
Bryn Mawr College Bryn Mawr College

Scholarship, Research, and Creative Work at Bryn Mawr College Scholarship, Research, and Creative Work at Bryn Mawr College

Computer Science Faculty Research and
Scholarship Computer Science

2003

Patterns of Curriculum Design Patterns of Curriculum Design

Doug Blank
Bryn Mawr College, dblank@brynmawr.edu

Deepak Kumar
Bryn Mawr College, dkumar@brynmawr.edu

Follow this and additional works at: https://repository.brynmawr.edu/compsci_pubs

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Citation Citation
Blank, D. and Kumar, D. (2002). Patterns of Curriculum Design. Proceedings of Informatics Curricula,
Teaching Methods and best practice (ICTEM), Florianopolis, SC Brazil.

This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College.
https://repository.brynmawr.edu/compsci_pubs/46

For more information, please contact repository@brynmawr.edu.

https://repository.brynmawr.edu/
https://repository.brynmawr.edu/compsci_pubs
https://repository.brynmawr.edu/compsci_pubs
https://repository.brynmawr.edu/compsci
https://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/open-access-feedback.html
https://repository.brynmawr.edu/compsci_pubs/46
mailto:repository@brynmawr.edu

Chapter
Patterns of Curriculum Design

Douglas Blank & Deepak Kumar
Department of Mathematics & Computer Science, Bryn Mawr College, Bryn Mawr, PA

19010 (USA)

Email: dblank, dkumar@brynmawr.edu

Abstract We present a perspective on the design of a curriculum for a new computer

science program at a women�s liberal arts college. The design incorporates

lessons learned at the college in its successful implementation of other

academic programs, incorporation of best practices in curriculum design at

other colleges, results from studies performed on various computer science

programs, and a significant number of our own ideas. Several observations

and design decisions are presented as curriculum design patterns. The goal of

making the design patterns explicit is to encourage a discussion on

curriculum design that goes beyond the identification of core knowledge

areas and courses.

1. INTRODUCTION

In this paper, we present a perspective on the design of a curriculum for a

new computer science program at Bryn Mawr College. Founded in 1885,

Bryn Mawr College is well known for the excellence of its academic

programs. Bryn Mawr combines a distinguished undergraduate college for

about 1200 women with two nationally ranked, coeducational graduate

schools (Arts and Sciences, and Social Work and Social research) with

about 600 students. As a women's college, Bryn Mawr has a longstanding

and intrinsic commitment to prepare individuals to succeed in professional

fields in which they have been historically underrepresented. In 1999, the

1

2 Chapter

college decided to add computer science to the college's academic programs.

We are currently engaged in the expansion and design of the program. The

design of the curriculum is being carried out based on several considerations

that are discussed in this paper. The design incorporates lessons learned at

the college in its successful implementation of other academic programs,

incorporation of best practices in curriculum design at other colleges, results

from studies performed on various computer science programs, and a

significant number of our own ideas.

2. CURRICULUM DESIGN PERSPECTIVES

Margolis & Fisher have reported, based on a 5-year study on gender

issues in computer science at Carnegie Mellon University, that female

disinterest in computer science is not genetic, nor accidental, nor inherent to

the discipline of computer science, but largely due to three factors: early

childhood gender socialization (at home); a combination of adolescence,

peer relationships, computer game design, and secondary school social

pressures; and the fact that female orientation towards (and concerns about)

computing are different from the design of most computer science

curricula[1].

The last issue is of particular concern to us. Margolis & Fisher claim that

universities have historically developed computer science courses with a

male bias. Thus, even the introductory courses in computer science are built

around 'male preferences' focusing on the very technical aspects from the

very beginning. Further, based on interviews of over 100 female college

students, they concluded that the female expression of lack of interest in

computer science is really based on a lack of confidence.

At Bryn Mawr, we are currently engaged in the design of a new

curriculum for computer science. While there exist prescribed and

authoritative guidelines for a curriculum in computer science (the

Association for Computing Machinery has announced a new basis for

computer science curricula [2]), we are going about the design of our

curriculum in an extremely independent and deliberative manner. This is

partly in resonance with the findings of Margolis and Fisher, and largely

based on our own experiences and similar findings at Bryn Mawr and at

other universities. In the design of our curriculum, we are taking the

challenge of engagement for women in computer science as our primary

concern. Several design considerations have gone into the creation of our

computer science curriculum: the context of the program within a women's

liberal arts college; the context of computer science courses within the

program; the requirements for a major; the design of a minor in computer

. Patterns of Curriculum Design 3

science; the design of everyday examples and exercises in all courses in

computer science.

First and foremost, it is important to establish a place for computer

science in a liberal arts college. In the last few years, most computer science

programs at large American universities have shifted their divisional

alignment from being a program in the arts and sciences to one belonging to

the school of engineering. Therefore, the question naturally arises: If

computer science has become a discipline of engineering, why offer it at a

liberal arts college? Without going into a lengthy response to this question,

we will simply summarize it here by pointing out that while there are aspects

of computer science that lean towards engineering, there are significantly

more aspects of computer science that intersect with the broader goals of the

liberal arts. In universities where career preparation is the main emphasis,

computer science finds itself in the engineering school. In liberal arts

colleges, the emphasis of a computer science program is on gathering,

evaluating and disseminating knowledge with foundations in the area of

logic, mathematics, and the sciences. We believe that by taking a broader

perspective on the nature of the discipline (we have proclaimed it to be a

core liberal art of the future) and the constant inclusion of the implications

of technology and its use in society as well as other academic disciplines

will help stir a wider interest in computer science among students.

The view of computer science as a liberal art also leads to a re-examining

of course offerings, as well as the content of various courses offered in the

computer science program. Additionally, it leads one to re-evaluate the set

of courses that, for an individual student, define a major (or a minor) in

computer science. It further impacts the design of exercises and examples

that are used in individual courses. In the process of designing our new

computer science program for Bryn Mawr College, we have deliberated

about all these issues at length. Below, we present some pertinent

observations and design decisions that have affected our deliberations.

While some of the observations arise out of formal studies conducted

elsewhere, some are based on our own experiences and experiences shared

by the global community of computer science faculty. We are not presenting

them as a prescription for the design of all computer science programs,

rather to facilitate a discussion on the underlying issues and their implication

for curriculum design.

3. CURRICULUM DESIGN PATTERNS

We are calling our collections of observations and decisions curriculum

design patterns after the 'design patterns movement' in objected-oriented

4 Chapter

software design [3], which is based on the idea of design patterns developed

by the architect Christopher Alexander: 'Each pattern describes a problem

which occurs over and over again in our environment, and then describes the

core of the solution to that problem, in such a way that you can use this

solution a million times over, without ever doing it the same way twice.' [4]

3.1 Computing across the curriculum, not!

Our starting point is to defer from the obvious notion of 'computing

across the curriculum'. Several disciplines have adopted such an approach:

'writing across the curriculum' or, more recently, 'mathematics across the

curriculum'. Given the pervasive nature of computing in these times, it

would be an obvious choice to champion computing across the college as a

way to engage women in computer science. However, we strongly feel that

affecting another department or program's curriculum is an imposition and it

is unclear whether it will result in more students engaged (or favorably

disposed) into further study in computer science. While there have been

documented successes of the writing across the curriculum and

mathematics across the curriculum for non-English majors and non-

mathematics majors, there is no evidence that such initiatives lead to more

engagement in English and Mathematics majors.

For computer science to become a sought after and engaging field of

study, we believe that it is our program's responsibility to demonstrate in

effective ways how computing has become pervasive in today's society, and

hence we have taken a fresh look at the context in which the program sits at

a college like Bryn Mawr. From a curriculum design perspective, our

response is to concentrate on courses within computer science. There are

several courses that are explicitly created for all students at the college, and

there are also upper-level computer science electives that are also open to

non-computer science students. The objective of the design of these courses

is to go well beyond the goal of achieving fluency to a more intellectual

level discourse of ideas and concepts of which fluency may just be one of

the side effects . This has resulted in several courses that are offered in the

computer science program. These are presented in the next three sections.

3.2 Participation in the freshman seminars

All students entering Bryn Mawr College are required to take two

freshman-level college seminar courses. These courses are designed as pre-

disciplinary expositions that encourage critical thinking in addition to

developing strong writing skills. In our computer science program, we have

. Patterns of Curriculum Design 5

made the commitment to offer at least one course each year in the college

seminar program. This has lead to the design and creation of a diverse range

of courses at a pre-disciplinary level with a basis in computer science and

technology. The topic areas change from year to year. Here are two recent

offerings:

Weaving the web: A course that examines the history of the

development of the worldwide web, its current use, and its implications on

the global society. Eighteen students enrolled constitute the editorial board

of a web-based magazine. Students learn the technology underlying web

design and all written work is in the form of articles for the web magazine.

The scope of the magazine is to discuss issues relating to technology and its

implications on the Bryn Mawr community [5].

Robots gone berserk--- A look at robots in film: A course that

examines portrayals of robots in film and compares it to the state-of-the-art

in Artificial Intelligence and Cognitive Science. Described to students as,

'This College Seminar is not a writing course. It is not a film course. It is not

a robotics course. It is not a science fiction course. Although, come to think

of it, we will write some papers. We will watch some movies. We will study

some robotics. And we will read some science fiction. However, this course

is really about thinking. In fact, we will spend quite a bit of time thinking

about thinking.' [6]

3.3 A terminal CS1 course is terminal, for women

Most universities offer two versions of an introductory level course in

computer science: One designed for students who wish to major in computer

science; one designed for those who do not. Our claim is that most women

who otherwise might go on to major in computer science, due to lack of

confidence, self-select themselves into the terminal non-majors version of

the course. This is a subtle observation that most formal studies about

gender equity will tend to overlook and hence is unlikely to be uncovered in

any study. At Bryn Mawr, we offer only one version of the introductory

course. Traditionally, 3/4 of the students in this course are from non-science

majors.

3.4 Upper-level electives are interdisciplinary

In order to further the intellectual engagement of all Bryn Mawr

students in computer science, several upper-level computer science courses

are designed so that they are also accessible to students in other disciplines.

The issue of non-majors not meeting a particular course’s prerequisites is

addressed by expanding the scope of the course by relating to topics and

6 Chapter

disciplines outside of computer science, as well as by including team-

oriented exercises where each team is comprised of students from diverse

disciplines contributing and exchanging ideas and perspectives. Examples

include the following courses:

Cognitive Science: Open to students in all disciplines. Also cross-listed

in the philosophy department.

Artificial Intelligence: Open to students in all disciplines. Also cross-

listed in the Philosophy department.

Digital Multimedia: Open to students of all disciplines (will be offered

for the first time in Spring 2003).

Recent Advances in Computer Science: This is a special topics course.

Enrollment is open, depending on the specific topic. Example topics:

Computer-related Risks: Open to students in all disciplines. Biologically

Inspired Computational Models of learning: Open to all science majors (as

well as graduate students).

Thus, by reexamining the notion of computing across the curriculum ,

and beginning from within the computer science program, we have opened

up access to the field of computer science to the wider community of

students at Bryn Mawr College. This has affected the design of courses at

the freshman/predisciplinary-level, introductory level, as well several upper-

level electives.

3.5 Humanizing core computer science courses

Within computer science, the design of each core course is an

amalgamation of the concepts underlying the topic of the course (as

recognized by the larger computer science community) and the social and

cultural implications of the topic in society. For example, consider the

course, Principles of Programming Languages. This is considered a core

course in computer science. It is largely concerned with the principles

underlying the design of programming languages. Traditionally flooded with

technical content, the course has been redesigned to include case studies of

practitioner's lives. There are several biographies and essays available that

describe the lives of computer scientists who could be classified as

'programming language experts' [7, 8, 9, 10]. Some of them have been

designers of prominent programming languages, while some have led

commercial ventures based on programming language products. Thus, a

human element is included in the course without necessarily sacrificing the

technical matter. Other so-called technical courses in computer science are

also being designed in this manner.

. Patterns of Curriculum Design 7

3.6 Design of everyday lecture artefacts

In a liberal arts setting, the nature of examples and exercises used in day-

to-day lectures also requires careful attention. Computer science, like most

other disciplines in the sciences, has suffered from indulging its students in

exercises and examples from within the discipline. In our view of computer

science as a liberal art, where possible, we encourage the use of examples

and exercises that are taken from diverse disciplines, especially focusing on

non-science areas like archaeology, linguistics, economics, environmental

studies, etc. We are currently in the process of designing a formal multi-year

study on the use of examples and assignments in computer science courses.

3.7 Breaking rigid boundaries

Often, a curriculum is packed tightly with a well thought out design of

topics and their prerequisites. In addition, each course is packed tightly with

materials related to a particular topic. We believe that it is more

advantageous to cover less material in a particular topic in exchange for

connecting the topic more thoroughly to other areas in, and out of, computer

science. For example, consider a course on data structures. Normally, ideas

such as parallelism would not (or could not) be mentioned in such a course.

However, by breaking down the rigid, and often artificial, boundaries

between topics, we believe that concepts learned by students will be more

solid and well founded. This methodology does require faculty to

communicate closely to ensure that no big ideas are missed. Faculty should

also be encouraged to be extremely opportunistic about bringing ideas from

their own research into the classroom.

3.8 Creating room in the curriculum

We have observed that several middle to upper-level undergraduate

computer science courses at larger universities (especially those with

Masters and PhD programs) are often cross-registered into their graduate

program's offerings. For example, in many universities, a single offering of

courses on theory of computation , operating systems , compiler

construction , etc. exists in which both graduate as well as undergraduate

students enroll at the same time. This has led us to reexamine our own set of

middle/upper-level course offerings. For courses that we feel are essential to

the knowledge of an undergraduate computer science major, we have

included them in our curriculum. We have eliminated most courses that are

required to be taken by graduate students and are not necessarily considered

essential for an undergraduate degree. This has two significant effects: first,

8 Chapter

it creates room in the curriculum for creating newer, more innovative

courses; second, for the traditional courses that we do include, we design

their curriculum tailored more towards an undergraduate level, as opposed to

an offering that is required to also satisfy the knowledge requirements for a

graduate-level course.

3.9 Flexibility in designing a major

What set of courses constitutes a major in computer science? The

Curriculum 2001 report outlines a core body of knowledge that every

computer science major should learn [2]. The report recommends that the

core be complemented with additional coursework in other areas of

computer science. In our program, consistent with the college's requirements

for a total of 12 courses to be taken in a major, the following program is

recommended for a computer science major:

Introductory Courses: These include our own instantiations of CS1,

CS2, and Discrete Mathematics.

Core Courses: Students are required to take a course on principles of

computer organization, principles of programming languages, and one

course in algorithm design and analysis.

Systems Courses: Students have to take a course in either compiler

design or operating systems.

Electives: Five additional courses in computer science based on the

student's choosing.

Senior Thesis: All computer science majors also complete a senior

project/thesis.

These requirements provide tremendous flexibility to each student since

they provide the freedom to choose nearly 50% of their required courses

based on their own personal interests.

3.10 Minor in computer science for all

Any student majoring in any discipline can do a minor in computer

science at Bryn Mawr College. In most schools, the minor (or concentration)

is typically an option available only to students majoring in mathematics and

natural sciences. However, with the increasing pervasiveness of computing,

we have felt it essential to open the entryways into computer science for all

students. The requirements of a minor in computer science are:

Introductory Courses: These include our own instantiations of CS1,

CS2, and Discrete Mathematics.

Core Courses: Any two of the core courses in computer science:

Principles of Computer Organization, Principles of Programming

. Patterns of Curriculum Design 9

Languages, Algorithms: Design & Practice, Analysis of Algorithms, and

Theory of Computation.

Electives: Two additional courses in computer science based on the

student's choosing.

3.11 Majors in emerging computational disciplines

Our program also encourages interested students to design independent

majors in emerging computational disciplines like, cognitive science,

computational chemistry, computational physics, bioinformatics, geoinfor-

matics, computational linguistics, etc. Students consult with faculty advisors

in designing their programs of study. The course selections are tailored to

student interests. While the computer science program becomes a default

home of such majors, significant participation is necessary from faculty in

other disciplines as well. Our program has been successful in influencing

faculty-hiring decisions in other programs to bring in faculty with interests

overlapping with computer science. Occasionally, students will also take

courses offered in other area institutions. We consider ourselves lucky to be

situated in a region that has more than a dozen colleges and universities in

the same metropolitan area.

4. SUMMARY

In this paper, we have presented several design considerations that form

the basis of our evolving computer science program. As is evident, there is

much more to curriculum design than instantiating a prescription of

knowledge areas into various courses. The design patterns presented above

are by no means exhaustive, nor even attempting to be complete or

universal. While Christopher Alexander evolved the idea of patterns in the

context of architectural design, and was later applied to object-oriented

design, it applies equally well in the context of curriculum design. It is also

in this sense that the patterns presented in this paper are to be taken as points

for further discussion, rather than as a prescription for all curricula.

REFERENCES

1. Margolis, Jane & Fisher, Allan, Unlocking the Clubhouse: Women in

Computing . Cambridge, MA: MIT Press, 2002.

2. IEEE-CS & ACM, Computing Curricula 2001: Computer Science Volume ,

available on the worldwide web at: http://www.acm.org/sigcse/cc2001. IEEE-

CS/ACM, 2001.

10 Chapter

3. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of

Reusable Object-Oriented Software . Reading, MA: Addison-Wesley, 1994.

4. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I.,

Angel, S., A Pattern Language . New York: Oxford University Press, 1977.

5. Bryn Mawr College Computer Science Program worldwide web page:

http://cs.brynmawr.edu.

6. Robots gone berserk: A look at robots in film , Bryn Mawr College course web

page: http://dangermouse.brynmawr.edu/csem.

7. Gabriel, Richard P., Patterns of Software: Tales from the software community .

Oxford: Oxford University Press, 1996.

8. Shasha, D., Lazaere, C., Out of their minds: The lives and discoveries of 15 great

computer scientists . New York: Copernicus, 1995.

9. Brooks, Rodney A., Flesh and machines: How robots will change us . New York:

Pantheon Books, 2002.

10. Dijkstra, Edsger W., Selected writings on computing: A personal perspective .

New York: Springer-Verlag, 1982.

	Patterns of Curriculum Design
	Citation

	BlankKumar.sxw

