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Given two time seriesX andY, their mutual information,IsX,Yd= IsY,Xd, is the average number of bits of
X that can be predicted by measuringY and vice versa. In the analysis of observational data, calculation of
mutual information occurs in three contexts: identification of nonlinear correlation, determination of an optimal
sampling interval, particularly when embedding data, and in the investigation of causal relationships with
directed mutual information. In this contribution a minimum description length argument is used to determine
the optimal number of elements to use when characterizing the distributions ofX andY. However, even when
using partitions of theX andY axis indicated by minimum description length, mutual information calculations
performed with a uniform partition of theXY plane can give misleading results. This motivated the construc-
tion of an algorithm for calculating mutual information that uses an adaptive partition. This algorithm also
incorporates an explicit test of the statistical independence ofX andY in a calculation that returns an assess-
ment of the corresponding null hypothesis. The previously published Fraser-Swinney algorithm for calculating
mutual information includes a sophisticated procedure for local adaptive control of the partitioning process.
When the Fraser and Swinney algorithm and the algorithm constructed here are compared, they give very
similar numerical resultssless than 4% difference in a typical applicationd. Detailed comparisons are possible
when X and Y are correlated jointly Gaussian distributed because an analytic expression forIsX,Yd can be
derived for that case. Based on these tests, three conclusions can be drawn. First, the algorithm constructed
here has an advantage over the Fraser-Swinney algorithm in providing an explicit calculation of the probability
of the null hypothesis thatX andY are independent. Second, the Fraser-Swinney algorithm is marginally the
more accurate of the two algorithms when large data sets are used. With smaller data sets, however, the
Fraser-Swinney algorithm reports structures that disappear when more data are available. Third, the algorithm
constructed here requires about 0.5% of the computation time required by the Fraser-Swinney algorithm.

DOI: 10.1103/PhysRevE.71.066208 PACS numberssd: 05.45.2a

I. INTRODUCTION

Given two time serieshXj=hx1,x2,…xND
j and hYj

=hy1,y2,…yND
j, their mutual information,IsX,Yd, is the av-

erage number of bits ofhXj that can be predicted by measur-
ing hYj. It can be shown that this relationship is symmetrical,
IsX,Yd= IsY,Xd. A systematic presentation of the definition
of mutual information and its mathematical properties is
given in Cover and Thomasf1g. In the analysis of observa-
tional data, calculation of mutual information occurs in three
contexts:sid identification of nonlinear correlation,sii d deter-
mination of an optimal sampling interval, particularly when
embedding time series data, andsiii d in the investigation of
causal relationships with directed mutual information. Each

of these contexts will now be briefly described.
Mutual information can be used to identify and quantita-

tively characterize relationships between data sets that are
not detected by commonly used linear measures of correla-
tion. Figure 1 recapitulates an example shown in Mars and
Lopes da Silvaf2g and displays three data set pairs. The first
showsxi whenxi =−3 to +3 in steps of 0.0006 plotted against
«i, a random normally distributed variable with zero mean
and unit variance. The second element of Fig. 1 showsxi vs
xi +0.2«i where«i is the previously used random variable. In
the third example of Fig. 1,yi =xi

2+0.2«i. Four measures
were calculated with 10 000 element data sets:sid the Pear-
son linear correlation coefficientr, sii d the Spearman rank
order correlationrS, siii d Kendall’s tau, a nonparametric mea-
sure of correlation, andsivd the mutual information between
hXj and hYj using an algorithm that will be described in a
subsequent section. The corresponding probabilitiesPnull of
the null hypothesis of zero linear correlation for each of the
four measures were also calculated.

*Author to whom correspondence should be addressed. Electronic
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The results are shown in Table I. In the case of normally
distributed random numbers, all four measures behave in a
manner that is consistent with our qualitative understanding
of the word correlation. Similarly, in the case of calculations
with linearly correlated noise the results are consistent with
expectations.

The results obtained in the case of parabolic correlation
merit closer inspection. The first three measuresr, rS, andt
are small and the correspondingPnull values are high which
indicates that no correlation was detected. In contrast, the
value of mutual information is high, essentially equal to that
obtained using linearly correlated data, and the probability of
the null hypothesis of statistical independence is zero.

In the second context, mutual information estimates can
be also used to determine an appropriate sampling interval
TS, which is the time between consecutive measurements of
a time series. Many of the calculations presented here will be
calculations directed to this question. The selection of an
appropriate sampling interval is an important consideration
when the quantitative methods of dynamical analysis are ap-
plied to time series data. On first consideration, one might
suppose that the smallest possibleTS would be the best op-
tion. While this may be a reasonable approach during data
acquisition, this strategy can fail during analysis because cal-
culations with oversampled data can produce misleading re-
sultsf3g. Historically, calculation of the autocorrelation time,
the time required for the autocorrelation function to drop to
1/e of its initial value, has been used to establish an approxi-

mate sense of the time scale corresponding to significant
changes in a time series’ behavior. However, as we have seen
in the preceding calculations, linear measures can give an
incomplete characterization of behavior. This recognition has
motivated the calculation of lagged mutual information.

Let hXj be the original time series, and let time serieshYj
be the same time series shifted by a time lag, that is,yi
=xi+lag. The mutual informationIsXi ,Xi+lagd is then calculated
as a function of lag. In order to get the most new information
from a measurement, we want to take the next measurement
when there is maximum uncertainty in the relationship be-
tweenhXj andhYj. The maximum uncertainty in the relation-
ship betweenhXj and hYj will occur at a minimum of
IsXi ,Xi+lagd. Fraser and Swinneyf4g argue that among the
many different minima ofIsXi ,Xi+lagd, the sampling interval
should correspond to the first minimum ofIsXi ,Xi+lagd.

A specific application ofIsXi ,Xi+lagd calculations can oc-
cur when embedding dynamical data. In the simplest case, an
analysis based on embedded data begins with a scalar time
serieshXj. The elements ofhXj are then used to form an
m-dimensional sethZjPRm with the construction

Zj = sxj,xj+lag,xj+2lag,…xj+sm−1dlagd.

The analysis continues with the investigation of the geo-
metrical properties ofhZj. A crucial operational difficulty is
encountered when embedding finite observational data sets.
Embedding parametersm and lag must be chosen. Inappro-
priate choices ofm and lag can result in the spurious indica-
tion of structure in random dataf3g. Conversely an inappro-
priate specification can, in other cases, result in the
unnecessary failure to identify structures that are indeed
present in the time series. Several candidate criteria for se-
lectingm and lag have been proposed. An incomplete review
of the very large embedding criterion literature is given in
Cellucci,et al. f5g. Fraser and Swinneyf4g proposed that the
best value of lag to use in an embedding is given by the first
minimum of theIsXi ,Xi+lagd vs lag function. This proposal is
supported by Abarbanelf6g. To a limited degree the Fraser-
Swinney proposal was confirmed in a recent comparative
study of embedding criteriaf5g.

A third circumstance in which calculation of mutual in-
formation is important is in the characterization of causal
relationships between two time series. By definition, a corre-
lation measure, either linear or nonlinear, quantifies the de-
gree of correlation betweenhXj and hYj under their respec-
tive definitions, but correlation does not necessarily identify
causal relationships in the sense of identifying which vari-
able drives the other, if indeed such a relationship exists.
Historically the most commonly employed measure of cau-

TABLE I. Correlation analysis.

Pearsonr PearsonPnull SpearmanrS SpearmanPnull Kendall’s tau Kendall’sPnull IsX,Yd IsX,YdPnull

Normally distributed random20.0037 0.7112 20.0040 0.6854 0.0027 0.6845 0.1356 0.7851

Linearly correlated 0.9934 0 0.9936 0 0.9270 0 2.9186 0

Parabolically correlated 0.0001 0.9912 ,10−4 0.9928 ,10−5 0.9989 3.0304 0

FIG. 1. Data sets used in the correlation study of Table I. In each
case,x varies from −3 to +3 in steps of 0.0006.sAd yi =«i, a nor-
mally distributed random variable with zero mean and unit vari-
ance.sBd yi =xi +0.2«i. sCd yi =xi

2+0.2«i.
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sality in economics research is Granger causalityf7,8g which
is based on the construction of bivariate autoregressive pro-
cesses. A complementary procedure for the investigation of
causal relationships can be constructed by examining de-
layed mutual information functions. Stated informally, if a
measurement of variablex can predict the future ofy more
effectively than measurement ofy can predictx, then, in that
limited sense, in an isolated system variablex can be said to
drive variabley. Xu et al. f9g describeIsXi ,Yi+td as the rate
of information transmission from variablex to variabley at a
delay oft. Several investigators have used this technique to
assess the time dependence of between channel information
transfer in multichannel EEGsf9–13g. Significant limitations
of causality measures based on lagged mutual information
have been identified by Schreiberf14g. He argues, in our
view correctly, that “time delayed mutual information fails to
distinguish between information that is exchanged from
shared information due to common history and inputs.” He
addresses these limitations with the construction of a transfer
entropy.

II. CALCULATING I „X ,Y… WITH A UNIFORM PARTITION
OF THE XY PLANE

Let hXj=hx1,x2,x3…xND
j and hYj=hy1,y2,y3…yND

j be
time series of equal length. Suppose that the distributions of
X andY, PXsid andPYs jd are approximated by histograms of
NX and NY elements that uniformly divide the range
xmin–xmax and ymin–ymax. It is not necessary forNX to be
equal to NY. Let OXYsi , jd denote the occupancy of the
si , jdth element of the partition of theXY plane that extends
from xmin to xmax on theX axis sNX equal elementsd and from
ymin to ymax on theY axis sNY equal elementsd. PXYsi , jd is
determined by normalizing the occupancy against the num-
ber of paired observations;PXYsi , jd=OXYsi , jd /ND. The joint
probability distribution,PXYsi , jd, hasNXNY values, many of
which may be zero. A discrete approximation ofIsX,Yd is
computed using the following relationf1g:

IsX,Yd = o
i=1

NX

o
j=1

NY

PXYsi, jdlog2H PXYsi, jd
PXsidPYs jdJ , s1d

where there is no contribution to the sum ifPXYsi , jd is equal
to zero.

While easy to implement, this procedure for estimating
mutual information contains a serious deficiency. The calcu-
lation will be sensitive to the choice ofNX andNY. An ex-
ample is shown in Fig. 2.IsXi ,Xi+lagd is plotted as a function
of lag, for data generated by the Lorenz system,

dx/dt = ssx − yd,

dy/dt = − xz+ rx − y,

dz/dt = xy− bz,

wheres=10, b=8/3, andr =28. Ten thousand values of the
x variable of the Lorenz system were used in calculations
where the number of bins in the distribution histogram is the

same for both variables.NX =NY =Nelements. equally sized el-
ements partition each axis. In these calculations, a well char-
acterized minimum ofIsXi ,Xi+lagd appears at lag=18 when
Nelements=50. However, as the diagram indicates, this mini-
mum is lost if other values ofNelementsare used. Since the
location of the first minimum of theIsXi ,Xi+lagd vs lag is
frequently the object of a mutual information calculation,
this result argues against the common practice of selecting
NX andNY arbitrarily.

The preceding example indicates that the value of mutual
information can be sensitive to the number of elements used
when a uniform partition of theXY plane is implemented.
We must therefore address the question what is the optimal
number of elements? This is a restatement of the histogram
problem in the specific context of mutual information calcu-
lations. The histogram problem is: given a scalar data setX
=hx1,x2,…xnj, how many elements should be used to con-
struct a histogram ofX? If there are too many elements, each
element has an occupancy of 0 or 1 and fails to identify the
distribution ofX in a meaningful way. Similarly, if there are
only a small number of elementssconsider the limiting case
of a single elementd, the structure of the distribution cannot
be discerned. A successful answer therefore lies at an inter-
mediate value. The histogram problem has a long history and
has been examined by several investigatorsf15–17g.

Tukey f17g suggested thatn1/2, wheren is the number of
observations, is the best choice. Bendat and Piersolf15g rec-
ommended 1.87sn−1d0.4. A systematic theoretical develop-
ment of the question is given by Rissanenf18g. Rissanen
uses a minimum description length argument to conclude
that the optimal value of the number of elements to use in a
histogram is the value ofm, mopt, that gives a minimum
value of the stochastic complexity,Fsmd,

Fsmd = n log2S R

mD
D + log2S n

n1,…,nm
D + log2Sn + m− 1

n
D .

n is the number of data points in setX. R is the range of
X,R=xmax−xmin. m is the number of elements in a uniform
partition. D is the resolution of the measurement ofx, and

FIG. 2. IsXi ,Xi+lagd as a function of lag. Ten thousand consecu-
tive values of the Lorenzx variable were used. In the case of the top
curve,Nelements=50. The value ofNelementsdecrease in steps of 10 to
the lower curve whereNelements=10.
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n1, n2, …nm are the occupancies of each element in the par-
tition. The multinomial coefficient is

S n

n1,…,nm
D =

n!

n1 ! n2 ! …nm!

and the binomial coefficient is

Sn + m− 1

n
D =

sn + m− 1d!
n ! sm− 1d!

.

The value ofD only shifts the function by an additive con-
stant. It will not affect the value ofmopt. If the only object of
the calculation is to determinemopt,D can be set equal to 1.
Base two logarithms are used throughout the development in
Rissanen, but again if the sole object is a determination of
mopt, the choice of base is immaterial.

FsMd was calculated using the Lorenz data used to con-
struct Fig. 2 A minimum was obtained atMopt=32. Using
this value for the number of elements in the uniform partition
of the X and Y axes in a calculation ofIsXi ,Xi+lagd gives a
mutual information versus lag function with a well charac-
terized first minimum at lag=21. This analysis would seem
therefore to provide a rational procedure for calculating
IsX,Yd. Application to the Rössler equations, however, raises
additional questions. The Rössler equations used in the next
calculations were

dx/dt = − y − z,

dy/dt = x + 0.2y,

dz/dt = 0.4 +xz− 5.7z.

Using x-axis data generated by this system, a calculation of
the RissanenFsMd gives a minimum atM =40. A 40-element
partition of each axis was used in the subsequent calculations
of mutual information as a function of lag forx-, y-, and
z-variable data. The resulting mutual information versus lag
functions are shown in Fig. 3. It is seen that whilex-axis and
y-axis data give functions with first minima that are roughly

coincident, the function obtained withz-axis data is very
different.

The cause of the differences in thez-variable mutual in-
formation function in Fig. 3 can be identified by examining a
three-dimensional construction of the trajectory using all
three variablessFig. 4d. The activity of the Rössler system is
confined predominantly to thez<0 plane. At irregular, cha-
otic intervals there is an abrupt excursion into thez.0 do-
main. An examination of the histograms formed withx, y,
andz datasFig. 5d shows that while thex and y values are
approximately uniformly distributed, most of the activity of
thez variable is confined tof0,0.375g even though the maxi-
mum value ofz is approximately 15.

The value of optimal lag produced by the mutual infor-
mation functions of Fig. 3 are lag=13, 16, and 48 forx, y,
andz, respectively. Should we expect the values of optimal
embedding lag to be the same for all three variables? While
it can be argued that there is noa prori reason to suppose
that they should be equal, there is a specific context in which
a disparity of optimal lag values is problematic. Thus far we
have considered embeddings based on a scalar variable
where Zj =sxj ,xj+lag,…xj+sm−1dlagd. However, in applications
with experimental data where multichannel recordings are
obtained, a multichannel embedding can be utilizedf19,20g.
In the specific case where variablesx, y, andz are recorded,
Zj becomesZj =sx1+sj−1dlag,y1+sj−1dlag,z1+sm−1dlagd. In applica-
tions of this type, a common value of lag is required. The
question then becomes, which value should be used?

A resolution of this difficulty, at least for the Rössler data
used here, can be found by re-examining the mutual infor-
mation versus lag calculations displayed in Fig. 3. A calcu-
lation of FsMd using data obtained from variablex gave a
value ofMopt=40. This value was used to specify the number
of elements in a uniform partition calculation of mutual in-
formation. The same number of elements was used in calcu-
lations withy andz data. This is inappropriate. WhenFsMd
is calculated with data from the other variables, a value of
Mopt=54 is obtained withy data, and a value ofMopt=852 is
obtained withz data. The highz value ofMopt can be under-
stood by examining the histogram in Fig. 5.sNote that the

FIG. 3. Mutual informationIsXi ,Xi+lagd as a function of lag for
Rössler data. A uniform partition of theXY plane was constructed
using 40 elements on each axis. 100 000 data points were used. The
top curve was obtained with variablex. The curve immediately
below it was constructed with variabley data. The lower curve was
calculated with variablez data.

FIG. 4. Three-dimensional construction of the Rössler attractor
using 10 000 pointx, y, andz vectors generated using the differen-
tial equation and parameter values specified in the text.
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range of the vertical axes of thex andz histograms differ by
a factor of 20.d The distribution of thex and y variables
between their respective maximum and minimum values is
approximately uniform. As previously observed, most activ-
ity of the z variable is confined tof0, 0.375g even though the
maximum value ofz is approximately 15. Because thez
distribution is so strongly nonuniform, a much higher num-
ber of partition elements are needed to recover the fine struc-
ture of that variable’s distribution.

Mutual information versus lag calculations were again
performed with a uniform partition algorithm. In contrast
with the calculations shown in Fig. 3, the results displayed in
Fig. 6 were obtained in calculations in which the number of
elements in each partition were determined by a minimum
description length argument, the minimum ofFsMd, that is
specific to each variable. When 852 elements are used to

partition each axis in the calculation withz data, the resulting
mutual information function is qualitatively similar to func-
tions obtained withx and y data. The optimal lags, the first
minimum of the mutual information versus lag function, for
x, y, andz are 13, 16, and 17, respectively.

The sensitivity of mutual information estimates to compu-
tational parameters identifies a compelling need for the sys-
tematic statistical validation of these calculations. This re-
quirement motivated the construction of the algorithm
described in Sec. III and IV.

III. STATISTICAL ASSESSMENT OF I „X ,Y…
CALCULATIONS

The results with Rössler data suggest that the calculation
of mutual information using a uniform partition can produce
misleading conclusions. An alternative to uniform partition-
ing should therefore be sought. An additional and arguably
more important issue should also be addressed. The calcula-
tions of mutual information should be constructed on a sound
statistical foundation. When computingIsX,Yd we should in-
corporate a statistical test of the confidence of our rejection
of the null hypothesis thatX andY are statistically indepen-
dent. IsX,Yd=0 if X and Y are statistically independent. In
practice, we wish to know if a computed nonzero value of
IsX,Yd is statistically significant. Therefore, given time series
X andY, our object is to assess the null hypothesis thatX and
Y are statistically independent.

The null hypothesis of statistical independence can be ad-
dressed in the following manner. Suppose that the distribu-
tions of variablesX andY are approximated by histograms of
NX andNY elements. In most applicationsNX =NY, but this is
not required.OXsid is the observed occupation number of the
ith bin of the variableX histogram.OYs jd is assigned analo-
gously.OXYsi , jd is the observed occupation number of ele-
ment i , j of the XY partition. EXYsi , jd is the expected occu-
pancy of element i , j of the XY partition given the

FIG. 5. Histograms constructed with Rössler
data. The histograms were formed with the
10 000 points used to construct the three-
dimensional attractor of Fig. 4.X data were used
to construct the top histogram.Y data were used
to construct the middle histogram, and the bottom
histogram displaysZ data. Note that the ranges of
the vertical axes are different.

FIG. 6. Mutual informationIsXi ,Xi+lagd as a function of lag for
the Rössler data. In the case of variablex data, a uniform partition
of the XY plane was constructed using 40 elements on each axis.
For the variabley data, 54 elements were used on each axis, and for
the variablez data 852 elements were used on each axis. 100 000
data points were used in each calculation. Identifying at lag=35, the
top curve corresponds to variabley, the second curve corresponds
to variablex, and the lowest curve to variablez.

STATISTICAL VALIDATION OF MUTUAL … PHYSICAL REVIEW E 71, 066208s2005d

066208-5



assumption thatX andY are statistically independent

EXYsi, jd = NDPXsidPYs jd = NDHOXsid
ND

JHOYs jd
ND

J
=

OXsidOYs jd
ND

,

whereND is the number ofx,y pairs.
Following conventional statistical practicef21,22g, we re-

quire EXYsi , jdù1 for all elements of the partition and
EXYsi , jdù5 for at least 80% of these elementssthe
“Cochran criterion”d. The value ofx2 is

x2 = o
i=1

NX

o
j=1

NY hOXYsi, jd − EXYsi, jdj2

EXYsi, jd
.

The conditionEXYsi , jdù1 for all values ofi , j ensures that
x2 is well behaved. In addition tox2,n, the number of de-
grees of freedom, is also computed,

n = sNX − 1dsNY − 1d.

Using x2 and n, the probability of the statistical indepen-
dence null hypothesis is computed,

Pnull = probability of the null hypothesis =QSn

2
,
x2

2
D .

Q is the incomplete gamma function,

Qsx,yd = 1 −
1

GsxdE0

y

e−ttx−1dt =
1

GsxdEy

`

e−ttx−1dt Gsxd

=E
0

`

e−ttx−1dt.

IV. CALCULATION OF I „X ,Y… USING AN ADAPTIVE XY
PARTITION

As previously outlined, we propose that calculation of
mutual information should be statistically validated by appli-
cation of ax2 test of the null hypothesis of statistical inde-
pendence. Additionally, the partition of theXY plane, which
is used to calculate the joint probability distributionPXY,
should satisfy the Cochran criterion on the expectanciesEXY.
In the following algorithm, we use the expectation criterion
to construct a nonuniformXY partition. This procedure has
two advantages over the use of a naïve uniform partition.
First, it reduces sensitivity to outlying values ofX and Y.
Second, it provides an approximation of the highest partition
resolution consistent with the expectation criterion.

Let ND denote the number ofX, Y pairs.NX is the number
of elements used in the partition of thex axis. NY is the
number of elements used to partition they axis. For this
implementation of the algorithm,NX and NY are equal and
denoted by the number of elementsNE. NE is determined by
the following procedure: after determiningxmin andxmax, the
x axis is partitioned intoNE elements so that there is an equal
occupancy in each element. This partition is nonuniform in

the sense that the widths of each element are adjusted indi-
vidually in order to meet the requirement of uniform occu-
pancy. LetPXsid denote the probability ofX’s membership in
the ith element of thex axis partition. We have

PXsid = 1/NE.

Similarly, after determiningymin andymax, the y axis is par-
titioned intoNE elements so that there is an equal number of
occupants in eachy axis element,

PYs jd = 1/NE.

Under the null hypothesis of statistical independence, the
expected occupancy of thesi , jdth element of the partition of
the XY plane is

EXYsi, jd = NDPXsidPYs jd =
ND

NE
2 .

NE is determined by finding the largest possible value that
givesEXYsi , jdù5 for all elements of theXY partition. This
criterion is therefore more conservative than the Cochran
f21g criterion that requiresEXY to be greater than five in at
least 80% of the elements.NE is the greatest integer such that

NE ø SND

5
D1/2

.

PXYsi , jd is calculated using this partition. Mutual informa-
tion is calculated with Eq.s1d. x2 andPnull are calculated as
previously described. IfND is exactly divisible byNE, then
the formula for mutual information simplifies and becomes

IsX,Yd = o
i=1

NE

o
j=1

NE

PXYsi, jdlnhNE
2PXYsi, jdj.

However, whenND is not a multiple ofNE, elements of thex
axis andy axis partitions do not have exactly identical prob-
abilities equal to 1/NE, and the preceding formula should be
used. If the Cochran expectation criterion is satisfiedsand by
construction it will bed and the null hypothesis is not re-
jected, then, to the extent that can be determined by calcula-
tions with this algorithm, the two data sets are statistically
independent. Under these conditions, reporting a nonzero
value of mutual information cannot be justified. Therefore, in
cases where the null hypothesis is not rejected, the algorithm
returnsIsX,Yd=0 rather than the numerical value produced
by the formula. This practice incorporates a conservative un-
derstanding of statistical significance. As an alternative, the
numerical value of mutual information obtained from the
algorithm and its uncertainty can be reported.

The application of this procedure to the Rössler data is
shown in Fig. 7. In contrast with the results of Fig. 3, which
were obtained with a uniform partition, it is seen that the first
minimum of the mutual information versus lag functions ob-
tained withx-, y-, andz-variable data approximately coincide
when the adaptive partition is used. The probability of the
null hypothesis was calculated for each value of lag. With
these data,Pnull was found to be numerically indistinguish-
able from zero for each value of lag. Since the data setY
used in these calculations ofIsX,Yd is a lagged version of
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data setX, this rejection of the null hypothesis is anticipated.
Suppose that time seriesX is transformed by a monotone

increasing functionhX wherehX may be nonlinear. Similarly
suppose that time series Y is transformed by a monotone
increasing functionhY. The adaptive partition algorithm for
calculating mutual information is then applied to calculate
I(hXsXd , hYsYd). These transforms are monotonic. Therefore
while the values are changed, the relative ordering of ele-
ments in the time series are invariant. When the algorithm is
applied, the location of the boundaries of axis partitions will
be shifted but the occupancies of each element will be un-
changed, that is,PXsid, PYs jd, and PXYsi , jd are unchanged.
Therefore the value of mutual information is unchanged.
This is summarized in the following result.

Theorem. Let X andY be time series of equal length. Let
hX and hY be monotone increasing functions. If mutual in-
formation is calculated using the adaptive partition algo-
rithm, then

IsX,Yd = IshXsXd,hYsYdd.

V. FRASER-SWINNEY ALGORITHM

Fraser and Swinneyf4,23g have constructed an alternative
adaptive partition algorithm for calculating mutual informa-
tion. As in the case of the previous algorithm, the calculation
is directed to an estimate of the discrete form of the mutual
information integral given in Eq.s1d. Numerical approxima-
tion of the joint probability distributionPXY constitutes the
most demanding element of the computation. The Fraser-
Swinney algorithmf4g does this by constructing a locally
adaptive partition of theXY planessee Fig. 8d.

As a preliminary exercise leading to the construction of
the algorithm, consider a sequence of partitions
G0, G1, G2, … , Gm. Each partition is a grid of 4m elements
generated by dividing theX andY axis into 2m equiprobable
elements, that is the boundaries on theX and Y axis are
positioned so thatPX =PY =1/2m for each element of the
partition. G0 is the entireXY plane.RmsKmd denotes an ele-
ment of the partitionGm.

A finer partition is used in areas of theXY plane where
PXY has nonuniform structure. For the hypothetical example
in the diagram,PXY is deemed to be approximately uniform
on R1s2d and R1s3d. The partitioning terminates with these
elements. In contrast,R1s1d and R1s4d have locally nonuni-
form joint distributions and are partitioned. In this example,
partitioning terminates at theG2 level with the exception of
elementR2s4,2d, which has a nonuniform joint distribution
and is partitioned into four G3 elements,
R3s4,2,1d–R3s4,2,4d. The partitioning continues until the
local joint distributionPXY is approximately uniform.

In the case wherePXY is exactly uniform onRmsKmd,
Fraser and Swinneyf4g show that dividing the partition ele-
ment into four subdivisions will have no effect on the con-
tribution to mutual information obtained from that element.
Terminating the partitioning process at levelGm is therefore
justified in this case. As a practical matter, however, it is
necessary to establish a criterion that can be used to termi-
nate the partitioning process for some specific element
RmsKmd whenPXY is nearly, but not exactly, uniform on that
element. In their paper, Fraser and Swinney construct a test
for uniformity that uses ax2 test to examine structure on
both them+1 andm+2 generation partition ofRmsKmd. Let
N=NsRmsKmdd denote the number ofXY pairs in element
RmsKmd. Using analogous notation for the subdivisions, let
ai =N(Rm+1sKm, id) and let bi,j =N(Rm+2sKm, i , jd). By the
Fraser and Swinney criterion,PXY will be deemed to be ef-
fectively uniform on RmsKmd and the partitioning process
will be terminated on that element if bothx3

2,1.547 and
x15

2 ,1.287, where

x3
2 =H16

9
S 1

N
Do

i=1

4

sai − N/4d2J ,

x15
2 =H256

225
S 1

N
Do

i=1

4

o
j=1

4

sbi,j − N/4d2J .

It should be noted that while the Fraser-Swinney algo-
rithm uses ax2 criterion to control subdivisions of theXY
plane locally, it does not, in contrast with the algorithm of
the previous section, provide a global statistical assessment
of an IsX,Yd calculation that includes the probability of the

FIG. 7. Mutual information as a function of lag using Rössler
data. Mutual information was calculated using an adaptive partition
algorithm. The data used in Fig. 3 were used in these calculations.
Ndata=100 000. Viewed at lag=18, the curves from thex, y, andz
variables have the top-down order ofx–z–y.

FIG. 8. Illustrative example of the adaptive partition employed
by the Fraser-Swinney algorithm. In this hypothetical example, the
substructure of elementsR1s2d andR1s3d is approximately uniform
and these elements are therefore not partitioned. ElementsR1s1d,
R1s4d, and R2s4,2d are partitioned into subelements because they
meet the criterion for the presence of smaller scale structure.
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null hypothesis of statistical independence. The code imple-
menting their algorithm distributed by Fraser and Swinney
departs from the partition termination criterion outlined in
the text of their paper. In their code, the probe for structure is
conducted at only one sublevel and the partitioning process
is terminated ifx3

2,1.547. Fraser’s restatement of the algo-
rithm in binary representation and the generalization to em-
bedded data are summarized in Appendix B.

Results obtained when our implementation of the Fraser-
Swinney algorithm with a single-level partition termination
criterion ofx3

2,1.547 was applied to the Rössler data of Fig.
3 are shown in Fig. 9. In our implementation, as in the case
of the Fraser-Swinney code, the length of data setsX andY
must be a power of 2. Visual comparison of the results ob-
tained with the Fraser-Swinney algorithm andNdata=65 536
sFig. 9d with the results obtained with the algorithm of Sec.
IV and Ndata=100 000 suggests that similar results were ob-
tained. This point is emphasized in Fig. 10 which shows that

superposition of the results obtained whenNdata=65 536 for
both algorithms. The values of lag corresponding to the first
minimum of the mutual information versus lag function ob-
tained with the two algorithms are either equal or differ by 1.
The average difference in the value of mutual information is
less than 4%.

We now have two candidate procedures for calculating
IsX,Yd, the Fraser-Swinney algorithm and the globally adap-
tive partition algorithm presented in Sec. IV. A procedure for
comparing the two methods is constructed in the next sec-
tion.

VI. COMPARING ALGORITHMS

In the previous sections, two procedures for computing
mutual information were presented. They are compared in
this section. Two properties, accuracy and speed, are exam-
ined. A comparison of accuracy requires example cases
where the true value of mutual information is known to a
high accuracy. This can be provided by jointly Gaussian data
sets. Two data sets are said to be jointly Gaussian if their
joint probability density function centered atsmx ,myd has the
form

PXYsx,yd =
1

2psxsys1 − r2d1/2expH − 1

2s1 − r2dFSx − mx

sx
D2

− 2rSx − mx

sx
DSy − my

sy
D + Sy − my

sy
D2GJ .

mx andsx are the mean and standard deviation of time series
hXj. my andsy are defined analogously forhYj, andr is the
cross-correlation coefficient betweenhXj and hYj. For the
case of jointly Gaussian data sets, the mutual information is
analytically related to the correlation coefficient by

FIG. 9. Mutual information as a function of lag using the
Rössler data of Fig. 3. Mutual information was calculated using the
Fraser-Swinney algorithm whenND=65 536. Viewed at lag=18, the
curves from thex, y, and z variables have the top-down order of
x–z–y.

FIG. 10. Direct comparison of results ob-
tained with the algorithm of Sec. IV and the
Fraser-Swinney algorithm using Rössler data of
Fig. 3.ND=65 536. For those values of lag where
the results of the two algorithms differ, the results
of the algorithm of Sec. IV are below the results
obtained with the Fraser-Swinney algorithm.
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IsX,Yd = − 0.5 lns1 − r2d.

A derivation of the relationship is given in Appendix A. The
construction of a procedure for generating jointly Gaussian
data sets with a specified correlation coefficient is also pre-
sented in that appendix.

Mutual information estimates obtained with the algorithm
of Sec. IV and with the Fraser-Swinney algorithm are com-
pared against −0.5 lns1−r2d for the case of jointly distributed
Gaussian data in Fig. 11. Ninety-nine values ofr, uniformly
distributed ons−1,1d were used in these calculations. For
each value ofr, 100 jointly distributedhXj , hYj data set pairs
of length 8192 were generated. The average value of mutual
information for these pairs was determined using both algo-
rithms. Multiple variants of each algorithm were used. The
irregular IsX,Yd vs r function seen in Fig. 11 was produced
using the Fraser-Swinney algorithm when the subpartitioning
process was terminated with the criterionx3

2,1.547. With
this criterion, an element of the partition is subdivided if the
probability of nonuniform substructure is greater than 27%.
This is the criterion implemented in their code. Calculations
were also performed usingx3

2,5.000. This criterion results
in the subdivision of an element of the partition only if the
probability of nonuniform substructure is at least 80%. In
this case, the results were much closer to −0.5 lns1−r2d.
Three variants of the algorithm constructed in Sec. IV were
used. In the first instance, the number of elements in the
partition were chosen so thatEXYsi , jdù5 for all elements.
Recall thatEXYsi , jd is the expected occupancy in partition
element si , jd. Calculations also were performed with the
Sec. IV algorithm with EXYsi , jdù10 and with EXYsi , jd
ù15. In the case of the Sec. IV algorithm, the value
IsX,Yd=0 is returned whenever the null hypothesis of statis-
tical independence is not rejected with a confidence level of

at least 95%. This convention accounts for the transition to
IsX,Yd=0 in the vicinity of r =0 for IsX,Yd functions ob-
tained with this algorithm. Viewed atr =0.2 the top-down
ordering of the IsX,Yd vs r functions is sid the Fraser-
Swinney algorithm withx3

2,1.547,sii d the algorithm of Sec.
IV with EXYsi , jdù5, siii d the algorithm of Sec. IV with
EXYsi , jdù10, sivd the algorithm of Sec. IV withEXYsi , jd
ù15, svd the Fraser-Swinney algorithm withx3

2,5.000,svid
the analytical solution −0.5 lns1−r2d. The greatest numerical
value of IsX,Yd is obtained with the Fraser-Swinney algo-
rithm with a subdivision criterion ofx2,1.547. This pro-
duces the greatest value ofIsX,Yd because the comparatively
tolerant criterion of 27% introduces a numerical indication of
small scale structure in the datasand hence a greater value of
mutual informationd that may not be present. With the more
demanding criterion ofx2,5.000, a subdivision is intro-
duced only if there is at least an 80% probability of nonuni-
form substructure. With this criterion there is less divergence
between the algorithm-estimated value of mutual informa-
tion and the analytically computed value of −0.5 lns1−r2d.

Following Hamilton f24g, the following error measure
was calculated:

error =

o
i=1

99

„IsX,Ydanalytical− IsX,Ydalgorithm
…

2

o
i=1

99

„IsX,Ydanalytical
…

2

,

where IsX,Ydanalytical denotes the value obtained using
−0.5 lns1−r2d. The results are shown in Table II. It is seen
that the magnitude of the error is low with both algorithms.

In addition to providing an explicit assessment of the
probability of the null hypothesis of statistical independence,
the algorithm of Sec. IV offers an additional advantage over
the Fraser-Swinney algorithm. It is much faster. Comparison
of computation times with data sets of different lengths is
given in Table III. Both programs were run inMATLAB 6.5.0
sR13d on a Pentium 4 processor running at 2.53 GHz. The
computation times of the algorithm of Sec. IV are typically
on the order of 0.5% of the times required by the Fraser-
Swinney algorithm. In addition to being more accurate than
the x3

2,1.547 criterion, thex3
2,5.000 algorithm is faster

because it introduces fewer subdivisions.
An approximate understanding of the sensitivity of the

two algorithms to data set size can be obtained by examining
the results presented in Fig. 12. That diagram shows the mu-

TABLE II. Average normalized error in the estimation of mutual
information.

Algorithm Error

Algorithm of Sec. IVEXYsi , jdù5 1.91310−3

Algorithm of Sec. IVEXYsi , jdù10 1.55310−3

Algorithm of Sec. IVEXYsi , jdù15 3.15310−13

Fraser-Swinney algorithmx3
2,1.547 2.48310−1

Fraser-Swinney algorithmx3
2,5.000 0.97310−3

FIG. 11. Comparing the Fraser-Swinney algorithm, the algo-
rithm of Sec. IV, and −0.5 lns1−r2d for jointly distributed Gaussian
data. Ninety-nine values of correlationr uniformly distributed on
s−1,1d were used.ND=8192. For each value ofr, 100hXj , hYj data
set pairs were generated. The algorithm’s average value of mutual
information is displayed. Viewed atr =0.2 the top-down ordering of
the IsX,Yd vs r functions issid the Fraser-Swinney algorithm with
x3

2,1.547,sii d the algorithm of Sec. IV withEXYsi , jdù5, siii d the
algorithm of Sec. IV withEXYsi , jdù10, sivd the algorithm of Sec.
IV with EXYsi , jdù15, svd the Fraser-Swinney algorithm withx3

2

,5.000,svid the analytical solution −0.5 lns1−r2d.
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tual information versus lag functions obtained from a single
data set generated by the Rössler equationssx variable datad.
As already seen in Fig. 9, the results obtained whenND
=65 536 are almost identical. More substantive differences
are observed, however, when smaller data sets are used.
When ND is 4096 and 8192, the algorithm of Sec. IV pro-
duces output that is slightly less than, but largely parallel to,
the results obtained whenND=65 536. For this algorithm, the
value of lag giving the first minimum of mutual information
was the same for all values ofND tested. In contrast, when
ND=4096 and 8192, the Fraser-Swinney algorithm produces
mutual information versus lag functions that present struc-
tures that are lost when more data are incorporated into the
computations. In some instances, these structures can alter
the identification of the lag giving the minimum value of
mutual information.

VII. DISCUSSION

The Fraser-Swinney algorithm with thex3
2,5.000 crite-

rion outperforms that algorithm whenx3
2,1.547 is used both

in terms of accuracysTable IId and speedsTable IIId. A com-
parison of the Fraser-Swinney algorithm with thex3

2

,5.000 criterion against the algorithm of Sec. IV leads to
the following conclusions. First, the algorithm of Sec. IV has
a significant advantage over the Fraser-Swinney algorithm in

providing a global test of the statistical independence null
hypothesis. The Fraser-Swinney algorithm uses ax2 test lo-
cally to implement the partitioning protocol. It does not,
however, return an assessment of the statistical independence
of X and Y. Second, while the Fraser-Swinney algorithm is
more accurate with data sets whereND=8192sTable IId, the
results of Fig. 12 suggest that the Fraser-Swinney algorithm
requires large data sets even when thex3

2,5.000 criterion is
used. When smaller data sets are used the Fraser-Swinney
algorithm presents structures that disappear when more data
becomes available. If the object of the calculation is to use
Isxi ,xi+lagd functions to find the appropriate lag for embed-
ding, then these local minima could give misleading results.
Third, the algorithm of Sec. IV requires about 0.5% of the
calculation time required by the Fraser-Swinney algorithm.

Limitations of this study should be noted. Additional al-
gorithms could be considered. Following Silvermanf25g,
Moon et al. f26g have used kernel density estimators to cal-
culate probability densities. They argue that the resulting al-
gorithm outperforms the Fraser-Swinney algorithm. Moonet
al. also suggest that their algorithm can be improved by us-
ing K-d trees to partition the data. Caution must be exercised
when evaluating this suggestion. Our exploratory calcula-
tions have shown thatK-d tree partitions can be very sensi-
tive to initial conditions. This sensitivity is addressed by Bra-
dley and Fayyadf27g who published a procedure for

TABLE III. Comparative computation times for different algorithms.

Ndata Time algorithm of Sec. IVssecd Time Fraser-Swinney algorithmx3
2=1.547ssecd Time Fraser-Swinney algorithmx3

2=5.00ssecd

4096 1.3 266.2 185.2

8192 2.7 544.0 392.4

16384 5.0 1169.5 851.0

32768 9.3 2549.5 1898.5

65536 24.1 5940.5 4533.5

FIG. 12. Mutual information versus lag for
data sets of different sizes. Mutual information
versus lag was computed using both algorithms
for ND=4096, 8192, 16 384, 32 768, and 65 536.
The data were generated by the Rössler equa-
tions, andx-variable output was used in the cal-
culations. Functions calculated withND=65 536
are at the top of each set of curves. Functions
calculated withND=4096 are at the bottom of
each set of curves. The top set of curves was
calculated using the algorithm of Sec. IV. The
middle set of results was calculated using the
Fraser-Swinney algorithm withx2=1.547. The
results in the lowest panel were calculated with
the Fraser-Swinney algorithm andx2=5.000.

CELLUCCI, ALBANO, AND RAPP PHYSICAL REVIEW E71, 066208s2005d

066208-10



computing initial conditions based on a procedure for esti-
mating the modes of a distribution.

Instead of partitioning phase space as is done in the
algorithms discussed above, Pawelzik and Schusterf28g used
the first order correlation integral to calculate probability
densities and entropies. These entropies are then used to
calculate mutual information. We consider here appli-
cation of the technique to embedded time series data,
Xk=sxk ,xk+lag,xk+2lag,…xk+sm−1dlagd and Yk

=syk ,yk+lag,yk+2lag,…yk+sm−1dlagdk=1, … , N−m+1. Appli-
cation to scalar data is trivially obtained by taking the em-
bedding dimension, m, to be one forX and Y, and thus di-
mension 2 for the joint space. The density ofX in the
neighborhood ofXk is approximated by the first order corre-
lation integral,

pXk
srd =

1

NV − 1o
jÞk

Qsr − uXj − Xkud,

where Q is the Heaviside function,NV is the number of
embedding vectors, andr is the neighborhood size being
considered. This density differs from that used earlier be-
cause it counts the number of points in possibly overlapping
neighborhoods. The densities used in the algorithms dis-
cussed earlier involved nonoverlapping neighborhoods cre-
ated by the partitioning process. This leads to a slightly dif-
ferent expression for the entropy which, in this case, is given
by

HsX,rd = −
1

NV
o
k=1

N

ln pXk
srd.

In some implementations, finite sample corrections due to
Grassbergerf29g are included. The entropies of theY data as
well as the joint entropy are calculated similarly, and these
are used to obtain the mutual information from the relation
IsX,Yd=HsXd+HsYd−HsX,Yd.

Quian Quirogaet al. f30g used the Pawelzik-Schuster al-
gorithm with the Grassberger corrections in a study of syn-
chronization of rat electrocorticogramssECoGd. They stud-
ied three multichannel ECoG records in a rat model of
genetic absence epilepsy and compared activity between left
and right hemispheres. They concluded that except for mu-
tual information their linear and nonlinear measures provided
qualitatively similar results. The authors felt that the small
number of data pointssN=1000d was responsible for the
failure of mutual information to provide robust estimates of
interhemispheric synchronization. These data were re-
analyzed by Duckrow and Albanof31g using a modified
Fraser-Swinney algorithm. The data were embedded and in-
terleaved as described in Appendix B and the resulting bi-
nary representations were used as inputs in the Fraser-
Swinney algorithm. Using embedding dimensions from 1 to
10 and Lags from 1 to 30, the results consistently showed the
ranking that Quian Quirogaet al. found using other measures
of synchronization. Results obtained by Duckrow and Al-
bano using these data and a uniform partition algorithm
showed a behavior similar to that found by Quian Quiroga
when they used the Pawelzik-Schuster algorithm.

Yet another approach to calculating mutual information
has been published by Kilminsteret al. f32g who have shown
that the Radon transform can be used to estimate joint prob-
ability density functions which can then be used to estimate
mutual information. They argue that, in contrast with stan-
dard methods, this procedure preserves fractal structure.
Since completing this manuscript, our attention has been di-
rected to a valuable paper by Kraskov, Stögbauer, and Grass-
bergerf33g on estimating mutual information. The Kilmin-
steret al., Moon et al., and Kraskovet al. algorithms could
be compared against the Fraser-Swinney algorithm and the
algorithm of Sec. IV in an expanded study.
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APPENDIX A: JOINTLY GAUSSIAN DATA SETS AND THE
MUTUAL INFORMATION OF JOINTLY GAUSSIAN

DATA SET PAIRS

We construct here a procedure for generating jointly
Gaussian data setshY1j and hY2j from two independent
Gaussian data setshX1j andhX2j. This is followed by a dem-
onstration showing that the mutual information of two jointly
Gaussian data sets with a cross-correlation coefficientr is
−0.5lns1−r2d.

For simplicity of presentation we consider the special case
of data sets that have zero mean and equal variance. The
procedure can be extended to the more general case. Let
hX1j=sx1

1,x2
1,x3

1,…xN
1 d and hX2j=sx1

2,x2
2,x3

2,…xN
2 d be Gauss-

ian distributed with zero mean and the same variances2. It is
further assumed that they are uncorrelated, that is, their
cross-correlation coefficientr is equal to zero. Given the as-
sumption of zero correlation, their joint probability distribu-
tion is the product of their individual probability distribu-
tions,

PX1X2sx1,x2d =
1

2ps2exph− fsx1d2 + sx2d2g/2s2j

=
1

2puoxu1/2expH− xTo
X

−1

x/2J ,

whereox is the sX1,X2d covariance matrix,
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o
x

= Ss2 0

0 s2D .

Two data sets hY1j=sy1
1,y2

1,y3
1,…yN

1 d and hY2j
=sy1

2,y2
2,y3

2,…yN
2 d with zero means, equal variances2, and

cross-correlationr are jointly Gaussian if their joint probabil-
ity density function is

PY1Y2sy1,y2d =
1

2puoyu1/2exph− yToy
−1y/2j.

oy is the sY1,Y2d covariance matrix,

o
Y

= s2S1 r

r 1
Ds1 − r2d1/2, o

Y

−1

=
1

s1 − r2ds2S 1 − r

− r 1
D ,

Uo
Y
U1/2

= s2s1 − r2d1/2. sA1d

Matrix A is a two-dimensional linear transformation relating
hX1j and hX2j, independent Gaussian random variables, to
hY1j and hY2j, jointly distributed Gaussian variables,

Sxj
1

xj
2D = ASyj

1

yj
2D .

Let A be given by

A = Sa b

c d
D .

Using this representation forA, the relationship,x=Ay, and
the expression foroY

−1 above makes it possible to solve forb,
c, andd in terms ofa andr. There are an infinity ofA’s that
depend on the choice ofa. We use here the simplest case,
a=1,

A = 1 1 0

r
Î1 − r2

− 1
Î1 − r2 2, A−1 = S1 0

r − Î1 − r2D .

In the next step, we need to establish the relationship cited
in the text between mutual informationIsY1,Y2d and r, the
cross-correlation coefficient. In this derivation, we use the
property thathY1j and hY2j are jointly distributed, have cor-
relation r, and are related to independent Gaussian data sets
hX1j andhX2j by linear transformationA. The derivation be-
gins with the integral representation for mutual information
expressed in terms of the joint and individual probability
density functions. The integrals are taken from −` to +`,

IsY1,Y2d =
/

PY1Y2sy1,y2dlnH PY1Y2sy1,y2d

PY1sy1dPY2sy2dJdy1dy2.

By construction,Y1 and Y2 are jointly Gaussian with equal
variances.Y1 and Y2 are Gaussian distributed, giving the
following expression for mutual information:

IsY1,Y2d =
/

e−yToY
−1y/2

2puoYu1/2ln5 e−yToY
−1y/2

2puoYu1/2

e−sy1d2/2s2

Î2ps2

e−sy2d2/2s2

Î2ps2
6dy1dy2.

Given the previously stated expression foruoYu1/2, and the
relationship betweenx and y, we can transform this into
integrals overx1 andx2:

IsY1,Y2d

=
/

e−xTx/2s2

2ps2 lnH e−xTx/2s2

e−sy1d2/2s2
e−sy2d2/2s2

s1 − r2d1/2Jdx1dx2

which can be simplified to

IsY1,Y2d =
/

exTx/2s2

2ps2 H 1

2s2fr2sx1d2 − r2sx2d2 − 2rÎ1 − r2x1x2g

− lnÎ1 − r2Jdx1dx2.

Consider the integral

/

e−xTx/2s2

2ps2 H 1

2s2fr2sx1d2 − r2sx2d2gJdx1dx2.

The two terms are of equal magnitude and opposite sign, and
the double integral is therefore equal to zero. Similarly con-
sider

/

e−xTx/2s2

2ps2 H 1

2s2s− 2rÎ1 − r2x1x2dJdx1dx2.

Each integral is of an odd function over the range −`–+`
and is therefore equal to zero. The integral for mutual infor-
mation simplifies to

IsY1,Y2d = −
/

e−xTx/2s2

2ps2 hlnÎ1 − r2jdx1dx2.

Using

E
−`

+`

e−z2/2s2
= s2pd1/2s

gives

IsY1,Y2d = − lnÎ1 − r2 = −
1

2
lns1 − r2d.

APPENDIX B: BINARY REPRESENTATION OF XY
PARTITIONING AND GENERALIZATION

TO EMBEDDED DATA

Section V discussed the local adaptive partitioning used
by Fraser and Swinney to calculate mutual information. The
space being partitioned is that of the joint distribution ofX
=hx1,x2,…xNj and Y=hy1,y2,…yNj, a subset of theXY
plane which may be considered a two-dimensional embed-
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ding space whose elements aresxi ,yid , i =1,2,…N. The fol-
lowing steps are used to implement the procedure:

1. Let the number of elements of bothX and Y be N
=2n sthe binary logic of the algorithm requiresN=2nd.

2. Rank order bothX andY with no repeated elements so
that they both map to permutations of the integers 0, 1,…,
2n−1. To avoid repeated elements, one may assign higher
ranks to numbers appearing earlier in the series. Call these
rank-ordered listsXR=hX1

R,x2
R,…xN

Rj andYR=hy1
R,y2

R,…yN
Rj.

XR andYR are equiprobable.
3. Transform the elements ofXR to binary. Since the 0

øxk
Rø2n−1, these binary representations have at mostn

bits, i.e.,xk
R=ak

n−1ak
n−2…ak

0. Here,ak
n−1 is the most significant

bit of xk
R, ak

n−2 the second most significant, etc. Perform the
same transformation on the elements ofYR to get yk

R

=bk
n−1bk

n−2
¯bk

0.
4. Interleave the bits ofxk

R andyk
R to get

zk
R = sak

n−1bk
n−1ak

n−2bk
n−1

¯ ak
0bk

0d. sB1d

The two left-most elements ofzk
R are the most significant bits

of xk
R and yk

R, respectively, the next two are the next most
significant bits, etc. For example, supposesxk

R,yk
Rd=s5, 47d.

Then, using the binary representations, 5=000101 and 47
=101111, theinterleaved representation ofsxk

R,yk
Rd is

sxk
R,yk

Rd ⇒ zk
R = s010001110111d.

A crucial advantage of this representation derives from
the observation that the successive bit pairs provide a tree
representation for the location ofsxk

R,yk
Rd in the two-

dimensional embedding space. To see this, label the axes of a
two-dimensional embedding space byx and y and consider
the region 0øx, yø25−1. If this region is subdivided into
four quadrants as in Fig. 13sad, then the bottom-left quadrant
contains all those vectors with six-bity’s whose most signifi-
cant bits are 0 and withy’s whose most significant bits are
also zero, the bottom-right quadrant contains all thosex’s
whose most significant bits are 1 and thosey’s whose most
significant bits are 0, etc. The location of any interleaved
point in this subdivision is thus labeled by its first two ele-
ments; thesxk

R,yk
Rd in our example is in quadrant 01. If this

quadrant is again subdivided into four, the next two bits ofzk
R

specify its location in the new subdivisionfFig. 13sbdg, and
so on.

The technique of interleaving may also be used to imple-
ment time-delay embedding. Consider them-dimensional
embedding ofX with a specified lag

X = sxk,xk+lag,xk+2lag,…xk+sm−1dlagd.

Using the notation of Eq.s1d, them-dimensional embedding
vectorXk may be represented as

Xk → uk = sak
n−1ak+lag

n−1
¯ ak+sk−1dlag

n−1 d

3sak
n−2ak+lag

n−2
¯ ak+sk−1dlag

n−2 d ¯ sak
0ak+lag

0
¯ ak+sm−1dlag

0 d,

sB2d

a number that uniquely representsXk. A similar embedding
and interleaving ofY gives

Y = syk,yk+lag,yk+2 Lg,…yk+sm−1dlagd

and

Yk → vk = sbk
n−1bk+lag

n−1
¯ bk+sk−1dlag

n−1 d

3sbk
n−2bk+lag

n−2
¯ bk+sk−1dlag

n−2 d ¯ sbk
0bk+lag

0
¯ bk+sm−1dlag

0 d

The interleaved sets,hukj andhvkj, each consists of 2n num-
bers, each number specified byn3m bits. To calculate the
mutual information ofX andY, hukj and hvkj are converted
to decimal and used as inputs in either the Fraser-Swinney
algorithm or the algorithm of Sec. IV.
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