
Bryn Mawr College Bryn Mawr College

Scholarship, Research, and Creative Work at Bryn Mawr College Scholarship, Research, and Creative Work at Bryn Mawr College

Computer Science Faculty Research and
Scholarship Computer Science

Spring 2009

The Pyro toolkit for AI and robotics The Pyro toolkit for AI and robotics

Doug Blank
Bryn Mawr College, dblank@brynmawr.edu

Deepak Kumar
Bryn Mawr College, dkumar@brynmawr.edu

Lisa Meeden

Holly Yanco

Follow this and additional works at: https://repository.brynmawr.edu/compsci_pubs

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Citation Citation
Blank, D.S., Kumar, D., Meeden, L., and Yanco, H. (2005) The Pyro toolkit for AI and robotics. AI Magzine
27.1: 39-50.

This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College.
https://repository.brynmawr.edu/compsci_pubs/49

For more information, please contact repository@brynmawr.edu.

https://repository.brynmawr.edu/
https://repository.brynmawr.edu/compsci_pubs
https://repository.brynmawr.edu/compsci_pubs
https://repository.brynmawr.edu/compsci
https://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/open-access-feedback.html
https://repository.brynmawr.edu/compsci_pubs/49
mailto:repository@brynmawr.edu

The Pyro toolkit for AI and robotics

Douglas Blank
Computer Science
Bryn Mawr College

Bryn Mawr, PA 19010
dblank@cs.brynmawr.edu

Deepak Kumar
Computer Science
Bryn Mawr College

Bryn Mawr, PA 19010
dkumar@cs.brynmawr.edu

Lisa Meeden
Computer Science

Swarthmore College
Swarthmore, PA 19081

meeden@cs.swarthmore.edu

Holly Yanco
Computer Science

Univ. of Mass. Lowell
Lowell, MA 01854
holly@cs.uml.edu

Abstract

This article introduces Pyro, an open-source python
robotics toolkit for exploring topics in AI and robotics.
We present key abstractions that allow Pyro controllers
to run unchanged on a variety of real and simulated
robots. We demonstrate Pyro’s use in a set of curric-
ular modules. We then describe how Pyro can pro-
vide a smooth transition for the student from symbolic
agents to real-world robots, which significantly reduces
the cost of learning to use robots. Finally we show how
Pyro has been successfully integrated into existing AI
and robotics courses.

Keywords: AI education, robotics, python, inte-
grated programming environment, toolkit

Introduction

In this article we present Pyro, an open-source, python-
based programming environment for exploring robotics
and artificial intelligence. Pyro, which stands for
Python Robotics, enables users to easily write sophis-
ticated AI programs in python to control a variety of
robots and agents. Pyro provides a high-level inter-
face to robots, relieving the user from low-level, robot-
specific details. Further, robot programs written in
Pyro can be used to control several different kinds of
robots without any modifications. Pyro has already
been successfully used in a number of undergraduate
and graduate-level AI courses at several different in-
stitutions. In this article, we will introduce Pyro as a
programming environment for teaching robotics and AI.
To find out more about the underlying design principles
and evolution of Pyro see Blank et al. (2005).

One of the main goals of Pyro is to reduce the cost
of learning to program robots and AI agents. The last
decade has seen a proliferation of mobile robot plat-
forms that has led to their introduction in undergrad-
uate and graduate-level AI curricula. However, each
robot comes with its own, often proprietary, program-
ming environment or API. Thus, the cost of learning to
program robots includes the overhead of learning the
specific robot’s programming paradigm, and, in many
cases, the programming environment. Despite the trend
towards low-cost robot platforms, this overhead serves

as a barrier against the pedagogical aims of learning
to build AI-based robot agents. Pyro solves this prob-
lem by introducing generic robot abstractions that are
uniform across a number of robot platforms (real and
simulated) regardless of their size or morphology. This
significantly reduces the cost of learning to program
robots and makes robotics more accessible to students.
Pyro’s abstractions, much like the abstractions pro-
vided in high-level programming languages, provide a
robot-independent programming interface so that pro-
grams, once written in Pyro, can control several differ-
ent kinds of robots using the same code. The current
version of Pyro supports the Khepera robot (Mondada,
Franzi, & Ienne 1993), the Pioneer robot (ActivMedia
2003), the Sony AIBO robot (Sony 2005), and dozens
of other robots in simulation.

All Pyro programs are written in the python pro-
gramming language. Python is a relatively new pro-
gramming language that is quite powerful and embodies
several modern programming paradigms. Yet it is an
easy programming language to learn for students and
instructors alike. One of the reasons Pyro was devel-
oped in python was to take advantage of the support
available in the language for the re-use of existing code.
This enables easy integration of existing robot APIs,
as well as existing libraries of AI code. For example,
any code written in C/C++ can be used from within
python code. We have taken advantage of this feature
to integrate several existing robot APIs as well as exist-
ing APIs for AI modeling (such as self-organizing maps,
and tools for image processing).

Pyro comes integrated with several existing robot
simulators (including Robocup Soccer (Group 2005),
Aria (ActivMedia 2003), Player/Stage (Gerkey,
Vaughan, & Howard 2003), and Gazebo, a newer 3D
simulator (Koenig & Howard 2004)). Figure 1 shows
Pyro running a wander program on a Pioneer robot in
the Gazebo simulator. Schools that do not currently
own robot platforms can still make use of Pyro by in-
troducing robot programming in their courses through
the use of the integrated simulators. Even when an
institution owns robots, simulators can be used by
students to effectively test and debug programs before
they are run on actual robots.

Figure 1: A view of Pyro controlling a Pioneer robot in the Gazebo simulator.

We have developed extensive materials that can be
used by instructors to teach robot programming to stu-
dents. The materials include beginner’s tutorials, ex-
amples of robot programming paradigms, and several
AI modules (such as neural networks and evolutionary
computation) that can also be used for doing advanced
research in AI. We are continuously adding more mod-
ules. Plans are already under way to integrate the AI
modules available in python from Russell and Norvig’s
AI text (Russell & Norvig 2002).

Pyro is an open source project. We are committed
to the inclusion of contributed materials and code that
enhances the functionality of Pyro. We are also com-
mitted to adding support for more robot platforms as
the robots and their APIs become available. Currently,
work is under way to integrate support for the low-cost
Hemisson robot (KTeam 2005), and also the ER1 robot
(Robotics 2005) platforms.

In what follows, we provide a quick first look at writ-
ing robot programs in Pyro. This is followed by an
overview of the curricular materials currently available
and a few more examples. Next we show how Pyro
can also be used to span topics in traditional AI to
those in robotics, and describe how Pyro has been inte-
grated into various courses at different institutions. We
will conclude by sketching possible future directions for
Pyro.

A Pyro example

In this section we present a simple wall-following pro-
gram to demonstrate the unified framework that Pyro
provides for using the same control program across
many different robot platforms. This type of basic con-

troller is an example of reactive control where the robot
maintains very limited state information and primarily
determines its actions based on its current sensor read-
ings. This form of control is normally the first control
method introduced to students learning robotics.

The program shown in Figure 2 is written in
an object-oriented style, and creates a class called
FollowBrain that inherits from a Pyro class called
Brain (Figure 2, line 2). A Pyro brain is required to
have a step method (line 5) that implements the deci-
sion procedure and is executed on every control cycle,
which occur about 10 times a second. A Pyro brain may
also have a setup method (line 3) that is called when
the brain is instantiated and can be used to initialize
class variables.

The brain shown in Figure 2 always tries to follow
walls on its left side. On each control step, it first
queries the range sensors on its front and left side (lines
6–9). If the front sensors indicate that the robot is
approaching something, then the robot turns right so
as to align its left side with the wall. Once it senses
that its left sensors are close enough to the wall, then
it sets its class variable self.follow to be true and
goes straight. When self.follow is true, the robot
makes small adjustments to try stay aligned with the
wall, which are based on readings from its front-left and
back-left range sensors. Otherwise, if the robot is not
sensing a wall on its left, it sets its class variable to false
and goes straight until it encounters a wall.

It is not crucial to understand all of the details of
this Pyro program; however, it is important it recognize
how Pyro’s abstractions are used to create a platform-
independent implementation. One of the key ideas un-

Figure 3: Two very different robot platforms, the tiny Khepera and the much larger Pioneer, for which the same
Pyro program from Figure 2 can be used for wall following.

1 from pyro.brain import Brain
2 class FollowBrain(Brain):
3 def setup(self):
4 self.follow = 0
5 def step(self):
6 f = self.robot.range.values(’front’)
7 fl= self.robot.range.values(’front-left’)
8 bl= self.robot.range.values(’back-left’)
9 l = self.robot.range.values(’left’)
10 if(min(f) < 0.5):
11 print "wall ahead, turn right"
12 self.robot.move(0, -0.2)
13 elif(self.follow and min(fl) < 0.55):
14 print "following, adjust right"
15 self.robot.move(0.2, -0.05)
16 elif(self.follow and min(bl) < 0.55):
17 print "following, adjust left"
18 self.robot.move(0.2, 0.05)
19 elif(min(l) < 0.9):
20 print "following"
21 self.follow = 1
22 self.robot.move(0.2, 0)
23 else:
24 print "looking for wall"
25 self.follow = 0
26 self.robot.move(0.5, 0.0)
27 def INIT(engine):
28 return FollowBrain(’FollowBrain’, engine)

Figure 2: A platform-independent wall-following pro-
gram in Pyro.

derlying the design of Pyro is the use of abstractions
that make the writing of basic robot behaviors inde-
pendent of the type, size, weight, and shape of a robot.
Consider writing a robot controller for wall-following
that would work on both a fifty pound, twenty-four
inch diameter Pioneer robot with sonar sensors and on
a three ounce, two inch diameter Khepera robot with
IR sensors. Figure 3 illustrates the vast difference in
size between the Khepera and the Pioneer robots. The
following key abstractions were essential in achieving
this.

Range Sensors: Regardless of the kind of hardware
used, IR, sonar, or laser, these sensors are categorized as
range sensors. Sensors that provide range information
can thus be abstracted and used in a control program.

Robot Units: Distance information provided by
range sensors varies depending on the kind of sensors
used. Some sensors provide specific range information,
like distance to an obstacle in meters or millimeters.
Others simply provide a numeric value where larger val-
ues correspond to open space and smaller values imply
nearby obstacles. In our abstractions, in addition to
the default units provided by the sensors, we have in-
troduced a new measure, a robot unit: 1 robot unit is
equivalent to the diameter of the robot being controlled.

Sensor Groups: Robot morphologies vary from
robot to robot. This also affects the way sensors, espe-
cially range sensors, are placed on a robot’s body. Ad-
ditionally, the number and positions of sensors present
also varies from platform to platform. For example,
a Pioneer3 has 16 sonar range sensors while a Khep-
era has 8 IR range sensors. In order to relieve a pro-
grammer from the burden of keeping track of the num-

ber and positions of sensors and their unique num-
bering scheme, we have created sensor groups: front,
left, front-left, etc. Thus, a programmer can sim-
ply query a robot to report its front-left sensors in robot
units. The values reported will work effectively on any
robot, of any size, with any kind of range sensor given
appropriate coverage, yet will be scaled to the specific
robot being used.

Motion Control: Regardless of the kind of drive
mechanism available on a robot, from a programmer’s
perspective, a robot should be able to move forward,
backward, turn, and/or perform a combination of these
motions. We have created the motion control ab-
straction: move(translate, rotate) where movements
are given in terms of turning and forward/backward
changes. This is designed to work even when a robot
has a different wheel organization or four legs (as with
the AIBO). As in the case of range sensor abstractions,
the values given to this command are independent of the
specific values expected by the actual motor drivers. A
programmer only specifies values in a range [-1.0,1.0].

The wall-following program in Figure 2 illustrates the
use of all of the above abstractions. Each case of the if
statement (starting on line 10) queries the robot’s range
sensors based on a specific sensor group and checks for
range values in terms of robot units. For example, the
robot will respond to obstacles in the front when they
are within half a robot unit and the robot is considered
to be following a wall when it is within 0.9 robot units
on its left side. In addition, each case of the if state-
ment uses the abstract move command to control the
robot’s next action.

This first glimpse of Pyro demonstrates how Pyro’s
abstractions allow students to focus on the robot’s be-
havior and relieves them from having to understand the
low-level details of the robot’s morphology and control
mechanisms. Even the very simple wall-following pro-
gram of Figure 2 offers an immediate opportunity to
connect to broader topics in AI, such as using machine
learning techniques to learn appropriate parameter set-
tings for the control parameters. The next section ex-
pands on such opportunities by giving an overview of
the curricular modules available within Pyro and pro-
vides several more examples of Pyro’s capabilities.

Curricular materials

The Pyro library includes several modules that enable
the exploration of robot control paradigms, robot learn-
ing, robot vision, localization and mapping, and multi-
agent robotics. Within robot control paradigms there
are several modules: sequential control using finite state
machines, subsumption architecture, and fuzzy logic
control. The learning modules provide an extensive cov-
erage of various kinds of artificial neural networks: feed-
forward networks, recurrent networks, self-organizing
maps, etc. Additionally we also have modules for evo-
lutionary systems, including genetic algorithms, and
genetic programming. The vision modules provide a

Figure 4: A graph of behaviors for implementing a re-
cycling robot. The robot begins in the locateCan state
and ends in the done state.

library of the most commonly used filters and vision al-
gorithms enabling students to concentrate on the uses
of vision in robot control. The entire library is open
source, and can be used by students to learn about
the implementations of all the modules themselves. We
have also provided tutorial-level educational materials
for all of the modules. Similar to the software’s open
source license, these modules are available under a Cre-
ative Commons license. This enables instructors to tai-
lor the use of Pyro for many different curricular sit-
uations. In the remainder of this section, we provide
two more examples of Pyro programs written using the
available libraries.

Example of sequential control

In order to create more complex robot controllers, it
is useful to be able to group low-level robot com-
mands into logical units, typically called behaviors.
There are a number of robotics textbooks that focus on
this style of control, known as the behavior-based ap-
proach (Arkin 1998; Murphy 2000). In this approach,
each behavior is triggered by a particular condition in
the environment, and responds appropriately. Once the
initiating condition has been addressed, the current be-
havior can pass control off to another behavior. One
straightforward method of implementing this style of
behavior-based control is through finite state machines
(FSMs). Each state in the FSM represents a robot be-
havior. Using a FSM the designer can build up a graph
of states and designate appropriate sequences of control
between states. In a sense, the FSM represents a “plan”
for both accomplishing higher-level tasks through the
compositions of lower-level primitives and for reacting
to unpredictable situations.

To illustrate this style of robot control, we can
implement a simplified version of a recycling robot.
We demonstrate this using a simulated Pioneer robot
with a gripper and a “blob” camera (discussed below).
The cans are represented as randomly positioned red
pucks in a circular environment without obstacles. The
robot’s goal is to collect all of the red cans. Once the
robot has picked up a can, it immediately stores it, and
moves on to finding more cans.

Figure 4 shows one way of decomposing this problem
into a set of four behaviors: locateCan, approachCan,
grabCan, and done. The FSM begins in the state
locateCan. While in this state the robot rotates, look-

class locateCan(State):
def onActivate(self):

#initializes a class variable to count rotations
self.searches=0

def step(self):
#get a list of all blobs:
blobs=self.robot.camera[0].filterResults[1]
#checks if there are any blobs
if len(blobs)!=0:

#stops robot when a blob is seen
self.robot.move(0, 0)
print "found a can!"
#transfers control to homing behavior:
self.goto(’approachCan’)

#checks if robot has done a complete rotation
elif self.searches > 275:

print "found all cans"
#transfers control to completion behavior:
self.goto(’done’)

#otherwise keep rotating and searching
else:

print "searching for a can"
#updates rotation counter:
self.searches+=1
#rotates robot and remains in locate behavior:
self.robot.move(0, 0.2)

Figure 5: The implementation of the locateCan behav-
ior in a FSM-style Pyro program. All of the behaviors
of the FSM are represented as instances of the State
class. The filters defining the blobs for identifying the
red cans are set in the brain constructor which isn’t
shown here.

ing for a blob, which would indicate that a red can is
in sight. As soon as a can is found, the FSM goes into
state approachCan to move the robot toward the closest
visible can. If for some reason the robot loses sight of
the can, the FSM will go back to the state locateCan.
Once the robot is positioned with its gripper around a
can, the FSM goes to the state grabCan to cause the
robot to pick it up and store it. Then the FSM will re-
turn to the state locateCan to search again. The state
locateCan keeps track of how long it searches on each
activation of the state. If the robot has done a complete
rotation and not seen any cans, the FSM goes to the
state done and stops the robot.

Figure 5 shows the definition of only one of the four
states that make up the complete recycling robot’s FSM
brain: the locateCan state. Each state in a FSM must
implement the step method, which is called on every
control cycle. States use the goto method to transition
to other states. The optional onActivate method may
be used to initialize class variables.

Figure 6 shows the robot as it passes through various
states during the execution of its FSM brain. First it
begins searching for cans (A), then it closes in on a par-
ticular can (B), grabs it (C), and starts pursuing a new
can (D). This style of sequential control is a very effec-
tive method of implementing complex robot behaviors.

Example of vision processing

To explore topics in computer vision, Pyro also comes
with camera and image processing modules. Students
can write python programs to implement vision algo-
rithms, such as color histograms, motion detection, ob-
ject tracking, edge detection, etc. However, python is
currently too slow for this code to be used in real time.
To alleviate this problem, we have developed a method
such that the low-level vision code is written in C++
but the students can interactively use this code to build
layers of filters in Pyro. Thus, students can develop the
computationally expensive code in C++, and still have
the high-level, interactive interface of python. For ex-
ample, in the background of Figure 7, a Sony AIBO
robot is looking at a ball. The foreground of Figure 7
shows the raw image on the left before the application
of any filters, and an image-processed view on the right
after having a series of filters applied to it. Pyro applies
all filters to a copy of the current image.

In this example, the filters were: color matching, su-
percolor, and blob segmentation. The color matching
filter marks all pixels in an image that are within a
threshold of a given red/green/blue color triplet. The
supercolor filter magnifies the differences between a
given color and the others. For example, the super-
color red filter makes reddish pixels more red, and the
others more black. Finally, the blob segmentation fil-
ter connects adjacent like-colored pixels into regions,
computes a box completely surrounding the matching
pixels, and returns a list of these bounding boxes. All of
these filters can be sequenced and applied without stu-
dents having to engage in the implementation details of
the low-level image-processing routines. Figure 7 shows
the ball as the largest matching region by drawing a
bounding box around it (foreground, right). Once the
position of the bounding box is known, the robot can
then be programmed to look or move toward the ball.

Integrating Pyro into the curriculum:

From agents to robots

Teaching artificial intelligence as a coherent subject
can be a challenging task. AI is already filled with
a wide spectrum of ideas and methodologies that run
the gamut from logic to evolution, from information
theory to perception. Surely, the idea of incorporat-
ing even a bit of robotics would cause an AI course to
explode, spewing predicates, symbols, and rules in all
directions, right? We think that including robotics in
the standard AI course, if done appropriately, can actu-
ally help bridge otherwise disparate facets of the field.
We recognize that not everyone thinks that robots in
the AI classroom is a good idea. Marvin Minsky re-
cently was quoted as being appalled at the amount of
time that students were wasting on “soldering and re-
pairing” such “stupid little robots” (Wired News, May
13, 2003). Although we feel his criticisms were largely
misguided, we also can appreciate appropriate efficacy
in the classroom. Here, we suggest the use of pre-built,

Figure 6: A Pioneer robot in the Player/Stage simulator controlled by the finite state machine Pyro brain for
recycling. The small box to the left of the robot represents the blob camera data. Each rectangle in this box
represents a red blob. The larger the rectangle, the closer the blob. The four sub-pictures depict various behaviors
within the FSM. A: At the start of locateCan. B: At the moment when approachCan passes control to grabCan. C:
Just after the successful completion of grabCan. D: As the robot homes in on another can while in stateapproachCan.

Figure 7: In the background, an AIBO robot is shown under the control of Pyro over a wireless network connection.
In the foreground, the robot’s raw image (left) is shown next to a processed image (right).

Figure 8: Simple Vacuum Cleaner World (after Russell
and Norvig, 2003). This simulation, itself, was writ-
ten in less than 100 lines of python code, including the
graphics, thread, and socket code. Although we have
other AI-based simulations, such as Konane (a Hawai-
ian checkers game), students can also write their own
simulations and games fairly easily.

commercial robots and simulators.
In addition to having access to affordable robots,

another trend over the last decade also helped make
robotics a viable topic in AI. In 1995, Russell and
Norvig published their first edition of AI: A Modern
Approach which used an agent-based perspective for ex-
ploring all of artificial intelligence. This approach was,
to many, a more effective technique of weaving together
the disparate topics of AI than past attempts. This re-
sulted in a successful textbook that has been adopted
by many colleges and universities, and which has gen-
erated a second edition (Russell & Norvig 2002).

Approaching AI in the classroom from the perspec-
tive of an agent is a simple but effective methodology. A
common approach is to introduce the ideas of the agent
and its environment. Agents are in turn composed of
sensors and actuators. The details of the sensors and
actuators are usually downplayed, if not completely ig-
nored, in an AI class. In robotics, of course, these are
the core concepts. However, focusing on the sensors
and actuators early in an AI class can bring to light
important issues in AI. What happens if a sensor is not
accurate? What happens if the world changes after a
sensor is read? How does the robot know where it is?
What happens if a robot doesn’t move exactly the way
it was supposed to?

Having such issues highlighted early in the semester
can make it easier to talk about why one AI technique
might be more appropriate than another for a given
problem. Of course, having an implementation of an
agent-based algorithm can help students by providing a
concrete example with which to make these issues more
salient. It will also allow them to transition from the
symbolic domains of agents to the real-world domains
of robots.

Consider the vacuum world shown in Figure 8 and the
simple reflex agent controller shown in Figure 9. The
algorithm describes a robot vacuuming cleaner that can

function Reflex-Vacuum-Agent([location, status])
returns an action

if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

Figure 9: Russell and Norvig’s reflex vacuum agent
(Russell & Norvig 2002) figure 2.8 page 46.

from pyro.brain import Brain
class SimpleBrain(Brain):

def ReflexVacuumAgent(self,location,status):
if status == "dirty": return "suck"
elif location == "A": return "right"
elif location == "B": return "left"

def step(self):
ask the robot for perceptions:
location = self.robot.location
status = self.robot.status
call the agent program
act=self.ReflexVacuumAgent(location,status)
make the move:
self.robot.move(act)

def INIT(engine):
return SimpleBrain(’VacuumRobotBrain’, engine)

Figure 10: A Pyro program to clean up two rooms using
a simple reflex brain. After Russell and Norvig (2003),
page 46.

suck up dirt and move between two locations, A and B.
Now consider the code to implement it on as a robot
within Pyro. Of course, building such a robot for such
a simple example would not be worthwhile. However,
if the students could easily have access to such a robot,
and the concepts would carry over into the rest of the
course, then it could be a valuable concrete example
from which one can build more complex concepts.

In this Pyro variation, the perceptions and actions
are represented by symbols. Figure 10 shows that the
perceptual value of status is either dirty or clean, the
value of location is either A or B, and movements are
suck, left and right. However, the methods of accessing
the sensors and affecting the motors are identical to
those used to interact with real robots. Using Pyro
in this manner could be useful for just exploring AI.
However, this agent-based symbolic use also prepares
the student for exploring any number of other topics in
robotics.

Because Pyro allows students to immediately focus
on the most abstract, top-down issues in autonomous
control, we have been able to incorporate Pyro into
a variety of courses. Specifically, at our institutions,
the following courses have used Pyro: Introduction to
Artificial Intelligence, Cognitive Science, Emergence,
Androids: Design & Practice, Developmental Robotics,
Mobile Robotics, Robotics II, Senior Theses, and sum-
mer research projects for undergraduate students as

well as high-school students. To date, we have recorded
that Pyro has been used in courses in at least two dozen
educational institutions, and out of the classroom in at
least thirty educational institutions.

Based on our own experiences and from those re-
ported by early adopters of the system, it is clear that
wherever in the curriculum robotics is used, Pyro can
provide an accessible and powerful laboratory environ-
ment. In all of the instances, students are able to
successfully write several robot control programs for
real and simulated robots. In most instances, students
learned Pyro and robot programming by following the
tutorial materials we have created. The kinds of exer-
cises and the extent to which Pyro was used varied de-
pending on the course and its focus. The exercises span
the entire spectrum of difficulty, ranging from mod-
ifying existing robot brains to research-level work in
robotics. In one instance, three students from Bryn
Mawr College developed a robot Tour Guide (Chiu et
al. 2004) that gave tours of the Science Building.1

Next, we present a couple of sample instantiations of
undergraduate AI courses that were modified to include
the use of Pyro.

Pyro in Artificial Intelligence Courses

In this section we present an overview of two versions of
an undergraduate junior/senior-level AI course at two
similar institutions: Bryn Mawr College and Swarth-
more College. Demonstrating how Pyro can be inte-
grated into an upper-level AI course is perhaps the best
way to highlight the flexibility available to instructors.

At both colleges, the AI course is typically taught ev-
ery other year. The Bryn Mawr course followed a tradi-
tional, agent-oriented approach based on Nilsson’s book
(Nilsson 1998), while the Swarthmore course had a ma-
chine learning focus based on Mitchell’s book (Mitchell
1997). At both colleges, the labs were designed to in-
troduce students to the python programming language,
the tools available within Pyro, and the topics being
covered in class. Most labs were relatively short in du-
ration, typically lasting only a week. Some of the labs
were designed to allow students to explore a topic in
much more depth and lasted two to three weeks. Ta-
bles 1 and 2 provide an overview of the two courses.

At Bryn Mawr College, the AI course includes both
computer science majors and non-majors. Typically,
anywhere from 30-40% of the students in the class are
from outside of computer science, most without much
prior knowledge of programming. As final projects in
the Bryn Mawr class, students had robots learn to do
wall-following using neural networks, created weather
prediction systems using neural nets, wrote game play-
ing programs for Connect Four, Othello, and a Check-
ers variant that uses chance, and had systems which

1The students applied for and obtained funding for this
project from the Computing Research Association’s (CRA)
Collaborative Research Experiences for Women (CREW)
Program.

learned static evaluation functions for Konane. All of
these projects used Pyro and/or python.

At Swarthmore College, the course is intended for
computer science majors who have completed both CS1
and CS2. As final projects in the Swarthmore class, the
majority of the students chose a task in which the robot
would be controlled by a neural network and the weights
of the network would be evolved by a genetic algorithm.
The most ambitious robot learning project involved a
three-way game of tag in which each robot had a unique
color: the red robot was chasing the blue robot, the blue
robot was chasing the green robot, and the green robot
was chasing the red robot. The neural network brain
for each robot had the same structure, but the weights
were evolved in a separate species of the genetic algo-
rithm. The reason for this was to allow each robot to de-
velop unique strategies. Other robot learning projects
from the class included having a robot gather colored
pucks scattered randomly throughout the environment,
having a robot navigate a PacMan-inspired maze while
avoiding a predator robot, and having a robot trying to
capture a puck from a protector robot.

Pyro’s infrastructure allowed the students to focus
on the most interesting aspects of the project, such as
the environment, task, and network architecture. The
abstractions provided within Pyro enabled the students
to easily integrate various AI modules (neural networks
and genetic algorithms, for example) and develop quite
sophisticated robot learning projects in a short amount
of time (typically two to three weeks). Pyro’s accessible
interface and comprehensive infrastructure encourages
experimentation with AI and robotics algorithms. This
experience may then motivate the students to delve
more deeply into the algorithms to better understand
the details that may impact system performance.

Pyro in Robotics Courses

In addition to AI courses, Pyro has been used in AI-
based robotics courses at both the undergraduate and
graduate level. Topics covered at the University of
Massachusetts Lowell include robot architectures, vi-
sion, machine learning (including neural networks and
reinforcement learning), mapping and localization, and
multi-agent robotics. The course uses Pyro modules for
weekly labs, then culminates in a three week project at
the end of the term. Student projects included the fol-
lowing.

Laser Tag: Students designed hardware to send and
receive infrared signals, then wrote software to make
the game-playing robots locate and target each other.
Robots were programmed with different strategies to
make the game more interesting.

Robot Slalom: Students used computer vision to
find gates in a slalom course that ran down a hallway
and around corners.

Pick Up the Trash: Students used computer vi-
sion to find trash (Styrofoam cups) and recycling (soda
cans), then deliver the found items to the appropriate
bins (trash can or recycling bin). In two weeks, students

Text Artificial Intelligence: A New Synthesis (Nilsson 1998)
Topics Stimulus-response (S-R) agents, Learning in S-R agents,

Evolutionary computation, Model-based agents, State-spaces,
Search, Game playing, Logic and knowledge representation,
Natural language understanding, Augmented transition networks.

Labs 1. S-R Agents (Braitenberg Vehicles) in Pyro (2 exercises).
2. Search: Uninformed searches on 8-puzzle in python.
3. Wall-following behavior in a robot in Pyro.
4. Centering a robot in a room in Pyro.
5. Game Playing: Konane (Hawaiian Checkers) in python.
6. Final Projects: Independently chosen by students.

Web Page cs.brynmawr.edu/Courses/cs372/fall2004

Table 1: Example of an AI course at Bryn Mawr College

Texts Machine learning (Mitchell 1997) and excerpts from:
AI: Structures and Strategies for Complex Problem Solving (Luger & Stubblefield 1993),
Artificial Intelligence: A Modern Approach (Russell & Norvig 2002),
Understanding Intelligence (Pfeifer & Scheier 1999),
and other selected papers on machine learning.

Topics Game playing, Machine learning: Neural networks, Recurrent
neural networks, Decision trees; Genetic algorithms,
Evolving networks with GA’s, Reinforcement learning,
Braitenberg vehicles, Behavior-based control, Robot learning

Labs 1. State-space search in python.
2. Game Playing: Konane in python.
3. Neural networks in Pyro.
4. Evolutionary computation in Pyro.
5. Wall-following robot in Pyro and on Pioneer robot.
6. Learning tasks on robots in Pyro.

Web Page web.cs.swarthmore.edu/∼meeden/cs63/s04/cs63.html

Table 2: Example of an AI course at Swarthmore College

were able to complete what had been a competition in
the 1994 and 1995 AAAI Robot Competition.

As is evident from the use of Pyro in AI and Robotics
courses, Pyro enables students at all levels to do
robotics projects that in the past were only feasible by
research teams. This, we believe, is one of the biggest
payoffs of Pyro. It brings aspects of current research
into the curriculum in an accessible, low-cost manner.

Conclusions and Future Directions
The Pyro project is the latest incarnation of our at-
tempts to make the teaching of autonomous mobile
robots accessible to students and instructors alike. We
have developed a variety of programs, examples, and tu-
torials for exploring robotics in a top-down fashion, and
we are continuing to add new curricular modules. Some
of these modules are created by students in the classes,
others by the authors, and some by faculty at other in-
stitutions who have adopted Pyro. Modules currently
under development include multi-agent communication,
reinforcement learning, logic, planning, topics in manip-
ulation (such as inverse kinematics for the AIBO), and
localization.

We believe that the current state-of-the-art in robot
programming is analogous to the era of early digital
computers when each manufacturer supported different
architectures and programming languages. Regardless
of whether a computer is connected to an ink-jet printer
or a laser printer, a computer today is capable of print-
ing on any printer device because device drivers are in-
tegrated into the system. Similarly, we ought to strive
for integrated devices on robots.

Our attempts at discovering useful abstractions are
a first and promising step in this direction. We believe
that discoveries of generic robot abstractions will, in
the long run, lead to a much more widespread use of
robots in education and will provide access to robots to
an even wider range of students. Our goal is to reduce
the cost of learning to program robots by creating uni-
form conceptualizations that are independent of specific
robot platforms and incorporate them into an already
familiar programming paradigm. Conceptualizing uni-
form robot capabilities presents the biggest challenge:
How can the same conceptualization apply to different
robots with different capabilities and different program-
ming APIs?

Our approach, which has been successful to date, has
been shown to work on a variety of real and simu-
lated robots. We are striving for the write-once/run-
anywhere idea: robot programs, once written, can be
used to drive vastly different robots without making any
changes in the code. This approach leads the students
to concentrate more on the modeling of robot brains by
allowing them to ignore the intricacies of specific robot
hardware. More importantly, we hope that this will
allow students to gradually move to more and more so-
phisticated sensors and controllers. In our experience,
this more generalized framework has resulted in a bet-
ter integration of robot-based laboratory exercises in

the AI curriculum. It is not only accessible to begin-
ners, but is also usable as a research environment for
our own robot-based modeling.

Acknowledgments and Resources

We would like to thank all of the people that have con-
tributed to the Pyro Project. This includes instruc-
tors and students that have provided feedback, code,
course modules, bug reports, and problem exercises.
This work is funded in part by NSF CCLI Grant DUE
0231363. Pyro source code, documentation, and tuto-
rials are available at www.PyroRobotics.org.

References

ActivMedia. 2003. URL for the Pioneer robot and the
Aria simulator is http://www.activrobots.com/.

Arkin, R. C. 1998. Behavior-based robotics. MIT
Press.

Blank, D.; Kumar, D.; Meeden, L.; and Yanco, H.
2005. Pyro: A python-based versatile programming
environment for teaching robotics. Journal on Educa-
tional Resources in Computing.

Chiu, C.; Butoi, I.; Thompson, D.; Blank,
D.; and Kumar, D. 2004. Greeted by
the future: Tour guide robot. URL is
http://mainline.brynmawr.edu/TourGuide/.

Gerkey, B.; Vaughan, R.; and Howard, A. 2003. The
Player/Stage project: Tools for multi-robot and dis-
tributed sensor systems. In Proceedings of the Inter-
national Conference on Advanced Robotics, 317–323.

Group, R. S. S. M. 2005. URL for the robocup soccer
server is http://sserver.sourceforge.net/.

Koenig, N., and Howard, A. 2004. Design and use
paradigms for Gazebo, an open-source multi-robot
simulator. In IEEE/RSJ International Conference on
Intelligent Robots and Systems.

KTeam. 2005. URL for the Hemisson robot is
http://www.hemisson.com.

Luger, G., and Stubblefield, W. 1993. AI: Structures
and strategies for complex problem solving. The Ben-
jamin/Cummings Publishing Company, Inc., second
edition.

Mitchell, T. M. 1997. Machine Learning. Boston, MA:
McGraw-Hill.

Mondada, R.; Franzi, E.; and Ienne, P. 1993. Mo-
bile robot miniturization: A tool for investigation in
control algorithms. In Proceedings of the Thrid Inter-
national Symposium on Experimental Robots.

Murphy, R. 2000. Introduction to AI Robotics. MIT
Press.

Nilsson, N. 1998. Artificial Intelligence: A New Syn-
thesis. Morgan Kaufmann.

Pfeifer, R., and Scheier, C. 1999. Understanding In-
telligence. Boston, MA: MIT Press.

Robotics, E. 2005. URL for the ER1 robot is
http://www.evolution.com.

Russell, S., and Norvig, P. 2002. Artificial Intelligence:
A Modern Approach. Englewood Cliffs, NJ: Prentice
Hall, 2nd edition.

Sony. 2005. URL for the AIBO robot is
http://www.sony.net/products/aibo/.

	The Pyro toolkit for AI and robotics
	Citation

	tmp.1489245195.pdf.nUTjl

