plat-
forms.

Initially, we will primarily be using the Khepera II robots,
which are a second generation version of Kheperas (Mon-
dada, Franzi, & Ienne 1993). Each Khepera II has two mo-
tors on a small, circular body. The robots come equipped
with six infrared sensors in the front and two in the back
that are sensitive to light as well as obstacles. Addition-
ally, the robots have a video camera capable of delivering
a color image of size 510x492 pixels (see Figure 2). The
robot is tethered to a host computer where all the modeling
and analysis is performed.

Preliminary experimental results
A developmental approach necessitates incremental testing.
Currently we have only begun to test Level 0 and Level 1.
However, at the conclusion of this section we will point to
some abstractions that are already forming in Level 1 that
hold promise for the success of the proposed architecture.

Our initial Level 0 uses two fuzzy logic rules (similar in
spirit to Saphira-style behaviors (Konolige & Myers 1998))
to do obstacle avoidance. This purely reactive controller
slows down as it nears an obstacle, while at the same time
turning away from the obstacle. This Level 0 is a perfect, re-
active obstacle avoidance controller based only on the eight
infrared sensors. It is perfect in that it never runs into an ob-
stacle. It is reactive in that it only makes decisions based on
current IR readings, and nothing else.

During the training of Level 1, the sensor and motor val-
ues produced by Level 0 are concatenated together into a
single vector and passed to the self-organizing map as input.
The inputs to the map include a 48x32 black and white cam-
era image, 8 infrared readings, and 2 motor values, for an
input vector of length 1546. Figure 3 shows a typical train-
ing image taken with the Khepera’s onboard camera. The



Figure 2: A Khepera-II Robot with a 2-D camera (above)
and its world (below)

Figure 3: A typical 48x32 grayscale image taken from the
Khepera’s onboard camera. A house-shaped tower of blocks
can be seen.

Step Lmotor Rmotor Step Lmotor Rmotor
A1 0.58 0.58 B1 0.61 0.58
A2 0.97 0.06 B2 0.61 0.58
A3 0.81 0.16 B3 0.58 0.55
A4 0.84 0.16 B4 0.13 0.90

B5 0.58 0.58

Table 1: Two behavior sequences from the training data.

map itself contains 24x16 units with a hexagonal neighbor-
hood.

After training, Level 1 can be used as the controller, sub-
suming Level 0. This process works as follows. The current
sensor values are saved into a vector as before, but the posi-
tions in the vector associated with the motor values are set to
don’t care values. This vector is used to activate the trained
map of Level 1, and the closest matching model vector is
found. From this model vector, the previously associated
motor values can be retrieved and used to control the robot.

In experiments performed so far, the Level 1 map is only
an approximation of the original controller. Because the
model vector from the Level 1 map is actually an averaging
of all of the matching motor/sensor vectors, and also nearby
cells’ model vectors, it tends to blur fine-grained differences.
For example, using the model vectors to control the Khepera
captures about 93% of the performance of the original Level
0 controller.

In order to better understand the abstractions formed in
the map of Level 1, we analyzed several sequences of actions
from the training set shown in Table 1. In steps A1-A4, the
Khepera robot encountered an obstacle on its left and made
a hard right turn. In steps B1-B5, the robot encountered
an obstacle on its right and made a quick left turn before
continuing straight ahead.

Figure 4 shows the trajectories through Level 1’s map of
the winning units as these steps were processed. Note that
in both sequences, at the instigation of the turn in step A2
and step B4, the winning node is in a topologically distant
area of the map from where it was on the previous time step.
The map has made a clear distinction between going straight
and turning. Also note that the trajectory of a left turn is
quite different from the trajectory of a right turn. There are
certainly many more subtle distinctions being made within
the map as well, such as when to make a hard turn versus a
gradual turn based on the pattern of IR readings.

It is clear that the Level 1 map has already made some
important abstractions about the robot’s interaction with its
environment. Although we have not yet begun to test Level
2, it’s recurrent network is capable of predicting the distinct
trajectories from Level 1, and from this facility it can begin
to build time-dependent summaries of behavior, which are a
key to creating grounded plans.

Towards self-motivation
We believe that the above-described hierarchical and cycli-
cal learning architecture is of the type necessary for creat-
ing an intelligent system. However, most learning systems
do not continually keep learning; they do not keep building



Figure 4: Two trajectories through a portion of Level 1’s
senor/motor map. Sequence A1-A4 occurred during a sharp
right turn. Sequence B1-B5 occurred during a quick left
turn. See Table 1 for the associated motor values.

more sophisticated representations on top of previously built
representations (Thrun 1995). In fact, most learning systems
make just a tiny leap from what they know, to what they al-
most know. What is missing?

We believe that a model of self-motivation could drive the
system to continued development. Such internally driven
artificial systems are rare. One such mechanism is the com-
petitive arms race of co-evolutionary systems (see, for ex-
ample, (Juillé & Pollack 1996)). The basic idea of the com-
petitive arms race is that two populations are pitted against
one another, and gradually one-up each other in a spiralling
increase of fitness. This works if the two populations begin
about equal, and remain relatively even throughout the race.

Our goal is to find a developmental equivalent to a co-
evolutionary competitive arms race. We imagine a mecha-
nism in the system such that it would get “bored” in envi-
ronments that it can easily predict, but retreat from environ-
ments that seem chaotic. However, the area between pre-
dictability and randomness (the so-called “edge of chaos”)
is suspected to be a prime area for learning (see, for exam-
ple, (Langton 1991)). The exact nature of such a mechanism
has yet to be explored.

Summary and Conclusions

We are just beginning a trip to explore a developmental
approach to intelligent systems. We believe that a cyclic
architecture in combination with a driving model of self-
motivation will create an emergent system that has the abil-
ity of continued learning. There is, no doubt, a long road
ahead.
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