Bryn Mawr College
Scholarship, Research, and Creative Work at Bryn Mawr College

Computer Science Faculty Research and

Scholarship Computer Science

9-2004

Pyro: A Python-based Versatile Programming Environment for
Teaching Robotics

Doug Blank
Bryn Mawr College, dblank@brynmawr.edu

Deepak Kumar
Bryn Mawr College, dkumar@brynmawr.edu

Lisa Meeden

Holly Yanco

Follow this and additional works at: https://repository.brynmawr.edu/compsci_pubs

b‘ Part of the Computer Sciences Commons
Let us know how access to this document benefits you.

Citation

Blank, D.S., Kumar, D., Meeden, L., and Yanco, H. (2004) Pyro: A Python-based Versatile Programming
Environment for Teaching Robotics. ACM Journal on Educational Resources in Computing (JERIC) 4.3.

This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College.
https://repository.brynmawr.edu/compsci_pubs/51

For more information, please contact repository@brynmawr.edu.

https://repository.brynmawr.edu/
https://repository.brynmawr.edu/compsci_pubs
https://repository.brynmawr.edu/compsci_pubs
https://repository.brynmawr.edu/compsci
https://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/open-access-feedback.html
https://repository.brynmawr.edu/compsci_pubs/51
mailto:repository@brynmawr.edu

Blank, Kumar, Meeden, and Yanco. JERIC 2005.

Pyro: A Python-based Versatile Programming
Environment for Teaching Robotics

DOUGLAS BLANK
Bryn Mawr College

DEEPAK KUMAR
Bryn Mawr College

LISA MEEDEN
Swarthmore College

HOLLY YANCO
University of Massachusetts, Lowell

In this paper we describe a programming framework called Pyro which provides a set of abstractions that
allows students to write platform-independent robot programs. This project is unique because of its focus on
the pedagogical implications of teaching mobile robotics via a top-down approach. We describe the
background of the project, novel abstractions created, its library of objects, and the many learning modules
that have been created from which curricula for different types of courses can be drawn. Finally, we explore
Pyro from the students' perspective in a case study.

Categories and Subject Descriptors: 1.2 [Artificial Intelligence]: Robotics — Autonomous vehicles; K.3
[Computers and Education]: Computer and Information Science Education — Computer science education;
1.6 [Simulation and Modeling]: Simulation Support Systems - Environments

General Terms: Mobile robotics, education, robot abstractions, autonomous control, programming languages

Additional Key Words and Phrases: Computer science education, top-down instruction, platform-independent
robotics control

1. INTRODUCTION

Not that long ago, robotics was a field of study relegated to well-funded engineering
universities that built their own robots. Starting in the mid 1990's, simple, inexpensive
robots (such as the Handyboard and LEGO Mindstorms) were introduced and their use
proliferated in the classroom, first, in colleges and later even in middle schools.
Currently, sophisticated robots with cameras, advanced sensors, and motors (such as
Sony's robot dog, Aibo, and ActivMedia's Pioneer) are becoming financially accessible
to undergraduate computer science, and even some courses in psychology.

Although sophisticated robotic platforms are now affordable, a large issue still

remains: how do you teach students to use such robots? Unfortunately, each robot has its

Blank, Kumar, Meeden, and Yanco. JERIC 2005.

own application programming interface (API), and, even worse, each specific type of
sensor may have its own API. This situation is perhaps similar to the one in the early
days of digital computers when every computer had a different architecture, a different
assembly language, and even a different way of storing the most basic kinds of
information.

The Pyro project was designed to answer the question of how to program
sophisticated robots by serving as a high-level programming paradigm for a wide variety
of robots and sensors. Pyro, which stands for Python Robotics, is a Python-based robotics
programming environment that enables students and researchers to explore topics in
robotics. Programming robot behaviors in Pyro is akin to programming in a high-level
general-purpose programming language in that Pyro provides abstractions for low-level
robot specific features much like the abstractions provided in high-level languages.
Consequently, robot control programs written for a small robot (such as K-Team's
hockey puck-sized, infrared-based Khepera robot) can be used, without any
modifications, to control a much larger robot (such as ActivMedia's human-scale, laser-
based PeopleBot). This represents an advance over previous robot programming
methodologies in which robot programs were written for specific motor controllers,
sensors, communications protocols and other low-level features.

Programming robot behaviors is carried out using the programming language,
Python, which enables several additional pedagogical benefits. We have developed an
extensive set of robot programming modules, modeling techniques, and learning
materials that can be used in graduate and undergraduate curricula in a variety of ways.
In the following sections we present an overview of the abstractions incorporated into
Pyro that have made it possible to make robot programs portable across platforms. Next
we explore several examples that illustrate the ease of use of Pyro in different modeling
situations. Finally, we examine the role of Pyro in computer science curricula by

presenting a detailed case study of its use in an artificial intelligence course.

2. OVERVIEW OF PYRO

The need for a project like Pyro grew out of our desire to teach mobile robotics in a

coherent, abstract, robot-independent manner. For example, we wished to start with

Blank, Kumar, Meeden, and Yanco. JERIC 2005.

simple "direct control" programs running on simple robots and incrementally take
students on a tour of other control paradigms running on increasingly sophisticated
robots. There are many freely available, feature-rich, real-world control systems which
one can download, program and run. For example, Carnegie Mellon has made their
Robot Navigation Toolkit (a.k.a. CARMEN) available as open source, and ActivMedia's
ARIA is also freely available. However, all such programs that we encountered suffered
from three separate problems.

Most existing robot control programs are designed to run on a single type of robot. At
best, some of the robot control systems we found ran on a few types of robots, but even
then the types had to be of similar size, shape, and abilities. Second, we wanted the
control system to be something that could be studied, and changed, by the students. All of
the existing systems we encountered were designed to be as efficient as possible, and
were therefore filled with optimizations which obfuscated their overall design to the
student. In addition, we were unable to find a system for which we could easily separate
the "controller" from the rest of the system. For example, a control system based on
occupancy grids might be intimately tied to a particular type of robot and laser scanner.

It should not be a surprise that existing systems suffered from these limitations
because most of these projects were research explorations of a particular paradigm
running on a particular robot. However, even if we could have found a series of programs
to run on our robots, we would not have been able to incrementally make small changes
to the controller to take us from one paradigm to another, nor would we have been able to
mix parts of one paradigm with parts of another. However, there were two projects that
did meet some of our requirements.

The first of these is TeamBots [Balch, 2004]. TeamBots is written in Java, and,
therefore, is object-oriented with the possibility of many appropriate abstractions for
teaching. TeamBots was designed such that the hardware interfaces and controllers are
independent of one another. Thus, one can write a control program without worrying
about low-level details of the particular robot that it is controlling [Balch, 1998]. At the
time TeamBots was written (1997--2000) the idea of using Java to control mobile
robotics was quite revolutionary. However, the TeamBots authors argued that "the
benefits of Java (correctness, ease of use, rapid development) far outweigh the negligible

runtime overhead" [Balch, 2004]. We very much agree with this philosophy. In fact, we

Blank, Kumar, Meeden, and Yanco. JERIC 2005.

wanted to take the philosophy of "ease-of-use over runtime considerations" even further.
Although Java is arguably easier to use than, say, C or C++, it still has a large conceptual
overhead.

The other project that met some of our requirements was the Player/Stage project
[Gerkey, 2003] which was first released in 2001. Player/Stage is actually three separate
projects: Player, which is an evolving set of client/server protocols for communicating
with robots and simulators; Stage, a "low-fidelity", 2-D multi-robot simulator; and
Gazebo, a "high-fidelity", 3-D simulator. Because the Player/Stage authors have their
software running on so many different kinds of robots, they have developed many useful
robot and sensor abstractions. Whereas TeamBots only supported two different kinds of
robots (Probotic's Cye and the now defunct Nomadic Technologies Nomad 150),
Player/Stage supports literally dozens of robots: from K-Team's Khepera to Segway's
RMP (a customized version of their Human Transport). However, all of Player/Stage is
written in the C language and is designed to operate as efficiently as possible. Although
such efficiency is required by many control systems, such optimized code often obscures
the high-level design concepts. As mentioned, we were very willing to trade runtime
efficiency for ease-of-use (and ease-of-understanding). Player/Stage was not designed to
be used by novice programmers.

In the end, we decided to build our own control system. We created a prototype using
the extensible modeling language XML in combination with C++ [Blank, 1999].
Basically, the code looked like HTML with C++ code between the tags. Although this
system had some nice qualities derived from its XML roots, it turned out to have all the
complexities of XML and C++ combined, and was therefore difficult for students to learn
and debug. For example, even syntax errors could be hard to track down because there
were two levels of parsing (one at the XML level, and another at the C++ level). In
addition, like many of the other available control systems, we became bogged down in
low-level interface issues and never reached the point of implementing more than one
control paradigm.

Having learned from this prototype, we decided to try again, but this time the primary
focus was on the usability from the student perspective. We found that the language
Python met many of our goals. To our surprise, we also found that Python had recently

been used for solving real-world complex programming problems. For example,

Blank, Kumar, Meeden, and Yanco. JERIC 2005.

[Prechelt, 2000] found in some specific searching and string-processing tests that Python
was better than Java in terms of run-time and memory consumption, and not much worse
than C or C++ in some situations. In this incarnation, we set out with the following goals:

* be easy for beginning students to use

e provide a modern object-oriented programming paradigm

« run on several robot platforms and simulators

» allow the exact same program to control different kinds of robots

o allow exploration of many different robot control paradigms and

methodologies

e scale up conceptually by remaining useful as users gain expertise

* be extendible

» allow for creation of modern-looking visualizations

* be available freely for study, use, and further development

Python is an ideal language for implementing these goals. In fact, Python itself is
driven by similar ideals. For example, Python supports many different programming
paradigms without making strong commitments to any. Although one can write complete
Python programs without ever defining a function, one can also use functions as first-
class objects. As the user grows in sophistication, so can the language. Figure 1 shows
three paradigms for printing "Hello world!": a simple, direct method; a method using
functions; and an object-oriented method. One can see that more complex paradigms
build on syntax and concepts from simpler paradigms. Java, on the other hand, does not
allow students to start with simple expressions and statements and slowly increase the
level of concepts and syntax, but rather forces the user to embrace the full object-

oriented methodology from square one.

Blank, Kumar, Meeden, and Yanco. JERIC 2005.

print '"Hello world!’ => Hell o worl d!
def helloWrld():
print 'Hello world!"
hel | oWor 1 d() => Hel |l o worl d!
class Hel | oWorl d:
def greet(self):
print 'Hello world!"’

obj = HelloWwrld()
obj . greet() => Hell o worl d!

Figure 1. Python scales up pedagogically. Three different paradigms for greeting the world: direct,

functional, and object-oriented.

Pyro is composed of a set of Python classes that encapsulates lower-level details.
Figure 2 provides a schematic of the Pyro architecture. Users write robot control
programs using a single application programming interface (API). The API is
implemented as an object-oriented hierarchy that provides an abstraction layer on top of
all the vendor-supplied robot-specific API's. For example, in Figure 2, all the robot-
specific API's have been abstracted into the class pyro.robot. In addition, other
abstractions and services are available in the Pyro Library. The libraries help simplify
robot-specific features and provide insulation from the lowest level details of the

hardware or simulation environments.

Pyro Python
Lib

KheperaRobaot PioneerRobot HanyBoardRobol etc. robot
AP APl APl AP
Khepera Driver Pionear Driver HE DCriver atc. Driver
Module Pociule Module Plodule
Khepera Pionear HandyBoard Other

Figure 2. Pyro Architecture

Currently, Pyro supports K-Team's Kheperas, ActivMedia's Pioneer-class robots

(including PeopleBot and AmigoBot robots), Player/Stage-based robots (including

Blank, Kumar, Meeden, and Yanco. JERIC 2005.

Evolution's ER1 and many others), the Handyboard, RWI's Mobility-based B21R, and
simulators for all of these. Currently, many other robots are also being ported to Pyro,
including Sony's Aibo, K-Team's inexpensive Hemisson, and the Robocup Soccer Server
Simulator.

A user's control program for a robot is called a brain. Each brain is written by
extending the library classes similar to the way a Java programmer writes Java programs.
This allows a robot programmer to concentrate mainly on the behavior-level details of
the robot. Since the control program is written in Python, the standard Python Library is
also available for use. Also, because the brain base class is also Python code, new control
paradigms can be easily added and studied. Before we go any further, we would like to
present a simple example of a robot control program.

2.1 A First Look

In this section we present a simple obstacle avoidance behavior to demonstrate the
unified framework that Pyro provides for using the same control program across many
different robot platforms. This type of simple controller is an example of "direct" (or
"stateless") control. Direct control is normally the first control method introduced to
students learning robotics. In this simple form of control, sensor values are used to
directly affect motor outputs. The top five lines of Figure 3 show pseudocode that
represents a very simple algorithm for avoiding obstacles.

The program shown in the lower portion of Figure 3 implements the pseudocode
algorithm using the abstractions in the libraries. The program, written in an object-
oriented style, creates a class called Avoi d which inherits from a Pyro class called
Br ai n (Figure 3, line 2). Every Pyro brain is expected to have a st ep method (line 3)
that is executed on every control cycle which occur about 10 times a second. The brain
shown will cause the robot to continually wander and avoid obstacles until the program is
terminated.

It is not important to understand all the details of the Pyro implementation, but the
reader should notice that the entire control program is independent of the kind of robot
and the kind of range sensor being used. The program will avoid obstacles when they are
within the saf eDi st ance of 1 robot unit (discussed below) of the robot's front left or

front right range sensors (lines 6 and 9, respectively), regardless of the kind of robot.

Blank, Kumar, Meeden, and Yanco. JERIC 2005.

Lines 14 and 15 show the details of Pyro's automatic initialization mechanism. Such lines

will be left out in subsequent examples.

if approaching an obstacle on the left side
turn right

el se if approaching an obstacle on the right side
turn left

el se go forward

o H R

frompyro.brain inport Brain
cl ass Avoi d(Brain):
def step(self):
safeDistance = 1 # in Robot Units
#i f approaching an obstacle on the left side, turn right
if mn(self.get(' robot/range/front-left/value')) < safeDistance:
sel f.robot. move(0, - 0. 3)
#el se if approaching an obstacle on the right side, turn left
elif mn(self.get('robot/range/front-right/value')) < safeDistance:
10 sel f.robot. move(O0, 0. 3)
11 #el se go forward
12 el se:
13 robot . nove(0.5, 0)
14 def I N T(engine):
15 return Avoi d(' Avoid', engine)

CoOoO~NOOUR~WNE

Figure 3. An obstacle avoidance program, in pseudocode and in Pyro

3. ADESIGN AND DEVELOPMENT PERSPECTIVE

Most of the Pyro framework is written in Python. As one can see, Python is an easy-to-
read scripting language that looks very similar to pseudocode. It also integrates easily
with C and C++ code which makes it possible to quickly incorporate existing code. The
C/C++ interface also facilitates the inclusion of very expensive routines (like vision
programs) at lower levels for faster runtime efficiency. Also, we are able to "wrap"
programs written in C and C++ (such as Player/Stage) so that they are instantly, and
natively, available in Python.

One of the key ideas underlying the design of Pyro is the use of abstractions that make
the writing of basic robot behaviors independent of the type, size, weight, and shape of a
robot. Consider writing a robot controller for obstacle avoidance that would work on a
24-inch diameter, 50-pound Pioneer3 robot as well as on a 2.5-inch diameter, 3-ounce

Khepera. The following key abstractions were essential in achieving our design goals:

1. Range Sensors: Regardless of the kind of hardware used, IR, sonar, or laser, these
sensors are categorized as range sensors. Sensors that provide range information can

thus be abstracted and used in a control program.

Blank, Kumar, Meeden, and Yanco. JERIC 2005.

Robot Units: Distance information provided by range sensors varies depending on
the kind of sensors used. Some sensors provide specific range information, like
distance to an obstacle in meters or millimeters. Others simply provide a numeric
value where larger values correspond to open space and smaller values imply nearby
obstacles. In our abstractions, in addition to the default units provided by the
sensors, we have introduced a new measure, a robot unit: 1 robot unit is equivalent
to the diameter of the robot being controlled.

Sensor Groups: Robot morphologies (shapes) vary from robot to robot. This also
affects the way sensors, especially range sensors, are placed on a robot's body.
Additionally, the number and positions of sensors present also varies from platform
to platform. For example, a Pioneer3 has 16 sonar range sensors while a Khepera has
8 IR range sensors. In order to relieve a programmer from the burden of keeping
track of the number and positions of sensors (and their unique numbering scheme),
we have created sensor groups: front, left, front-left, etc. Thus, a programmer can
simply query a robot to report its front-left sensors in robot units. The values
reported will work effectively on any robot, of any size, with any kind of range
sensor given appropriate coverage, yet will be scaled to the specific robot being
used.

Motion Control: Regardless of the kind of drive mechanism available on a robot,
from a programmer's perspective, a robot should be able to move forward,
backward, turn, and/or perform a combination of these motions (like moving
forward while turning left). We have created two motion control abstractions: move
(translate, rotate) and motors(leftpower, rightpower). The former abstracts
movements in terms of turning and forward/backward changes. The later abstracts
movements in terms of applying power to the left and right sides. This is designed to
work even when a robot has a different wheel organization (such as multi-wheel,
omni-directional abilities) or four legs (as with Aibo). As in the case of range sensor
abstractions, the values given to these commands are independent of the specific
values expected by the actual motor drivers. A programmer only specifies values in

arange -1.0..1.0 (see examples below).

Blank, Kumar, Meeden, and Yanco. JERIC 2005.

5. Devices: The abstractions presented above provide a basic, yet important
functionality. We recognize that there can be several other devices that can be
present on a robot: a gripper, a camera, etc. We have created a device abstraction to
accommodate any new hardware or ad hoc programs that may be used in robot
control. For example, a camera can be controlled by a device that enables access to
the features of the camera. Further, students can explore vision processing by
dynamically and interactively applying filters. Filters are modular image-processing
functions that can be sequentially applied to camera images. All devices are accessed

using the same uniform interface metaphor.

The above abstractions are similar to the abstractions one takes for granted in a high-
level programming language: data types, I/O, etc. These abstractions help simplify
individual robots into higher-level entities that are needed in order for generic behavior

programming.

brunmaur . edu

Fle Simulators Robot Brain Plot Move Help |

Step Reioad | Rewesn | Run | et | swp |

Etupped!
Comman: 1

Figure 4. Dynamic 3-D visualization of a Khepera and its infrared sensors.

Pyro also provides facilities for the visualization of various aspects of a robot
experiment. Users can easily extend the visualization facilities by providing additional
Python code as needed in a particular experiment. For example, you can easily create a

graph to plot some aspect of a brain, or sensor, with just a few lines of code. In addition,

Blank, Kumar, Meeden, and Yanco. JERIC 2005.

Pyro can, through Python's OpenGL interface, generate real-time 3D views. Figure 4
shows a visualization of a Khepera robot and its infrared readings. In keeping with the
spirit of the Pyro project, we created an abstract API so that 3D shapes can be drawn in
this window without knowing anything about OpenGL.

The Python language has generated much interest in recent years as a vehicle for
teaching introductory programming, object-oriented programming, and other topics in
computer science. For example, Peter Norvig has recently begun porting the example
code from Russell and Norvig's "Artificial Intelligence: A Modern Approach" [1995] into
Python. This will no doubt bolster Python's use in Al. Because Pyro is implemented in
Python, everything that applies to Python also applies to Pyro, both good and bad. Python
appears to be a language that inexperienced undergraduates can pick up quickly. The
language is object-oriented without any limitations on multiple-inheritance, and most
objects are first-class. However, because Python is interpreted, it is generally considered a
"scripting language". Is Python fast enough to use in a real-time robotics environment?
We have tested Pyro's speed when executing different types of brains while varying the
graphical outputs. Table 1 shows the resulting data from running Pyro under various
loads on a Dual Pentium IIT 800 MHz PC. Experiments have shown that for doing very
simple control, even with the OpenGL graphics enabled, the software was quite capable.
In fact, most modern medium-cost robotics equipment can only handle about 10 updates
per second, well within Pyro's typical performance. However, Python, and therefore Pyro,
doesn't fair as well with more complex brains. Trying a complex brain with visual
processing, and OpenGL graphics slows the system down to less than one update per
second. Python does allow the migration of code into C. We expect further improvements

in the future, and expect Moore's Law to help.

Blank, Kumar, Meeden, and Yanco. JERIC 2005.

Pyro program and graphics Updates/second
Bare brain with console > 10000
Bare brain with OpenGL > 1000
ANN with OpenGL > 200
Fuzzy logic with OpenGL > 20
Many ANNs + Vision + OpenGL <1

Table 1. Timing data from running Pyro on a Dual Pentium III 800 Mhz Linux PC. OpenGL rendering

was done in hardware on the graphics card. ANN stands for Artificial Neural Network.

4. EDUCATIONAL RESOURCE EXAMPLES

In addition to the abstractions and device definitions, the Pyro Library includes several
modules that enable the exploration of robot control paradigms, robot learning, robot
vision, localization and mapping, and multi-agent robotics. Within robot control
paradigms there are several modules: direct/reactive/stateless control, behavior-based
control, finite state machines, subsumption architectures, and fuzzy logic. The learning
modules provide an extensive coverage of various kinds of artificial neural networks
(ANNs): feedforward networks, recurrent networks, self-organizing maps, etc.
Additionally we also have modules for evolutionary systems, including genetic
algorithms, and genetic programming. The vision modules provide a library of the most
commonly used filters and vision algorithms enabling students to concentrate on the uses
of vision in robot control. The entire library is open source, well documented, and can be
used by students to learn about the implementations of all the modules themselves. We
have also provided tutorial level educational materials for all of the modules. This
enables instructors to tailor the use of Pyro for many different curricular situations. As
the project moves beyond the initial production phase, we expect to add many more
modules. With increased use in the community we also expect contributed modules to be
added to the library. In the remainder of this section, we provide a few more examples of
robot control written using the available libraries. All of the examples presented are

actual working Pyro programs.

Blank, Kumar, Meeden, and Yanco. JERIC 2005.

frompyro.brain inport Brain

fromrandom i nport random
cl ass Wander (Brain):
def step(self):
saf eDi stance = 0.85 # in Robot Units
I = min(self.get('robot/range/front-left/value'))
r m n(sel f.get (' robot/range/front-right/value'))
f m n(sel f.get (' robot/range/front/value'))
if (f < safeDistance):
if (random() < 0.5):
sel f.robot. move(0, - random())
el se:
sel f.robot. mve(0, random())
elif (I < safeDistance):
sel f. robot. move(O0, -randon())
elif (r < safeDistance):
sel f.robot. mve(0, randon())
el se: # nothing bl ocked, go straight
sel f.robot. nove(0.2, 0)

Figure 5. A wander program

As mentioned, we have designed the highest level robot class to make abstractions
such that programs, when written appropriately, can run unchanged on a variety of
platforms. For example, consider the Pyro code in Figure 5. This short program defines a
brain called Wander that enables a robot to move about without bumping into objects.
The program runs on the suitcase-sized Pioneer and, without any modifications, on the
hockey puck-sized Khepera. As mentioned, there are two mechanisms that allow this
portability. First, all units returned from any range sensors are, by default, given in robot
units. For example, 1 Khepera unit is equal to about 2.5 inches, while 1 Pioneer unit is
equal to about 2 feet. Secondly, we try to avoid referring to specific kinds or positions of
sensors. For example, in the above example, we refer to the default range sensor values
by names such as f ront - | ef t . On the Pioneer this could be measured by three sonar
sensors, while on the Khepera it could be measured by a single infrared sensor. Although
these mechanisms have their limitations, many robotics problems can be handled in this

manner.

Blank, Kumar, Meeden, and Yanco. JERIC 2005.

frompyro.brain inport Brain
from pyro. brain.conx inport Network
class NNBrain(Brain):
def setup(self):
sel f.net = Network()
sel f. net.addThreeLayers(sel f.get('robot/range/count'), 2, 2)
sel f. maxval ue = self.get (' robot/range/ maxval ue')
def scal e(self, val):
return (val / self.maxval ue)
def teacher(self):
saf eDi stance = 1.0
if mn(self.get('robot/range/front/value')) < safeDi stance:
trans = 0.0
elif mn(self.get('robot/rangel/back/value')) < safeD stance:
trans = 1.0
el se:
trans = 1.0
if mn(self.get('robot/range/left/value')) < safeDi stance:
rotate = 0.0
elif mn(self.get('robot/range/right/value')) < safeDi stance:
rotate = 1.0
el se:
rotate = 0.5
return trans, rotate
def step(self):
ins = map(sel f.scale, self.get('robot/range/all/value'))
targets = self.teacher()

sel f.net.step(input = ins, output = targets)
trans = (self.net['output'].activation[0] - .5) * 2.0
rotate = (self.net['output'].activation[1] - .5) * 2.0

robot. nmove(trans, rotate)

Figure 6. A neural network controller

Contrast the wander program with the program in Figure 6 which trains an artificial
neural network to avoid obstacles. Again, the code is quite short (about 30 lines) but
includes everything necessary to explore an example of on-line ANN learning on a robot.
The goal of this brain is to teach a neural network to go forward when it is not close to
any obstacles, but to stop and turn away from obstacles that are within one robot unit.
The network takes the current range values as inputs and produces translate and rotate
movements as outputs. With learning turned on, the network learns to do what the teacher
function tells it to do. Turn off learning after training and the network should
approximate (and generalize) the teacher's rules.

Every Pyro brain may include the optional set up method for initialization; it is only
called once when the brain is instantiated. In the NNBr ai n, the set up method is used to
create an instance of the Net wor k class which is a three-layer feedforward network
where the size of the input layer is equal to the number of range sensors on the current
robot being controlled. Each time the brain's St ep method is called, the robot's range

sensors are checked and target values for translate and rotate are determined. Then the

Blank, Kumar, Meeden, and Yanco. JERIC 2005.

range values are normalized using the scal € method to prepare them as inputs for the
neural network. Next, the network's St ep method is called to propagate the given inputs
through the network, back-propagate the error based on the given targets, and update the
weights. Finally the network's outputs are used to move the robot. In this way the robot

is learning online to perform obstacle avoidance.

from pyro. geonetry inport distance
from pyro. brain. behaviors.fsminport State, FSMBrain
cl ass edge(State):
def onActivate(self):
self.startX = self.get('robot/x")
self.startY = self.get('robot/y")
def update(self):
x = self.get('robot/x")
y = self.get('robot/y")
dist = distance(self.startX, self.starty, x, y)
if dist > 1.0:
sel f.goto('turn")
el se:
sel f.robot. move(.3, 0)
class turn(State):
def onActivate(self):
self.th = self.get('robot/th")
def update(self):
th = self.get('robot/th")
if angleAdd(th, - self.th) > 90:
sel f. goto(' edge')
el se:
sel f.robot. nove(0, .2)
def INIT(engine):
brai n = FSMBrai n(engi ne)
brain.add(edge(1)) # 1 neans initially active
brain.add(turn())
return brain

Figure 7. A finite state machine controller

The next example, shown in Figure 7, uses a finite state machine (FSM) to control a
robot. A FSM brain is assumed to consist of a set of states. Each state has an
onAct i vat e method that is called when the state becomes active and an updat e
method that is called on each brain step. A state can relinquish control by using the
got 0 method to activate a new state. The programmer's job is to define an appropriate
set of states to solve a given problem.

In this example, the goal is to control the robot so that it continually moves in a
square. In this case, two states have been defined: one to control the robot while it
traverses the edge of the square and a second to control the robot while it turns. Initially

the edge state is activated. In the edge state, the starting position of the robot is saved and

Blank, Kumar, Meeden, and Yanco. JERIC 2005.

compared to the current position. Once the robot has traveled the length of one robot
unit, the edge state activates the turn state. In the turn state, the starting heading of the
robot is saved and compared to the current heading. Once the robot has turned ninety
degrees, the turn state re-activates the edge state. By repeating this sequence of states, the
robot will travel in the desired square motion.

This section has provided a sample of the variety of robot control programs that can
be explored from within Pyro. The next section outlines ways Pyro can be incorporated

into existing courses in the curriculum.

5. IN THE CURRICULUM

Because Pyro allows students to immediately focus on the most abstract, top-down issues

in autonomous control, we have been able to incorporate Pyro into a variety of courses.

Many of these courses have been taught to students with little to no background in

programming. Pyro has been incorporated in the undergraduate curriculum at Bryn Mawr

College, Swarthmore College, and the University of Massachusetts Lowell (UML).

Additionally, it has been used at at least ten other institutions. At UML, it has also been

used in the graduate level courses. Specifically, Pyro has been incorporated into the

following courses:

1. Introduction to Artificial Intelligence: A standard elective course in the computer
science curriculum. This course is offered at Swarthmore College and Bryn Mawr
College.

2. Cognitive Science: An elective in computer science and psychology. This course is
offered at Bryn Mawr College.

3. Emergence: An elective course that studies emergent computation and emergent
phenomena. Additional Python code has been developed to explore related topics,
such as bird flocking behavior, and cellular automata. This course is offered at Bryn
Mawr College.

4. Androids: Design & Practice: An upper-level elective on recent advances in
robotics. This course is offered at Bryn Mawr College.

5. Developmental Robotics: Another upper-level elective on recent advances in

robotics. This course is offered at Bryn Mawr College and Swarthmore College.

Blank, Kumar, Meeden, and Yanco. JERIC 2005.

6. Robotics II: This is a second undergraduate course in Robotics at the University of
Massachusetts Lowell (UML).

7. Mobile Robotics: This is a graduate-level course offered at UML.

8. Senior Theses: Students at several institutions have used Pyro as a part of their
capstone projects.

9. Summer Research: Students at several institutions have used Pyro as a part of their
summer research projects at the undergraduate and graduate levels. Additionally,
some high school students have also used Pyro in their summer research projects.

It is clear that wherever in the curriculum robotics is used, Pyro can be used as a
laboratory environment. In all of the above instances, students wrote several robot control
programs for real and simulated robots. In most of these cases, students learned Pyro and
robot programming by following the tutorial materials we have created. However, the
kinds of exercises varied depending on the course and its focus.

The student projects from these courses span a large range of complexity. For
example, in the cognitive science course, many students had never written a program
before. However, they were easily able to take simple reactive brains, such as those
shown above, tweak them, and ask observers their impression of the robot's behavior. On
the other hand, advanced computer science students in the Developmental Robotics
courses were able to perform research-level projects rather quickly. For example, students
were able to write Pyro programs to co-evolve predator-prey controllers in a matter of
days. Other examples included:

1. Laser tag: A group of students designed hardware to send and receive infrared
signals, then wrote software to make the game-playing robots locate and target each
other.

2. Adding sensors to a research platform: A student designed a circuit board to allow
additional sensors to be added to a research robot using a serial port on the robot.
The student also wrote control code for the robot. This project was used in the laser
tag project above.

3. Robot Slalom: Several teams of students designed programs that used computer

vision to find gates in a slalom course that ran down a hallway (and around corners).

Blank, Kumar, Meeden, and Yanco. JERIC 2005.

4. Pick Up the Trash: Several teams of students designed programs using computer
vision to find trash (styrofoam cups) and recycling (soda cans) and deliver the found
items to the appropriate bins (trash can or recycling bin).

5. Robot Tour Guide: A group of undergraduate students created a robot that gives

tours of the Park Science Building at Bryn Mawr College.

The last project listed above was done by three undergraduate students and was
partially funded by a grant to them from the Computing Research Association's CREW
program. In each of the above instances, we have carried out extensive evaluations on the

impact of using Pyro in each course. Next, we present one such case study.

6. CASE STUDY: AN ARTIFICIAL INTELLIGENCE COURSE

One way to evaluate whether Pyro is successful at achieving its goal of providing
undergraduates with an effective tool for exploring advanced robotics is to consider how
well it can be integrated into an Al course. In this section we will look in detail at a
particular Al course, and examine the level of sophistication of the robotics projects
attempted by the students. We will also summarize student comments on using Python
and Pyro.

At Swarthmore College, the Al course is typically taught every other year and is
intended for Computer Science majors who have already taken a CS1 course in an
imperative language and a CS2 course in an object-oriented language as prerequisites.
The Al course was updated in Spring 2004 to incorporate Python and Pyro into every lab
and project [Meeden, 2004]. This particular offering of the course had a machine
learning focus covering game playing, neural networks, genetic algorithms, decision
trees, reinforcement learning, and robotics. Students met twice a week for lecture and
discussion and once a week for lab.

The labs were designed to introduce the students to the Python programming
language, the tools available within Pyro, and the machine learning topics being covered
in class. Most labs were relatively short in duration, typically lasting only a week. The
projects were designed to allow the students to explore a machine learning topic in much

more depth and lasted two to three weeks. For the first two projects, the students were

Blank, Kumar, Meeden, and Yanco. JERIC 2005.

given at least one default option that they could implement, but were also encouraged to
develop their own ideas into a project. For the final project, the students were expected to
generate their own project proposal. All student-generated proposals required pre-
approval by the instructor to ensure that they were feasible. Each project culminated in a
four to six page paper describing the machine learning problem, the experimental design,
and the results. The class included six labs and three projects. For the larger labs and
projects, the students were allowed to work in teams of two or three.

The first project involved applying a neural network to a problem. The default option
was to use a database of facial images, described by Mitchell in Chapter 4 of his machine
learning textbook [Mitchell, 1997], to learn features such as pose or expression. The
students used the Conx library (which is part of Pyro) for doing their neural network
projects. Conx includes an implementation of back-propagation learning, allowing the
students to focus on the data representation and training procedure.

The second project involved applying a genetic algorithm to a problem. The default
option was to try to find solutions to the traveling salesman problem for particular
countries in the world or to attempt one of the contests sponsored by the Congress on
Evolutionary Computation which included growing virtual plants, predicting binary
series, and creating art. The students used the Genetic Algorithm library (which is part of
Pyro), allowing them to again focus on the representation of the problem, as well as
creating a good fitness function. One of the interesting aspects of the traveling salesman
problem is that many researchers have proposed special-purpose genetic operators to
more quickly converge on good solutions. The students were asked to implement a new
crossover and a new mutation operator from the literature.

The final project involved robot learning on a simulated Pioneer-style robot with
sonar sensors, blob vision, and a gripper. For the final project, the majority of the
students in the class chose a task in which the robot would be controlled by a neural
network and the weights of the network would be evolved by a genetic algorithm. This
combined all the tools that they had used in the previous two projects. In order to

implement this learning method, the students had to do the following:

Blank, Kumar, Meeden, and Yanco. JERIC 2005.

1. Design a learning environment and task for the robot.

2. Subclass Pyro's Brain class to create a neural network brain based on Pyro's
Net wor k class with task appropriate input values derived from sensors and output
values to command the motors.

3. Subclass Pyro's GA class to create a task appropriate fitness function and stopping
criteria for the evolutionary process. Include commands to save the best neural
network weights found so far.

4. Create a testing program to instantiate a neural network from a file of saved weights

and then evaluate the evolved behavior.

The most ambitious robot learning project from the class involved a three way game
of tag in which each robot had a unique color: the red robot was chasing the blue robot,
the blue robot was chasing the green robot, and the green robot was chasing the red robot.
The neural network brain for each robot had the same structure, but the weights were
evolved in a separate species of the genetic algorithm. The reason for this was to allow
each robot to develop unique strategies.

Other robot learning projects from the class included having a robot gather colored
pucks scattered randomly throughout the environment, having a robot navigate a
PacMan-inspired maze while avoiding a predator robot, and having a robot trying to
capture a puck from a protector robot.

Pyro's infrastructure allowed the students to focus on the most interesting aspects of
the project, such as the environment, task, network architecture, and fitness function,
without having to worry about the details of how the genetic algorithm and neural
network were implemented. The abstractions provided within Pyro enabled the students
to easily integrate a neural network with a genetic algorithm and thus to develop quite
sophisticated robot learning projects in only three weeks time.

Although eighty percent of the students in the class had not used Python before and
there was very little formal instruction given in the class on Python, students were

enthusiastic about the language:

Blank, Kumar, Meeden, and Yanco. JERIC 2005.

"I think that I know enough languages (of a wide variety) that I was able to
adapt to Python even with minimal instruction."

"I really liked Python; it's a clean and easy yet powerful language."

"I like the language. I think it is intuitive and easy to learn, and is
appropriate for this course.”

"I like Python very much because it looks like executable pseudo code."

"I think Python is great to use in higher-level CS classes like this because it
allows for coding relatively complex programs quickly, compared to say C, and
I always find I have more time for extra experimentation when using Python."

As demonstrated in the following comments, students also appreciated the

abstractions provided by Pyro and liked having access to the source code:

"Pyro took care of a lot of the repetitive, less interesting coding for us."

"Pyro had good capabilities for programming real robots and implemented a
lot of learning techniques that are useful in AI. Also it was nice being able to
program generically for any robot."

"I liked that the details were hidden, but I could go in and change things if
needed."

"I found that having the source available was very helpful on a number of
occasions, especially since it's in Python and can be understood quickly."

"Accessible source---I modified a lot of components for my experiments.
The code was reasonably clean and straightforward to work with."

As is evident from above, Pyro enables students at all levels to do robotics projects
that were only feasible in the past by research teams. This, we believe, is one of the
biggest pay-offs of Pyro. It brings aspects of current research into the curriculum in an

accessible, low cost manner.

7. CONCLUSIONS

The Pyro project is the latest incarnation of our attempts to make the teaching of
autonomous mobile robots accessible to students and teachers alike. We have developed

a variety of programs, examples, and tutorials for exploring robotics in a top-down

Blank, Kumar, Meeden, and Yanco. JERIC 2005.

fashion, and we are continuing to add new curricular modules. Some of these modules
are created by students in the classes, others by the authors, and some by faculty at other
institutions who have adopted Pyro. Modules currently under development include
multi-agent communication, reinforcement learning, logic, planning, and localization.

We believe that the current state-of-the-art in robot programming is analogous to the
era of early digital computers when each manufacturer supported different architectures
and programming languages. Regardless of whether a computer is connected to an ink-jet
printer or a laser printer, a computer today is capable of printing on any printer device
because device drivers are integrated into the system. Similarly, we ought to strive for
integrated devices on robots. Our attempts at discovering useful abstractions are a first
and promising step in this direction. We believe that discoveries of generic robot
abstractions will, in the long run, lead to a much more widespread use of robots in
education and will provide access to robots to an even wider range of students.

Our goal is to reduce the cost of learning to program robots by creating uniform
conceptualizations that are independent of specific robot platforms and incorporate them
into an already familiar programming paradigm. Conceptualizing uniform robot
capabilities presents the biggest challenge: How can the same conceptualization apply to
different robots with different capabilities and different programming API's? Our
approach, which has been successful to date, has been shown to work on several robot
platforms, from the most-expensive research-oriented robot, to the lowest-cost LEGO-
based ones. We are striving for the "write-once/run-anywhere" idea: robot programs,
once written, can be used to drive vastly different robots without making any changes in
the code. This approach leads the students to concentrate more on the modeling of robot
"brains" by allowing them to ignore the intricacies of specific robot hardware. More
importantly, we hope that this will allow students to gradually move to more and more
sophisticated sensors and controllers. In our experience, this more generalized framework
has resulted in a better integration of robot-based laboratory exercises in the Al
curriculum. In addition, our system is not only accessible to beginners, but is also usable

as a research environment for our own robot-based modeling.

Blank, Kumar, Meeden, and Yanco. JERIC 2005.

ACKNOWLEDGMENTS

Pyro source code, documentation and tutorials are available at
www. Pyr oRobot i cs. or g. This work is funded in part by NSF CCLI Grant DUE
0231363.

REFERENCES

BALCH, T. 2004. TeamBots website. The URL is www.teambots.org.
BALCH, T. 1998. Behavioral diversity in learning robot teams. Ph.D. thesis, Georgia Institute of Technology.

BLANK, D. S., HUDSON, J. H., MASHBURN, B. C., AND ROBERTS, E. A. 1999. The XRCL Project: The
University of Arkansas' Entry into the AAAI 1999 Mobile Robot Competition. Tech. rep., University of
Arkansas.

GERKEY, B., VAUGHAN, R., AND HOWARD, A. 2003. The Player/Stage project: Tools for multi-robot and
distributed sensor systems. In Proceedings of the 11th International Conference on Advanced Robotics.
Coimbra, Portugal, 317-323.

MEEDEN, L. 2004. CS63 Artificial Intelligence, Spring 2004, Swarthmore College. The URL is
http://www.cs.swarthmore.edu/meeden/cs63 /s04/cs63.html.

MITCHELL, T. M. 1997. Machine Learning. McGraw-Hill, Boston, MA.

MONDADA, R., FRANZI, E., AND IENNE, P. 1993. Mobile robot miniaturization: A tool for investigation in
control algorithms. In Proceedings of the Third International Symposium on Experimental Robots. Kyoto,
Japan.

MONTEMERLO, M., ROY, N., AND THRUN, S. CARMEN: Carnegie Mellon Robot Navigation Toolkit. The
URL for CARMEN is http://www-2.cs.cmu.edu/carmen/.

PRECHELT, L. 2000. An empirical comparison of C, C++, Java, Perl, Python, Rexx, and Tcl for a
search/string-processing program. Tech. rep., Universitat Karlsruhe, Fakultat fur Informatik, Germany.

RUSSELL, S. AND NORVIG, P. 1995. Artificial Intelligence: A Modern Approach. Prentice Hall, Englewood
Cliffs, NJ.

	Pyro: A Python-based Versatile Programming Environment for Teaching Robotics
	Citation

	Pyro: A Python-based Versatile Programming Enviornment for Teac

