
Bryn Mawr College Bryn Mawr College

Scholarship, Research, and Creative Work at Bryn Mawr College Scholarship, Research, and Creative Work at Bryn Mawr College

Computer Science Faculty Research and
Scholarship Computer Science

2004

An Emergent Framework for Self-Motivation in Developmental An Emergent Framework for Self-Motivation in Developmental

Robotics Robotics

James Marshall

Doug Blank
Bryn Mawr College, dblank@brynmawr.edu

Lisa Meeden

Follow this and additional works at: https://repository.brynmawr.edu/compsci_pubs

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Citation Citation
Marshall, J., Blank, D., and Meeden, L. (2004). An Emergent Framework for Self-Motivation in
Developmental Robotics. International Conference on Development and Learning, 2004.

This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College.
https://repository.brynmawr.edu/compsci_pubs/39

For more information, please contact repository@brynmawr.edu.

https://repository.brynmawr.edu/
https://repository.brynmawr.edu/compsci_pubs
https://repository.brynmawr.edu/compsci_pubs
https://repository.brynmawr.edu/compsci
https://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/open-access-feedback.html
https://repository.brynmawr.edu/compsci_pubs/39
mailto:repository@brynmawr.edu

Submitted to the International Conference on Development and Learning 2004 1

An Emergent Framework for Self-Motivation in Developmental Robotics

James B. Marshall Douglas Blank Lisa Meeden
Computer Science Computer Science Computer Science
Pomona College Bryn Mawr College Swarthmore College

Claremont, CA 91711 Bryn Mawr, PA 19010 Swarthmore, PA 19081
marshall@cs.pomona.edu dblank@cs.brynmawr.edu meeden@cs.swarthmore.edu

Abstract

This paper explores a philosophy and connectionist al-
gorithm for creating a long-term, self-organizing develop-
mental robot control system. This intrinsic algorithm and
architecture implements self-motivation by creating a sys-
tem capable of anticipating its next state, while simultane-
ously attempting to seek out that which it cannot predict.
These competing internal pressures are designed to drive
the system in a manner reminiscent of a co-evolutionary
arms race.

1. Introduction

The quest for creating robot control systems that undergo
an autonomous and extended developmental learning pro-
cess was initiated by Weng and his colleagues [12]. In their
report, they differentiate the field of developmental robotics
from traditional robotics by focusing ontask-independent
learning. Rather than building control systems to perform
specific, predefined tasks, developmental robotics seeks to
create open-ended learning systems that continually adapt
to new problems. A number of robot control architectures
have been created using this paradigm [13, 3], many of
which involve some form of reinforcement learning. Re-
inforcement learning is an appealing approach because it
provides a method for giving feedback to a developing sys-
tem without having to specify how to succeed. Instead, the
system is simply rewarded or punished, and must determine
on its own how to behave so as to maximize its reward.

However, there is no consensus yet about the most ap-
propriate source for the reinforcement signal in a devel-
opmental robotics system. The reinforcement could come
from an external teacher, from an internal mechanism such
as emotion, or from a combination of external and internal
sources. For example, the SAIL robot, an early prototype
of a developmental learning system, depended on external
reinforcement. SAIL could learn to navigate the corridors

of a building by being manually pushed by a human teacher,
or by having the teacher press the robot’s “good” button or
“bad” button in response to its behavior [12]. A more re-
cent version of SAIL employs a reinforcement signal that
is the weighted sum of both external reinforcement and an
internal measure of novelty [10]. The system compares the
predicted next state to the actual next state, and if the pre-
diction is incorrect, novelty is considered to be high. The in-
tent of introducing novelty is to model habituation, as when
human babies get bored by constant stimulation and are at-
tracted to novel stimuli. In the SAIL system, the external
reinforcement is weighted much more strongly than the in-
ternal novelty detection. Therefore the external teacher can
easily override the internal drive to perceive new things.

We believe that a key step in exploring developmental ar-
chitectures is to focus on internal sources of reinforcement.
The learning process should be driven byself-motivation,
that is, by the system’s own internally-generated represen-
tations and goals, instead of relying on those provided by
a teacher or designer outside the system according to some
specific task to be learned. We are interested in develop-
ing a general learning architecture with self-motivation at
its core, along with the other key processes ofabstraction
andanticipation [4]. Abstraction and anticipation are ac-
tive research areas [11, 6], but self-motivation has not yet
received as much attention from the research community.
We envision a control system in which abstraction, antici-
pation, and self-motivation are closely intertwined and de-
velop together from the start within a single unified frame-
work, using both internal and external sources of reinforce-
ment. Such a system would build up abstractions of its ex-
periences over time, guided by its internal motives, while
learning to anticipate the effects of its sensorimotor inter-
actions with the environment. Furthermore, a robot capa-
ble of learning about its own sensors and effectors as well
as its surrounding environment would avoid the problem of
anthropomorphic bias, since the robot’s knowledge of its
inherent capabilities and limitations, having been acquired
through firsthand experience, would be directly grounded in

sensorimotor perceptions.
There is another, perhaps even more important advan-

tage of self-motivated systems. They can exhibit a degree of
open-endedness not possible for systems that are designed
to learn specific tasks. For example, the human capacity for
learning is not only general-purpose and task-independent,
but typically continues over a lifetime, becoming progres-
sively more complex and sophisticated in the types of ab-
stractions and behaviors that can be acquired. The learn-
ing tasks themselves may change over time, as different cir-
cumstances and goals arise, but the impetus to adapt is ever
present.

How does this self-driven pressure to learn arise? In
our view, it emerges from the interactions of other com-
peting pressures within the system, in a manner reminiscent
of a co-evolutionary arms race, in which two co-evolving
species continually push each other toward ever greater
complexity. For example, such a system might attempt to
predict future states as accurately as possible, while also
attempting to seek out unanticipated, novel states. In ef-
fect, these two pressures compete directly against one an-
other, since a system able to perfectly predict future states
would never encounter any novelty, and a system that re-
garded everything it saw as new and unexpected would be
incapable of predicting anything. However, if these pres-
sures are balanced appropriately, the system might be able
to “bootstrap” its way to increasingly sophisticated behav-
iors and organization. In other words, by seeking out situ-
ations with enough novelty to be interesting without being
overwhelmingly unpredictable, the system might achieve a
kind of temporary “homeostasis” balanced between surprise
and predictability. Gradually, the system would gain the up-
per hand as it learned to anticipate unexpected things better,
and its level of “boredom” would increase, in turn push-
ing it to explore its environment in search of richer, more
interesting experiences. On the other hand, too much sur-
prise would cause it to seek out more predictable regions
of the environment. The result would be a type of punctu-
ated learning in which the system remains at a given level
long enough to master the tasks at hand, before moving
on to the next level. Clearly, such a capability would de-
pend on having a robust, general-purpose learning system
that could deal with the multitude of different learning tasks
that would arise as the system’s experiences and behaviors
increased in complexity.

2. Algorithm and Architecture

In this section we propose a neural-network based learn-
ing architecture to address these issues, in which discrep-
ancies between the predicted outcomes and the actual out-
comes of the robot’s actions in its environment serve as the
fundamental source of self-motivation, thereby determining

what the robot will learn to do. Although this represents an
innate bias built into the architecture, it is not task-specific.
The hope is that given the right developmental learning al-
gorithm “hard wired” into the system (whether by evolution
or engineering), the robot will be able to learn appropriate
task-specific behaviors through its own experiences, guided
by internally-generated feedback.

Under control of the neural network, the robot gener-
ates motor actions to perform, along with predictions of
the effects of these actions on its current situation. In our
model, situations and predictions consist of simple two-
dimensional visual scenes, but other types of sensory rep-
resentations could be used. After performing an action and
observing the results, the robot’s prediction is compared
with the actual outcome, and a representation of the pre-
diction error is created. This representation forms the ba-
sis of a reinforcement training signal for the network, using
a version of Complementary Reinforcement Backpropaga-
tion (CRBP) [1].

In CRBP, continuous-valued output activations from a
network are transformed into binary values stochastically,
typically by flipping a biased coin using the output activa-
tions as biases. Depending on the particular binary output
pattern generated, the network may receive reward or pun-
ishment as feedback. In the case of reward, the network’s
weights are changed using backpropagation with the binary
pattern itself as the training target. In the case of punish-
ment, however, thecomplementof the pattern is used. The
stochastic nature of CRBP allows the network to learn us-
ing only positive or negative feedback signals instead of a
fully-supervised training regimen, which is ideal from the
point of view of a robot exploring its environment in real
time.

In our version of CRBP, the amount of stochastic noise
involved in transforming continuous output values into bi-
nary can be varied dynamically, under control of the robot
itself. We introduce acomputational temperatureparam-
eterτ , ranging from 0 to 100, that controls the amount of
noise used in generating motor action vectors and their com-
plements. At low temperature levels, activation values are
translated to 0 or 1 nearly deterministically, while at high
temperature the translation is nearly random, with 0 or 1
chosen essentially independently of the activation value. At
intermediate temperatures, the translation function is a sig-
moid curve of the general form1/(1+e−α(x−0.5)), with the
steepness of the sigmoid depending onτ . Thus temperature
acts as a knob that determines the amount of influence the
activation values exert on the translation process, ranging
from no influence whenτ = 100 to complete determinism
whenτ = 0.

Given the inherently temporal nature of prediction, we
chose to use a Simple Recurrent Network (SRN) architec-
ture [7], shown in Figure 1. There are separate banks of

Figure 1. The network architecture

units for representing the robot’s motor actions (Min and
Mout), sensory state (S), sensory prediction (P), and tem-
poral context (C), with each bank fully-connected to the hid-
den layer. The purpose of the network is twofold: to gen-
erate motor actions for controlling the robot, and to gen-
erate predictions that in turn guide the training of the net-
work itself. Prediction and control are interleaved during
the training process, with different banks of input and out-
put units active at different times. Since the choice of mo-
tor action depends on the robot’s current sensory state and
temporal context, banksMout, S, andC are active when
deciding what to do next, withMin andP disabled. Pre-
dicting the next state depends on which motor action is per-
formed given the current state and context, so banksMin,
S, C, andP are active during prediction, withMout dis-
abled. Some weights of the network (namely, those from
the state and context banks to the hidden layer) participate
in learning both the control and prediction tasks, reflecting
their closely intertwined relationship, while others are spe-
cific to one task or the other.

The training algorithm can be understood in terms of
three general phases. In the first phase, internal feedback
signals are generated from the robot’s prediction error. A
representation of the prediction error is created based on
the discrepancy between the robot’s actual observed state
and its prediction made on the previous time step, and from
this a reinforcement signal is computed. Temperature is also
updated on the basis of the prediction error.

Learning occurs during the second phase. First, the
network weights responsible formotor control are up-
dated using CRBP, based on the reinforcement signal from
phase one. This corresponds tobehavioral learning, which
is driven by discrepancies in the robot’s own internally-
generated anticipations, rather than by feedback coming di-
rectly from the environment or an external teacher. Next,
the network weights responsible forpredictionare updated,
using ordinary backpropagation with the robot’s actual ob-
served state as the feedback signal. This corresponds toan-
ticipatory learning, which is driven by the robot’s direct ex-
perience in the environment.

In the final control phase, the network generates the next
action for the robot to take, as well as a prediction of the
outcome of taking that action, and then executes the action.

A more detailed description of the algorithm is given be-
low, outlining the steps performed at timet. At the begin-
ning of Step 1, the following information is known:Mt−1

is the motor action performed by the robot on the previous
time step;St−1 is the robot’s previous sensory state;Ct−1 is
its previous temporal context;Pt−1 is the prediction, gener-
ated at timet− 1, of the robot’s sensory state at timet; and
Et−1 is a representation of the prediction error at timet−1,
based on the discrepancy betweenSt−1 andPt−2.

• Generation of internal feedback

1. Observe the current sensory stateSt.

2. CompareSt to Pt−1 and create a representation
of the prediction errorEt.

3. CompareEt toEt−1 and compute a reinforcement
signal r of +1, −1, or 0, and a temperatureτ
between 0 and 100.

• Learning phase

4. If r is positive, set the motor targetMtarget to
Mt−1. If r is negative, setMtarget to the com-
plement ofMt−1. If r is zero, skip to Step 7.

5. With banksMin andP disabled, perform one
backpropagation pass with inputsSt−1 andCt−1

on the state and context banks, andMtarget on
the motor output bank. In the case of positive re-
inforcement, this makes the network more likely
to produceMt−1 given the state and context
St−1 andCt−1. For negative reinforcement, how-
ever, the opposite action will be more likely.

6. With bankMout disabled, perform one back-
propagation pass with inputsMt−1, St−1, and
Ct−1, and targetSt on the prediction bank.
This makes the network more likely to correctly
predict stateSt when performing motor action
Mt−1 in stateSt−1 with contextCt−1. SetCt to
the hidden layer activation pattern resulting from
this step.

• Control phase

7. With banksMin andP disabled, compute the
activation of the output bankMout usingSt and
Ct as inputs to the network. Stochastically trans-
form the continuous-valued activations ofMout

into a binary motor representationMt, with the
amount of noise determined byτ . This step gen-
erates the next motor action for the robot to per-
form, given its current state and context.

8. With bankMout disabled, compute the predic-
tionPt usingMt, St, andCt as inputs to the net-
work. This step generates the robot’s prediction
of the next state given the motor action to per-
form and its current state and context.

9. Perform actionMt.

10. Sett equal tot + 1 and go to Step 1.

When training with CRBP, it is often helpful to use a
higher learning rate for positive reinforcement than for neg-
ative [1]. A positive reinforcement signal provides evidence
that the motor action just performed was a good response
to the current situation, so a relatively large weight change
helps to increase the likelihood that the robot will take the
same action the next time it finds itself in a similar situa-
tion. Negative reinforcement, however, suggests only that
the motor action wasnot a good thing to do, and offers no
guarantee that the opposite action would actually have been
better. In this case, using a lower learning rate helps to steer
the network away from producing the same response in
the future, while remaining somewhat noncommittal about
what response the network should actually produce. Thus
the learning rate to use in Step 5 above can be set dynam-
ically in Step 4 according to the value ofr. In addition, a
separate learning rate for prediction may be used in Step 6
if desired.

2.1. State Representation

The above algorithm does not specify exactly how repre-
sentations of the prediction errorEt are created in Step 2, or
how reinforcement signals are computed from them in Step
3. In fact, the algorithm is fairly general, and does not de-
pend on the particular representation chosen for robot states
or motor actions. Furthermore, there is no requirement that
robot states must contain purelysensoryinformation from
the external environment. States could contain additional
proprioceptor information, as well as explicit representa-
tions of more abstract information generated internally by
the robot, such as the prediction error itself.

In our current model, a stateSt is represented as a 40
× 10 grayscale image of intensity values normalized to the
range 0–1, generated from a simulated blob vision camera.
Prediction errorEt is represented as a 40× 10 map of the er-
ror values obtained in Step 2 by subtracting the correspond-
ing image values ofSt andPt−1, and normalizing to 0–1.

To compute the reinforcement signal in Step 3, we first
compute the “center of mass” coordinate for each two-
dimensional error mapEt−1 andEt, called theerror cen-
troid of the map. This coordinate is simply the weighted
average of the two-dimensional coordinates of all 40× 10
error values, weighted by the size of the error. In our exper-
iments, we have used a binary weighting function in which

the weight of the error is 1 if the observed value is signif-
icantly greater than the predicted value at that point in the
map, or 0 otherwise. Other mapping functions are of course
possible, such as weighting a value by the magnitude of the
error. To compute the reinforcement, the error centroids of
Et−1 andEt are compared. If the centroid has movedcloser
to the center of the error map from time stept − 1 to t, the
reinforcement is positive; if the centroid has movedaway
from the center, the reinforcement is negative; otherwise it
is zero.

This method of computing the reinforcement signal rep-
resents a built-in bias of the system. This can be thought of
as an innate tendency of the robot to want to “focus” on re-
gions of unanticipated activity in the visual field by moving
them to the center of view. It is important to note, however,
that the reinforcement signal is not based directly on visual
input from the environment; rather, it is based on the robot’s
own expectationsof what it will see as a result of respond-
ing to its current situation. The training of the network is
driven by this internally-generated error information rather
than by externally-generated visual information.

2.2. Motor Representation

A binary representation for motor actions is necessary in
order to allow CRBP to be used for the training of the net-
work’s motor responses. In Step 7 above, the continuous-
valued activations of theMout units are transformed into
a binary vectorMt. By injecting stochastic noise into this
process, the network gains the ability to nondeterministi-
cally explore its weight space. This is especially important
in the case of negative reinforcement, in which the optimal
training target is unknown.

In the experiments described below, we used a simu-
lated robot with only one degree of freedom of movement.
The position of the robot was fixed at the center of its
environment, with only its angular orientation allowed to
change. We chose an 8-bit representation for the motor ac-
tions, where the number of ones in a pattern specified the
robot’s rotation speed and direction. The order of the bits
was irrelevant. For example, all-zeros represented turning
left quickly, all-ones represented turning right quickly, and
an equal number of ones and zeros caused the robot to stop.
Many different patterns, therefore, were potentially avail-
able for the network to use in representing a particular mo-
tor action, which gave the robot more flexibility in learn-
ing to generate its motor responses. Accordingly, theMout

bank in Figure 1 contained eight units. However, when a
motor action is presented to the network as input, it is first
translated back into a continuous-valued scalar in the range
0–1, in order to make learning easier for the network. The
Min bank thus consisted of only a single unit.

3. Experiments

To test the architecture and the training algorithm, we
created a simple environment in which the developing robot
is fixed at the center of a circular arena and can rotate
in order to observe its world. Also in the environment is
a moving “decoy” robot controlled by an innate obstacle-
avoidance behavior (see Figure 2). The goal of the experi-
ment is to induce the developing robot to attend to the decoy
robot by tracking its motion. Clearly it should be possible
to learn tracking by providing an external reinforcement sig-
nal that is based on whether the decoy robot is centered in
the developing robot’s visual field. However, the more in-
teresting issue is whether the developing robot can learn to
track given only an internal reinforcement signal based on
the error of its own predictions. In this case the external re-
inforcement signal is directly related to the task of tracking,
while the internal reinforcement signal is more indirect. In
the following experiments we compare the performance of
a developing robot when using external and internal rein-
forcement signals. The performance measure is based on
the average offset of the decoy robot from the center of the
developing robot’s visual field.

The experiments were conducted using the Stage mobile
robot simulator [9], where the robot was a simulated Activ-
Media Pioneer 2 [2] with a camera. The simulated camera
had a 120-degree viewing angle centered on the front of
the robot (indicated by the straight lines in Figure 2). Al-
though the Stage simulator does not have simulated pixel-
based camera output, we transformed Stage’s “blob” data
into a 40× 10 grayscale image. When the decoy robot was
in view, approximately 16 pixels (4% of the total image)
were affected. The robot could turn to the left or right us-
ing one of 9 possible rotation speeds, as described earlier in
section 2.2.

Using the robotics programming environment Pyro [5],
we constructed the neural network shown in Figure 1, where
the input layer had 1 motor-in unit, 400 state units, and 30
context units, the hidden layer had 30 units, and the output
layer had 8 motor-out units and 400 prediction units. Using
Pyro, the network was trained with the three-phase proce-
dure from section 2

The decoy robot continually roamed around the inside
circumference of the circular wall. It started on the North
side of the circle facing West and traveled to the left, fol-
lowing the circular wall as it went. When it reached the
South side of the arena, we repositioned it at the starting
point, but this time facing East. The decoy robot then trav-
eled along the wall to the right, until again it reached a point
approximately due South of the starting point. The purpose
of this two-legged journey was to ensure that leftward and
rightward motion was represented equally during training.
The entire trip of the decoy robot constituted one training

Figure 2. View of the training arena in the
Stage simulator

trial for the Pioneer robot. Furthermore, whenever the de-
coy robot was restarted at the North side of the arena, the
activations of all of the network’s context unitsC were reini-
tialized to 0.5. This occurred at the beginning and the mid-
dle of each training trial.

In the first experiment, the external reinforcement signal
was based on thevisualcentroid of the camera image. The
robot received positive reinforcement if the visual centroid
moved toward the center of the visual field, and negative
feedback if it moved away. If the decoy robot was not in
view, no learning was performed.

We ran this experiment five times, with computational
temperature turned off (i.e., set to 0) in order to see how
well the robot could learn in the absence of noise. All of the
runs attained a high level of performance within 10 train-
ing trials. The network architecture and training procedure
enabled the robot to learn to track the robot easily.

Of course, our real interest was in seeing if the robot
could learn this task indirectly, by using its internally-
generated prediction error in place of the actual visual input.
Therefore, we altered the training procedure by basing the
reinforcement signal on the movement of the error centroid
rather than the visual centroid, but otherwise kept the exper-
iment the same. In this slightly modified problem, however,
the network in five tries was unable to learn to reliably track
the decoy robot at all.

This failure to learn to track using the error centroid as
feedback could have been caused by the network being very
successful at prediction. For example, if the network pro-
duced a perfect prediction on every time step, there would
be no error, and the robot would be unable to find anything
to track. To test this hypothesis, we completely disabled
the prediction units, freezing the weights between the hid-
den layer and the prediction bankP. Surprisingly, however,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

P
er

fo
rm

an
ce

 o
f T

ra
ck

in
g

E
rr

or
 C

en
tr

oi
d

Trials

Figure 3. Performance of error centroid track-
ing over first 150 training trials

training on the error centroid with no learning between the
hidden layer and the prediction units worked as well as the
initial visually-based centroid tracking experiment. Anal-
ysis showed that the error centroid produced by random
weights was in fact highly correlated with the actual visual
centroid.

As it turned out, learning to successfully track the error
centroid with the prediction units enabled required the use
of computational temperature. We also added an extra pun-
ishment condition if the robot did not see a centroid. In ad-
dition, a second decoy robot was added to the arena. It was
placed directly to the North of the starting position of the
moving decoy, where it remained for the duration of each
trial. The motivation for using a second decoy was to cre-
ate a slightly more complicated environment for the robot
to explore.

4. Analysis of a Training Run

This section examines a single, successful learning run
in which computational temperature, the additional punish-
ment condition, and the more complex environment were
used. This run was representative of those that learned to
track one of the decoy robots.

As can be seen in Figure 3, initial performance was about
0.50, but quickly rose to above 0.80 within the first 40 trials.
On trial 44 the performance of the network reached its peak,
around 0.87. For comparison, we hand-coded a robot to
perform the visual robot-tracking task, and it scored 0.92. A
score of 1.0 is not possible because of the system’s inability

Figure 4. Sample camera images (left) and
prediction error data (right) from the middle
phase of learning

to maintain the centroid in the exact center of the view at all
times.

Recall that our system is designed to perform two con-
flicting tasks: to accurately predict the next statePt+1, but
also to track where it cannot predict. Not surprisingly, the
better the system is able to predict, the less it is able to track,
resulting in a lower performance measure. From these com-
peting goals, three recognizable phases emerge: an early
phase (around trials 0 to 35) where the performance level
increases; a middle phase where peak performance is at-
tained (around trials 35 to 60); and a late phase in which
performance slowly declines (trials 60 and greater).

Figure 4 shows representative camera images and pre-
diction error data from the middle phase of this run. The
left column shows a sequence of four camera images, with
time running from top to bottom. The decoy robot can be
seen as a square of gray pixels near the center of the visual
field. The right column is the prediction error associated
with each of the camera views. That is, the right column
shows in black where the errors occurred on the prediction
bankP at each of the steps in training. Notice that some
of the prediction error regions are smaller than the associ-
ated regions from the camera image. This indicates that the
system has begun to make some accurate predictions. The
system received negative feedback between the first and the
second rows and again between the third and fourth rows
(since the error centroids have moved slightly farther away
from the center). Between the second and third rows, the
network was rewarded, since the centroid moved toward the
center of the field.

Further examination of the performance during the late
phase shows that it continues to fall until the end of the run
at trial 2000. Figure 5 shows the steady decline in perfor-
mance and an increasing range of performance variability.
To understand this behavior better, we can again examine
camera images and prediction error. Figure 6 shows repre-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
er

fo
rm

an
ce

 o
f T

ra
ck

in
g

E
rr

or
 C

en
tr

oi
d

Trials

Figure 5. Performance of error centroid track-
ing over all training trials

sentative camera images on the left, and prediction errors
on the right. Most noticeable is that in the first and fourth
rows, there is no error in prediction. This resulted in re-
ward between the first and second rows, and also between
the second and third rows (as the centroid gets closer to the
center). However, the system was again punished between
the third and fourth rows as it “lost” the error centroid.

Figure 7 shows that prediction accuracy is indeed climb-
ing over the span of 2000 trials, albeit very slowly and also
with increasing variability. Indeed, as prediction perfor-
mance continues to increase in the late stage, the robot en-
counters fewer views containing any error at all, for which
it is then punished. It is in this stage that the competing

Figure 6. Sample camera images (left) and
prediction error data (right) from late in the
run

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 500 1000 1500 2000

T
S

S
 P

re
di

ct
io

n
A

cc
ur

ac
y

Trials

Figure 7. TSS prediction accuracy over all
training trials

pressures discussed earlier are most apparent. If the experi-
mental environment had been richer and more varied, after
the developing robot had learned tracking, it would likely
have been driven by its prediction error to focus on a new
aspect of its world.

5. Discussion

The defining characteristic of a developmental robotics
architecture is task-independence. A developmental system
must be open-ended and capable of finding interesting phe-
nonmena to focus on and learn about. The previous experi-
ment demonstrated that a very general internal mechanism,
such as an error centroid created from the robot’s own pre-
dictions, can serve as a successful reinforcement signal for
a developmental connectionist architecture. A limitation of
the previous experiment is that the robot’s world was quite
stark and uninteresting. Once the robot had learned to pre-
dict the decoy robot’s movements, there was nothing new
to grab its attention. However, the idea of using error as
a reinforcer is so general that this same mechanism should
be equally capable of providing a useful reinforcement sig-
nal for other sensory modalities, as well as the fusion of
multiple modalities. We plan to test our architecture in in-
creasingly rich multi-modal environments.

Another fruitful area of inspiration for creating general-
purpose internal reinforcement signals is the use of emo-
tions [8]. In Gadanho and Hallam’s work, a simulated
Khepera robot is endowed with a set of homeostatic vari-
ables related to energy, pain, and restlessness. The environ-

ment contains a set of obstacles and a set of food sources.
The robot’s energy decreases on every time step, and in-
creases when it visits a food source. The robot’s pain in-
creases when it bumps into obstacles and the robot’s rest-
lessness increases when the robot is not moving. These
homeostatic variables can serve to positively reinforce be-
havior that increases energy and negatively reinforce behav-
ior that increases pain or restlessness. Currently, these rein-
forcement signals are only used to determine when to switch
between a set of pre-programmed behaviors. Thus the robot
is not developing any new behavior, but simply determining
the best way to sequence its innate behaviors.

In the current work, we have focused on a single home-
ostatic variable that strives to balance surprise and pre-
dictability. We would like to explore the level of complexity
in behavior that is achievable using this sole self-motivating
mechanism, but we envision that we will need to add other
variables in future work.

6. Conclusions

This paper defines a philosophy for designing systems
with self-motivation. We believe that self-motivation is an
emergent property generated by the competing pressures
between prediction and control. In addition we define a
multi-step algorithm and simple recurrent network architec-
ture that incorporates two learning systems based on these
two pressures. One learning system attempts to make pre-
dictions of the next state while a second system uses a re-
inforcement signal based on error provided by the first to
drive control. Between these two competing forces, we be-
lieve, lies a rich area for learning. And in this framework
lies a vast area for exploration in developmental robotics.

Acknowledgements

We would like to thank Deepak Kumar, Paul Grobstein,
Chris Prince, and the members of the Emergent Phenomena
Research Group at Bryn Mawr for engaging discussions on
this topic.

References

[1] D. H. Ackley and M. L. Littman. Generalization and scaling
in reinforcement learning. In D. S. Touretsky, editor,Ad-
vances in Neural Information Processing Systems 2, pages
550–557. Morgan Kaufmann, San Mateo, CA, 1990.

[2] ActivMedia Robotics, 19 Columbia Drive, Amherst, NH
03031.Pioneer Operations Manual, 11 edition, 2002.

[3] N. Almassy, G. M. Edelman, and O. Sporns. Behavioral
constraints in the developmental of neuronal properties: A
cortical model embedded in a real-world device.Cerebral
Cortex, 8:346, 1998.

[4] D. Blank, L. Meeden, and D. Kumar. Bringing up robot:
Fundamental mechanisms for creating a self-motivating,
self-organizing architecture. InWorkshop proceedings of
Growing up artifacts that live, at Simulation of Adaptive Be-
havior, 2002.

[5] D. Blank, L. Meeden, and D. Kumar. Python robotics: An
environment for exploring robotics beyond LEGOs. InACM
Special Interest Group: Computer Science Education Con-
ference (SIGCSE), 2003.

[6] M. V. Butz, O. Sigaud, and P. Gerard. Internal models and
anticipations in adaptive learning systems. InProceedings of
the Workshop on Adaptive Behavior in Anticipatory Learn-
ing Systems, pages 1–23, 2002.

[7] J. L. Elman. Finding structure in time.Cognitive Science,
14(2):179–211, 1990.

[8] S. C. Gadanho and J. Hallam. Exploring the role of emotions
in autonomous robot learning. InProceedings of the AAAI
Fall Symposium on emotional intelligence: The tangled knot
of cognition, pages 84–89. AAAI Press, 1998.

[9] B. Gerkey, R. Vaughan, and A. Howard. The Player/Stage
project: Tools for multi-robot and distributed sensor sys-
tems. InProceedings of the 11th International Conference
on Advanced Robotics, pages 317–323, Coimbra, Portugal,
June 2003.

[10] X. Huang and J. Weng. Novelty and reinforcement learning
in the value system of developmental robots. InProceed-
ings of the Second International Workshop on Epigenetic
Robotics: Modeling Cognitive Development in Robotic Sys-
tems, volume 94, pages 47–55. Lund, Sweden: Lund Uni-
versity Cognitive Studies, 2002.

[11] B. Kuipers and P. Beeson. Toward bootstrap learning for
place recognition. In S. Coradeschi and A. Saffiotti, editors,
Anchoring Symbols to Sensor Data in Single and Multiple
Robot Systems: Papers from the 2001 AAAI Fall Symposium,
number 01-01 in FS, pages 25–30. AAAI Press, 2001.

[12] J. Weng, J. McClelland, A. Pentland, O. Sporns, I. S. I.,
M. Sur, and E. Thelen. Autonomous mental development
by robots and animals.Science, 291:599–600, 2001.

[13] J. Weng and Y. Zhang. Developmental robotics - a new
paradigm. InProceedings of the Second International Work-
shop on Epigenetic Robotics: Modeling Cognitive Develop-
ment in Robotic Systems, volume 94, pages 163–174. Lund,
Sweden: Lund University Cognitive Studies, 2002.

	An Emergent Framework for Self-Motivation in Developmental Robotics
	Citation

	tmp.1489249992.pdf.sJfGC

