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Legendrian torus and cable links

Jennifer Dalton, John B. Etnyre, and Lisa Traynor

We give a classification of Legendrian torus links. Along the way,
we give the first classification of infinite families of Legendrian links
where some smooth symmetries of the link cannot be realized by
Legendrian isotopies. We also give the first family of links that are
non-destabilizable but do not have maximal Thurston-Bennequin
invariant and observe a curious distribution of Legendrian torus
knots that can be realized as the components of a Legendrian torus
link. This classification of Legendrian torus links leads to a classi-
fication of transversal torus links.

We also give a classification of Legendrian and transversal cable
links of knot types that are uniformly thick and Legendrian simple.
Here we see some similarities with the classification of Legendrian
torus links but also some differences. In particular, we show that
there are Legendrian representatives of cable links of any uniformly
thick knot type for which no symmetries of the components can be
realized by a Legendrian isotopy, others where only cyclic permu-
tations of the components can be realized, and yet others where
all smooth symmetries are realizable.

1 Introduction 12

2 Background and preliminary results 30

3 Positive torus links 47

4 Negative torus links with knotted components 49

5 Negative torus links with unknotted components 52

6 Ordered classification 63

7 Cable links 87

References 104

11



✐

✐

“2-Etnyre” — 2024/8/9 — 12:05 — page 12 — #2
✐

✐

✐

✐

✐

✐

12 J. Dalton, J. B. Etnyre, and L. Traynor

1. Introduction

The study of Legendrian knots has gone hand-in-hand with the development
of contact geometry in dimension three, and there have been many classifi-
cation results for Legendrian knots [2, 8, 11, 13–17, 21, 37, 38]. On the other
hand, there have been surprisingly few concerning Legendrian links. Some
key questions one might ask about such links are the following.

Motivating Link Questions. Let L be a smooth link type with knot com-
ponents K1 ∪ . . . ∪Kn.

1) Realization of n-tuples: Given Legendrian representatives Λi of the
knots Ki, is it possible to construct a Legendrian representative of
L that realizes the given Legendrian representatives Λ1, . . . ,Λn of the
components? Some weaker sub-questions are:
a) What can be said about “classical link geography”, i.e., which

Thurston-Bennequin (tb) invariants and rotation numbers (r) can
be realized for the components of a Legendrian representative of L?

b) Are there Legendrian representatives of L that do not destabilize as
a link even though individual components do destabilize as knots?

2) Unordered classification: How many ways can the smooth unordered
link L be realized with Legendrian components realizing specified clas-
sical geography?

3) Ordered classification: Given a fixed representative Λ of L, what
smooth symmetries of the components of Λ can be realized by a Legen-
drian isotopy?

History: One of the first results concerning the ordered classification “sym-
metry” questions was by the third author [39] who used generating function
techniques to show that there was a two component link called the “helix
link” in the 1-jet space of S1 where there two components could be smoothly
exchanged, but there was a Legendrian representative of the link where the
two components could not be exchanged. This work was extended in [35, 40].
The first results about Legendrian symmetries for links in S3 were due to
Mishachev, who in [33] used contact homology to show that the components
of the n-copy of a Legendrian unknot could only be cyclically permuted, even
though they could be smoothly permuted arbitrarily. This was followed by
work of Ng [36] who showed that it was not possible to exchange the compo-
nents of a 2-copy of the maximal tb invariant Legendrian figure-eight knot,



✐

✐

“2-Etnyre” — 2024/8/9 — 12:05 — page 13 — #3
✐

✐

✐

✐

✐

✐

Legendrian torus and cable links 13

which implies that it is not possible to do any permutations of the n-copy
of the Legendrian figure-eight knot with max tb.

The first geography realization result was by Mohnke [34], who used
bounds on the Thurston-Bennequin invariant of links coming from the
HOMFLY-PT polynomial to show that there were no realizations of the
Borromean rings or the right handed Whitehead link where all the compo-
nents had maximal Thurston-Bennequin invariant for their knot types.

The first classification results for links were given by Ding and Geiges in
[4]. There they showed that the “cable link”, which is an unknot together
with a (p, q)-cable of it, were Legendrian simple — that is determined by
their classical invariants (knot type, Thurston Bennequin invariant, and ro-
tation number). They also showed an analogous result in the 1-jet space
of S1. With the exception of the helix link mentioned above, these knots
have no smooth symmetries so do not address Question (3). In the paper
[5], Ding and Geiges addressed the helix link in the 1-jet space of S1, thus
giving the first classification result where one can see topological symmetries
of a link that cannot be realized by a Legendrian link in that link type. Re-
cently Geiges and Onaran gave a classification of Legendrian links realizing
the positive Hopf link [20]. This work very interestingly goes beyond the
classification of Legendrian Hopf links in the standard contact structure on
S3, but also gives the classification in all contact structures (both the tight
one and all overtwisted ones) in S3.

New results: Below we give a complete classification of Legendrian torus
links and prove several results about cable links. The main new phenomena
that arise from this work are as follows, where tb refers to the Thurston-
Bennequin invariant and r refers to the rotation number invariant.

1) The components of any Legendrian torus link must all have a common
destabilization. This provides a strong restriction on the geography of
negative torus links with knotted components.

2) All max tb representatives of a negative torus link with knotted com-
ponents must have components with the same tb and r invariants,
however there are max tb representatives of two-component negative
torus links with unknotted components where the components have
different tb values. When there are 3 or more components of these
negative torus links with unknotted components, there are represen-
tatives that do not have max tb yet do not destabilize. These are the
first such examples for links. Similar results hold for cable links.
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14 J. Dalton, J. B. Etnyre, and L. Traynor

3) For max tb representatives of negative torus links with at least 3 com-
ponents, only cyclic permutations of the components can be achieved
through Legendrian isotopy. This gives an infinite family of examples
where the ordered and unordered classification of Legendrian links dif-
fers.

4) Although the components of a smooth cable link can be arbitrarily
permuted via a smooth isotopy, every uniformly thick, non-cable knot
type, which includes the Figure-eight knot, admits some Legendrian
cables (with Legendrian equivalent components) where no non-trivial
permutations are possible, others where only cyclic-permutations are
possible, and yet others where all permutations are possible.

Many of the unordered torus link classification arguments parallel the
torus knot classification arguments of [13], however the unordered classifica-
tion of negative torus links with unknotted components, (n,−nq)-torus links,
requires new ideas. The most challenging portion of the torus link classifi-
cation is to understand the restrictions on permutations of the components
of negative torus links with maximal tb invariant. Although this restric-
tion was previously established for (n,−nq)-torus links, [33], our analysis
of pre-Lagrangian tori and annuli in terms of convex surface theory gives
a geometric explanation for why non-cyclic permutations are impossible for
all (np,−nq)-torus links. Moreover these convex surface arguments can also
be adapted to the setting of Legendrian cable links and allows for under-
standing when even cyclic permutations are not possible.

1.1. Torus links

Smooth torus links are links that, after a smooth isotopy, lie on an unknotted
torus in R3; they form an important family of smooth links. Every torus
link has components that are all unknots or all topologically equivalent
torus knots. Moreover, it is not hard to see that it is possible to arbitrarily
permute the components of any smooth torus link with a smooth isotopy.
We will address the classification of Legendrian torus links. First, it is useful
to recall what is known about the classification of Legendrian unknots and
Legendrian torus knots.

Oriented Legendrian unknots were classified by Eliashberg and Fraser in
[7]; some alternate proofs can be found in [13, 19]. They found that unknots
are simple in the sense that they are classified by their tb and r invariants. In
particular, there is a unique Legendrian unknot with tb = −1 and r = 0, and
all other unknots are obtained by stabilizations of this one with maximal
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tb invariant. These results were obtained using an intricate analysis of the
characteristic foliations of Seifert disks for the knots.

Oriented Legendrian torus knots were classified by the second author
and Honda in [13] using the technique of convex surfaces. Since the (p, q)-
torus link agrees with the (q, p)-torus link and with the (−p,−q)-torus link,
it suffices to look at (p,±q)-torus links where q ≥ p ≥ 1. An unknot arises
when p = 1; nontrivial torus knots correspond to p > 1 and gcd(p, q) = 1.
As is the case for unknots, Legendrian torus knots are classified by their
topological knot type, and their tb and r invariants. However, in [13] it is
shown that the possible range of the classical invariants is more intricate
and has a different flavor depending on whether one is looking at positive
or negative torus knots. In particular:

1) When considering Legendrian torus knots that are topologically
(p,+q)-torus knots, there is a unique one with max tb invariant of
pq − p− q; this max tb representative will have r = 0, and all other
representatives are stabilizations of this one with max tb;

2) When considering Legendrian torus knots that are topologically
(p,−q)-torus knots, if −m− 1 < −q/p < −m, m ∈ Z+, then there will
be 2m representatives with max tb = −pq; each of these max tb repre-
sentatives is distinguished by their r invariant, which is an element of
the set

{±(q − p− 2pk) : k ∈ Z, 0 ≤ k ≤ m− 1},

and all other representatives are stabilizations of one with max tb.

It is common to represent all Legendrian representatives of a fixed topo-
logical type by a mountain range, which consists of an infinite graph with
vertices labeled by pairs of integers. Every vertex of the mountain range rep-
resents a unique Legendrian knot with vertex labels giving the knot’s r and
tb invariants. Two vertices are connected if and only if the corresponding
knots differ by a positive or negative stabilization: a positive stabilization
will lower the Thurston-Bennequin invariant and raise the rotation number
while a negative stabilization will lower the Thurston-Bennequin invariant
and lower the rotation number. We can rephrase the above classification re-
sults by saying that we understand the mountain range of the unknot and all
torus knots. For example, Figure 1 represents all Legendrian (2,+3)-torus
knots. All positive torus knots will have a mountain range graph of this
shape, however the “peak” of the graph will occur at tb = pq − p− q. In
contrast, nontrivial negative torus knots will always have “multiply peaked”
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mountain ranges. Figure 2 gives the mountain range representing all Legen-
drian (3,−7)-torus knots.

r = −2 −1 0 1 2

tb = 1

0

−1

Figure 1: The mountain range representing all possible Legendrian (2,+3)-
torus knots.

r = −5 − 4 − 3 − 2 − 1 0 1 2 3 4 5

tb = −21

−22

−23

Figure 2: The mountain range representing all possible Legendrian (3,−7)-
torus knots.

In this paper, we classify both ordered and unordered Legendrian torus
links: (np,±nq)-torus links where q ≥ p ≥ 1, gcd(p, q) = 1, and n ≥ 2. Since
an (np,±nq)-torus link has n components each of which is a (p,±q)-torus
knot, a useful way to visualize an (np,±nq)-torus link is as an n-tuple of
vertices on the mountain range that represents the possible (p,±q)-torus
knots. We will sometimes denote an (np,±nq)-torus link as an n(p,±q)-
torus link.

The following theorem answers Motivating Link Questions (1) and (2)
in the case of torus links.

Theorem 1.1. (Realization and Unordered Legendrian Torus Link Clas-
sification) Consider two oriented Legendrian torus links L and L′ that
are topologically equivalent to the (np,±nq)-torus link, where q ≥ p ≥ 1,
gcd(p, q) = 1, and n ≥ 2. If labels can be given to the components L =
⨿ni=1Λ

′
i, L

′ = ⨿ni=1Λ
′
i so that tb(Λi) = tb(Λ′

i) and r(Λi) = r(Λ′
i), i = 1, . . . , n,

then there exists a contact isotopy taking L to L′ (but not necessarily Λi to
Λ′
i). Moreover, the precise range of the classical invariants is given as fol-

lows:
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1) For any positive torus link, namely any (np,+nq)-torus link, there ex-
ists a unique Legendrian representative with maximal tb invariant; for
such a link all components will have tb = pq − p− q. For any posi-
tive torus link with non-maximal tb invariant, the components can be
destabilized to obtain the one with maximal tb invariant.

2) For any negative torus link with knotted components, namely any
(np,−nq)-torus link with p > 1, if −m− 1 < −q

p < −m, m ∈ Z+, there
are 2m Legendrian realizations of the (np,−nq)-torus link with max-
imal tb invariant; all components of a maximal version will have
tb = −pq and the same rotation number. For any negative torus link
with non-maximal tb invariant, the components can be destabilized to
obtain the one with maximal tb invariant.

3) For negative torus links with unknotted components, namely (n,−nq)-

torus links, there is a set of q(q+1)
2 nondestabilizable Legendrian re-

alizations consisting of the n-copy of an unknot with tb = −q and,
for 0 < t < q, the t Legendrian twist of the n-copy of an unknot with
tb = −q + t. The n-copy will have maximal tb invariant while the Leg-
endrian twist versions will have maximal tb invariant if and only if
n = 2. Any other Legendrian (n,−nq)-torus link will destabilize to one
in this nondestabilizable set.

This theorem follows from Theorem 3.1 for the Case (1), from Theorem 4.1
and Lemma 4.2 for Case (2), and Theorem 5.1 for Case (3). The n-copy of
a Legendrian link will be defined in Section 2.5, and the t Legendrian twist
of the n copy will be defined in Definition 5.5.

We will represent the components of Legendrian (np,±nq)-torus link
by circling n vertices on the mountain range that represents all possible
Legendrian (p,±q)-torus knots. By Theorem 1.1, an n-tuple of vertices on
the mountain range of the (p,±q)-torus knot can represent at most one
unordered (np,±nq)-torus link. Figure 3 represents the unique Legendrian
(4,+6)-torus link with maximal tb invariant. In fact, by the above theorem,
there is a one-to-one correspondence between (4,+6) = 2(2,+3)-torus links
and pairs of vertices on the (2,+3)-mountain range. However, for negative
torus links, the above theorem indicates that there are more restrictions on
the n-tuples of vertices that correspond to torus links. For example, Figure 4
shows some pairs of vertices that do not correspond to a 2(3,−7)-torus link.
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18 J. Dalton, J. B. Etnyre, and L. Traynor

When the components are nontrivial knots (p > 1), Legendrian (np,−nq)-
torus links with maximal tb invariant correspond to a “peak” of the (p,−q)-
mountain range chosen n times; if the components are unknots, the non-
destabilizable Legendrian representatives of (n,−nq)-torus links correspond
to a vertex with tb = −q chosen n times or n vertices all with the same rota-
tion number consisting of one vertex with tb = (−q + t) and (n− 1) vertices
with tb = (−q − t). This “split level” representative will have maximal tb
invariant only when n = 2. See Figures 5 and 6.

r = −2 −1 0 1 2

tb = 1

0

−1

Figure 3: The two circles represent the unique unordered Legendrian
2(2,+3)-torus link with maximal tb invariant. In fact, any two vertices
on this mountain range for the (2,+3)-torus knot represent a Legendrian
2(2,+3)-torus link.

Figure 4: It is not possible to construct Legendrian 2(3,−7)-torus links with
components as indicated in these mountain ranges.

Now we address the symmetry question in the Motivating Link Ques-
tion (3). When considering the ordered classification of torus links, notice
that the components inherit a natural cyclic ordering from the underlying
torus. The next theorem tells us that for positive torus links, the unordered
and ordered classifications agree, but in the ordered classification of nega-
tive torus links, the cyclic order of particular components must be preserved.
This result extends the findings of Mishachev [33] for (n,−nq)-torus links.

Theorem 1.2. (Ordered Legendrian Torus Link Classification) Consider
two ordered, oriented Legendrian torus links L = (Λ1, . . . ,Λn) and L′ =
(Λ′

1, . . . ,Λ
′
n) that are topologically equivalent to the (np,±nq)-torus link,



✐

✐

“2-Etnyre” — 2024/8/9 — 12:05 — page 19 — #9
✐

✐

✐

✐

✐

✐

Legendrian torus and cable links 19

2(1,−3)-torus links

3(1,−3)-torus links

Figure 5: The 6 = 3(4)
2 Legendrian 2(1,−3)-torus links with max tb invari-

ant, and the 6 non-destabilizable 3(1,−3)-torus knots, three of which have
max tb invariant.

Figure 6: Max tb invariant Legendrian 2(1,−3)-torus links on the left and
the non-destabilizable 3(1,−3)-torus links on the right. All components are
oriented clockwise.

where q ≥ p ≥ 1, gcd(p, q) = 1, and n ≥ 2. Suppose tb(Λi) = tb(Λ′
i) and

r(Λi) = r(Λ′
i), i = 1, . . . , n.

1) If L and L′ are positive torus links, then there exists a contact isotopy
taking L to L′ such that Λi is mapped to Λ′

i.
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2) If L and L′ are negative torus links, then there exists a contact isotopy
taking L to L′ such that Λi is mapped to Λ′

i if and only if the cyclic
ordering of the components with tb = −pq is preserved.

See Figures 7 and 8 for illustrations of this theorem.

(a) (b)

Figure 7: Two examples of unordered Legendrian 3(3,−7)-torus links. When
considered as ordered links, in (a) noncyclic permutations produce nonequiv-
alent ordered oriented Legendrian links, while in (b) all permutations pro-
duce equivalent ordered oriented Legendrian links.

(a) (b)

r = −2− 1 0 1 2
tb = −1

−2

−3

Figure 8: Two examples of unordered Legendrian 4(1,−2)-torus links. When
considered as ordered links, in (a) noncyclic permutations produce nonequiv-
alent ordered oriented Legendrian links, while in (b) all permutations (pre-
serving tb and r) produce equivalent ordered oriented Legendrian links.

From this classification of Legendrian torus links, we can deduce the
classification of transversal torus links. Recall that a smooth knot type is
transversely simple if any two transversal representatives T and T ′ with the
same self-linking number are transversally isotopic. A smooth knot type is
negatively stable simple if for any two Legendrian representatives Λ and Λ′

satisfying tb(Λ)− r(Λ) = tb(Λ′)− r(Λ′), there exists n1 and n2 such that
(S−)

n1(Λ) is Legendrian isotopic to (S−)
n2(Λ′), where S±(Λ) denote the ±-

stabilization of Λ. In fact, it is shown in [10, 13] a knot type is negatively
stable simple if and only if it is transversally simple. Analogously, a smooth
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link type is transversally simple if for any two transversal representatives
(T1, . . . , Tm) and (T ′

1 , . . . , T
′
m) with corresponding self-linking numbers,

ℓ(Ti) = ℓ(T ′
i ), for all i,

there exists a transversal isotopy from (T1, . . . , Tm) to (T ′
1 , . . . , T

′
m). We will

say that a smooth link type is negatively stable simple if for any two Legen-
drian representatives (Λ1, . . . ,Λm) and (Λ′

1, . . . ,Λ
′
m) with

tb(Λi)− r(Λi) = tb(Λ′
i)− r(Λ′

i), for all i,

there exists n1, . . . , nm and n′1, . . . , n
′
m such that ((S−)

n1(Λ1), . . . ,
(S−)

nm(Λm)) is Legendrian isotopic to ((S−)
n′

1(Λ′
1), . . . , (S−)

n′
m(Λ′

m)). Ob-
serve that Theorems 1.1 and 1.2 show that all torus links are negatively
stable simple. The proof in [13] can easily be extended to show that if a link
type is negatively stable simple, then it is transversally simple.

Theorem 1.3 (Ordered Transversal Torus Link Classification). For
q ≥ p ≥ 1, gcd(p, q) = 1, and n ≥ 2, there is a unique transversal (np,±nq)
torus link that cannot be destabilized; all components of this nondestabilizable
link have self-linking number ±q(p− 1)− p. All other transversal represen-
tatives of this torus link destabilize to this one. In particular, two transver-
sal (np,±nq)-torus links are determined by the self-linking numbers of their
components. For all transversal torus links, all (self-linking number preserv-
ing) permutations of the components are realizable through transversal iso-
topy. □

1.2. Cable links

Let K denote an oriented knot type. Then for n ≥ 1, and p, q ∈ Z such that
p ≥ 1 and gcd(p, q) = 1, the (np, nq)-cable of K, denoted K(np,nq), is the n-
component link type obtained by taking an (np, nq)-curve on the boundary
of a tubular neighborhood of a representative of K. Here by a (p, q)-curve
we mean one that runs p times longitudinally, with the longitude given by a
Seifert surface for K, and q times meridionally. In our definition of a cable,
we allow K to be an unknot 1, so in this paper we consider torus links to
be cable links and the unknot and torus knots to be cable knots. Observe
that if q/p ∈ Z, then p = 1, and thus K(p,q) is topologically equivalent to K.

1This convention differs from the frequent convention in the definition of the
more general satellite knots
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We allow all values of q since, in contrast to the case of torus links, K(np,nq)

need not be topologically equivalent to K(nq,np). We restrict to p ≥ 1 since
K(−np,−nq) will be topologically equivalent to −K(np,nq).

We will be able to understand the Legendrian classification of K(np,nq)

when K is a “uniformly thick” and a Legendrian simple knot type. A knot
type K is called uniformly thick, cf. [15], if given any solid torus S whose
core is in the knot type K then there is a solid torus S′ containing S and
isotopic to S, such that S′ is a standard neighborhood of a max-tb Legendrian
representative of K; see Definition 2.15 for an explanation of a standard
neighborhood. There are many uniformly thick knot types: the figure-eight
knot [32], all negative torus knots [15], and most twist knots are uniformly
thick [32]. However not all knots are: for example, the unknot, positive torus
knots [15, 16], and many Lagrangian slice knots [31] are not uniformly thick.

Towards understanding the Legendrian classification, it will be impor-
tant to understand the non-destabilizable representatives of K(np,nq). In Def-
inition 7.1, we define standard Legendrian (np, nq)-cables in terms of stan-
dard neighborhoods of any knot type K; here we give their definition in
terms of front projections.

Definition 1.4. Given a knot type K, let tb(K) denote the maximal
Thurston-Bennequin invariant that can be realized by any Legendrian repre-
sentative of K. Then for n ≥ 1 and p, q ∈ Z such that p ≥ 1 and gcd(p, q) =
1, the standard Legendrian (np, nq)-cable of K is defined according to the
slope q/p as follows; see Figure 10 for an illustration.

1) For tb(K)-slope cables, qp = tb(K):

• Fix Λ such that tb(Λ) = tb(K).
• Then Λ(np,nq) = Λ(n1,nq) is the n-copy of Λ, so its front diagram can
be obtained by starting with the front of Λ and making n-copies
from slight shifts in the z-direction.

2) To construct a greater-slope cable, q
p > tb(K), start by writing q

p =

tb(K) + s
p , for s ∈ Z positive.

• Fix Λ such that tb(Λ) = tb(K).
• Make the np-copy of Λ.
• Form Λ(np,nq) by replacing a trivial np-stranded tangle of the np-
copy with ns

np = s
p of a full positive twist, which corresponds to

repeating the fundamental positive crossing strand tangle, as shown
at the top of Figure 9, ns times.
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Figure 9: The upper diagram is a 1/p twist when there are p strands. On
the lower left is an S-tangle and on the lower right is a Z-tangle.

3) For lesser-slope cables, q
p < tb(K), start by writing q

p = ⌈ qp⌉ −
s
p , for

0 ≤ s < p.
• Let Λ be a Legendrian representative of K with tb(Λ) = ⌈ qp⌉ ≤

tb(K).
• Make the p-copy of Λ.
• Form Λ±

(p,q) by replacing a trivial p-stranded tangle of the p-copy of
Λ with either s fundamental p-stranded Z-tangles or s fundamental
p-stranded S-tangles as shown in Figure 9. Observe that when p =
1, s = 0, and thus Λ+ = Λ− = Λ.

• Take the n-copy of Λ±
(p,q) to form Λ±

(np,nq).

Remark 1.5. When K is the unknot, and q > p > 1, the standard Leg-
endrian (np, nq)-cables of K are the Legendrian torus links with maximal
Thurston-Bennequin invariant.

Figure 10 shows the front diagrams of some Legendrian cables of the
figure-eight knot in all three slope types. For a uniformly thick knot type
K, all of the standard Legendrian (np, nq)-cables will have max tb, see
Lemma 7.4. When q

p = q
1 < tb(K), observe that each standard lesser slope

(n, nq)-cable of K is the n-copy of a Legendrian representatives Λ of K with
tb(Λ) = q. There will be some additional non-destabilizable versions coming
from “twisted n-copies” that parallel the torus links with unknotted com-
ponents pictured in Figure 6. As was the situation for the torus link with
unknotted components, these integral and lesser-sloped twist versions will
have max tb if and only if n = 2. Since each component of a Legendrian
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Figure 10: Some cables of the figure-eight knot K with tb(K) = −3. The
upper left is the standard (tb(K)-slope) 3(1,−3)-cable of the figure-eight
knot K. The upper right is the standard (greater-slope) 3(2,−5)-cable of the
figure-eight knot. The lower diagram is a standard (lesser-slope) 3(2,−7)-
cable of the figure-eight knot.

integral, lesser-slope cable of K is topologically equivalent to K, the com-
ponents can be represented as an n-tuple in the mountain range of K. For
example, whenK is the figure-eight knot, and q

p = −5 < −3 = tb(K), in par-
allel to Figure 5, there will be six maximal Thurston-Bennequin Legendrian
representatives of the (2,−10) = 2(1,−5) cable of the figure-eight knot, and
six non-destabilizable Legendrian representatives of the (3,−15) = 3(1,−5)
cable of the figure-eight knot, three of which will have maximal Thurston-
Bennequin invariant.

In Propositions 7.7 and 7.8, we show that ifK is uniformly thick, then ev-
ery Legendrian representative ofK(np,nq) will destabilize to either a standard
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Legendrian (np, nq)-cable or, in the case that q
p = q

1 < tb(K), to a twisted
n-copy. This allows us to classify unordered Legendrian cables of a uniformly
thick and Legendrian simple knot typeK; see Theorem 7.6. In particular, for
a uniformly thick and Legendrian simple knot type K, knowing the moun-
tain range of K allows us to determine the mountain range of all Legendrian
representatives of K(np,nq).

We also establish the ordered classification of Legendrian cable links
of uniformly thick and simple knot types. As was seen in the case of Leg-
endrian torus links, there is interesting flexibility and rigidity in terms of
permutations of the components in the max tb representatives of K(np,nq).

Theorem 1.6. Let K be a uniformly thick knot type. For n ≥ 2, p, q ∈ Z

such that p ≥ 1 and gcd(p, q) = 1, if L(np,nq) = (Λ1, . . . ,Λn) is a standard
Legendrian (np, nq)-cable of K, where the Λi are ordered as they appear on
the torus or annulus used in the definition of standard cables, the following
permutations of the components are possible.

greater-slope cables: If q/p > tb(K), then any permutation of the Λi is
possible by a Legendrian isotopy.

tb(K)-slope cables: If q/p = tb(K), and K is not a cable knot or K is an
(r, s)-cable knot and q/p ̸= rs, then no permutation of the Λi can be
realized by a Legendrian isotopy.

lesser-slope cables : If q/p < tb(K), and K is not a cable knot or K is
an (r, s)-cable knot and q/p ̸= rs, then only cyclic permutations of the
Λi can be realized.

Remark 1.7. One may observe in the proof of Theorem 1.6 that for stan-
dard cables with q/p > tb(K) does not need the hypothesis that K is uni-
formly thick, but the other cases do need this hypothesis.

Remark 1.8. In the tb(K)-slope cables of Theorem 1.6, the hypothesis
that K is not a cable is necessary in order to forbid any permutations. For
example, suppose K is the (2,−3)-torus knot, which is a (2,−3)-cable of the
unknot. Since tb(K) = −6, the standard Legendrian n(1,−6)-cable of K is
the n-copy of a max-tb representative of K, and, by Theorem 1.2, we know
cyclic permutations of the components are allowed.

Example 1.9. If K is the uniformly thick, (non-cable) figure-eight knot,
then, since tb(K) = −3, Theorem 1.6 tells us that it is not possible to do
any permutation of the n components in Ln(1,−3), the standard Legendrian
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n(1,−3)-cable of K; this case recovers Ng’s result from [36] that it is not
possible to do any permutations of the n-copy of max-tb Legendrian figure-
eight knot. However, if the slope q/p > −3 then it is possible to arbitrarily
permute the components of Ln(p,q), while if q/p < −3, then it is only possible
to cyclically permute the components of Ln(p,q).

After establishing which permutations can be realized in the max-tb
standard Legendrian cables, we can give the ordered Legendrian classification
of K(np,nq), where K is a uniformly thick and a Legendrian simple knot type.

Theorem 1.10. (Ordered Cable Link Classification) For n ≥ 2, p, q ∈ Z

such that p ≥ 1 and gcd(p, q) = 1, the (np, nq)-cable of a uniformly thick,
Legendrian simple knot type K is Legendrian simple as an unordered link.
The range of possible Thurston-Bennequin and rotation number invariants
for such a link will be given in Section 7.1. Consider two ordered, ori-
ented Legendrian links L = (Λ1, . . . ,Λn) and L′ = (Λ′

1, . . . ,Λ
′
n) that repre-

sent the knot type K(p,q), and suppose tb(Λi) = tb(Λ′
i) and r(Λi) = r(Λ′

i), for
i = 1, . . . , n. Then:

Greater-Slope Cables: If q/p > tb(K), then there exists a contact isotopy
taking L to L′ such that Λi is mapped to Λ′

i.

tb(K)-Slope Cables: If q/p = tb(K) and K is not a cable knot or K is
an (r, s)-cable knot and q/p ̸= rs, then there exists a contact isotopy
taking L to L′ such that Λi is mapped to Λ′

i if and only if the ordering
of the components with tb = tb(K) is preserved.

Lesser-Slope Cables: If q/p < tb(K) and K is not a cable knot or K is
an (r, s)-cable knot and q/p ̸= rs, then there exists a contact isotopy
taking L to L′ such that Λi is mapped to Λ′

i if and only if the cyclic
ordering of the components with tb = pq is preserved.

Immediately from the Legendrian classification, we obtain a classification
of transverse representatives of cable links.

Theorem 1.11 (Ordered Transversal Cable Link Classification).
For n ≥ 2, p, q ∈ Z such that p ≥ 1 and gcd(p, q) = 1, the cable link K(np,nq)

of a uniformly thick, Legendrian simple knot type K is transversely simple.
All such transverse links destabilize to the unique maximal self-linking num-
ber representative whose self-linking number will depend on the slope q/p as
follows.
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Greater-Slope Cables: If q/p > tb(K), then sl(K(p,q)) = pq − q +

p sl(K),

Integral and Lesser-Slopes Cables: If q/p ≤ tb(K) and p = 1, then
sl(K(p,q)) = sl(K),

Nonintegral and Lesser-Slope Cables: If q/p < tb(K) and p > 1, then
sl(K(p,q)) = pq − p(tb(K)− sl(K) + ⌈q/p⌉) + q.

Moreover, all the components of such a transverse link can be permuted if
they have the same self-linking number. □

The results in this paper give a complete picture of Legendrian torus
links as well as cables of Legendrian simple, uniformly thick knot types, but
there are several interesting questions left open and brought up by this work.

Question 1. Can one classify Legendrian representatives of uniformly
thick non-simple knot types?

We expect the techniques developed in this paper could lead to a classifi-
cation of such Legendrian links. For such a knot type K, one has some finite
number of maximal Thurston-Bennequin invariant knots. We expect that all
cable links will destabilize to a standard cable of one of these knots or to a
twisted version in the integral case when the cable slope is less than tb(K),
and that two such links will become isotopic only if all the components of
each link have been stabilized enough for the constituent knots to become
isotopic. We believe the ordered classification will follow along lines similar
to the ones discussed above. In particular, in some cases, we expect the ca-
ble links to be non-transversely simple. Good candidates for such knots are
negative twist knots, see [17, 32].

Question 2. What is the classification of Legendrian representatives of
cables of a non-uniformly thick knot type?

A knot K can fail to be uniformly thick in two ways. It can admit tori in
the knot type with convex boundary having dividing slope less than tb(K)
that do not thicken to a standard neighborhood of a maximal Thurston-
Bennequin invariant representative of the knot type, or there can be tori
in the knot type that have convex boundary with dividing slope greater
than tb(K). In the former case we expect there to be similar results to
those presented here. For example, we expect it to be a tractable problem
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to determine the Legendrian cable links of positive torus knots. The latter
case seems to be a more difficult problem requiring new ideas.

Question 3. In a basic slice, are two pre-Lagrangian tori with character-
istic foliations of the same slope necessarily isotopic? If the tori have some
leaves in common, can the isotopy be done relative to those leaves?

A key part in the proofs of our ordered classification results involves
understanding the ordering of the components of torus links and cable links
coming from pre-Lagrangian tori. From this we expect that the answer to
the above questions to be YES, and such an answer would simplify several
of our proofs (and make their geometric content more obvious). We discuss
this more thoroughly in Remark 6.24.

1.3. Contact structures on thickened and solid tori

In our proofs we need to use many results about contact structures on T 2 ×
[0, 1], some of which are new. We mention several of the ones that might be
of general interest here. Any unfamiliar terminology will be defined where
the result occurs in the text.

The first result restricts the slopes of pre-Lagrangian tori in a thickened
torus.

Lemma 2.3. Let ξ be a minimally twisting contact structure on T 2 × [−1, 1]
that is the union of a ∓ basic slice on T 2 × [−1, 0] and a ± basic slice
on T 2 × [0, 1]. If si denotes the slope of the dividing curves on T 2 × {i},
i = −1, 0, 1, then there is no pre-Lagrangian torus parallel to the boundary
in (T 2 × [−1, 1], ξ) whose characteristic foliation has slope s0. □

We also study the relation between pre-Lagrangian tori and convex tori in
thickened tori and enhance Lemma 3.17 from [13]. To state this result we first
must develop the idea of a complementary annulus in Section 2.3.2. This is
an annulus in a thickened torus with a non-rotative contact structures that
determines the contact structure and can also give a cyclic order to the
dividing curves of convex tori.

Lemma 2.9. Consider a basic slice T 2 × [0, 1], where T 2 × {0} has slope s0,
and T 2 × {1} has slope s1. Suppose s ∈ (s0, s1) ⊂ ∂D2, and T ′ ⊂ T 2 × [0, 1]
is a boundary parallel convex torus in standard form with slope s. Then:
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1) There is a pre-Lagrangian torus T isotopic to T ′ that intersects T ′

transversely, and T ′ ∩ T is exactly the union of the Legendrian divides
of T ′.

2) Furthermore, T ′ is contained in a non-rotative thickened torus R′ of
slope s that has a complementary annulus A′ with two dividing curves
that run from one boundary component of A′ to the other; A′ defines
a cyclic ordering of the Legendrian divides of T ′ that agrees with the
cyclic ordering of these curves on the pre-Lagrangian T . □

We prove an analogous result in Lemma 2.16 for tight contact structures on
solid tori.

1.4. Outline

The remainder of the paper is organized as follows. In Section 2, after defin-
ing our notation conventions for torus links and reviewing classification re-
sults of contact structures on thickened tori, we show that it is possible
to use a “complementary annulus” to define a cyclic ordering of the Legen-
drian divides of a convex torus in a basic slice or in a solid torus with convex
boundary having two dividing curves parallel to the core of the solid torus.
We also find the maximum Thurston-Bennequin invariant for Legendrian
torus links, which in the case of (n,−nq)-torus links is more restrictive than
the known upper bounds for the components. In Section 3 we establish the
unordered classification of all Legendrian positive torus links, and in Sec-
tion 4 we establish the unordered classification of all Legendrian negative
torus links with knotted components. In Section 5, we give the unordered
classification of all Legendrian negative torus links that have unknotted com-
ponents; this involves defining the t-twisted n-copies of a Legendrian unknot
and establishing that these links are non-destabilizable and, when n ≥ 3, do
not have maximum Thurston-Bennequin invariant. In Section 6 we establish
the ordered classification of all Legendrian torus links. In particular, using
convex surface theory, we reprove Mishachev’s result that forbids non-cyclic
permutations of the (n,−nq)-torus links with max tb, and we describe which
permutations can and cannot be obtained for all Legendrian (np,±nq)-torus
links. Non-cyclic rigidity appears in permutations of the components of a
Legendrian (np,−nq)-torus link with tb = −pq. By studying pre-Lagrangian
tori, we first show that it is impossible to do these non-cyclic permutations
in a basic slice, and then we show that we can “localize” isotopies in S3 to
the basic slice situation. In Section 7, we give the ordered and unordered
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classification of Legendrian cable links of Legendrian simple, uniformly thick
knot types. In particular, we show that many of the Legendrian torus link
results generalize to Legendrian cable links, however now a study of pre-
Lagrangian annuli in solid tori shows that there are some slopes for which
in the ordered classification not even cyclic permutations are possible.
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2. Background and preliminary results

We assume the reader is familiar with the basic notions concerning Legen-
drian knots and convex surface theory. Sections 2 and 3 of [13] should be
sufficient, but the reader might also want to consult [12].

In Subsection 2.1, we recall the definition of a torus link. In Subsec-
tion 2.2, we will review the construction of the Farey graph, which provides
a useful labeling scheme for curves on a torus. Subsections 2.3 and 2.4 estab-
lish what we need to know about contact structures on thickened and solid
tori. In Subsection 2.5, we give the definition of the n-copy of a Legendrian
knot and make some observations about its relation to torus links. Finally,
in Subsection 2.6, we discuss the Thurston-Bennequin invariant for links
and, in particular, for torus links.

2.1. Torus knots and links

Recall that a standardly embedded torus T provides a genus one Heegard
splitting of S3, S3 = V0 ∪T V1, where V0 and V1 are solid tori. Then any
curve on T can be written as pλ+ qµ, where µ is the unique curve that
bounds a disk in V0, and λ is the unique curve that bounds a disk in V1;
such a curve will be called a (p, q)-torus knot. We orient µ arbitrarily and
then orient λ so that λ, µ form a positive basis forH1(T ), where T is oriented
as the boundary of V0. We will often identify the torus T with a quotient
of the square [0, 1]× [0, 1]/ ∼ with (0, y) ∼ (1, y) and (x, 0) ∼ (x, 1) for all
x, y, where the circle obtained as the quotient of a horizontal line (slope
0) corresponds to the longitude λ, and the circle obtained as the quotient
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of a vertical line (slope ∞) corresponds to the meridional curve µ. More
generally, when q ≥ p ≥ 1 and gcd(p, q) = 1, a line of slope ±q/p corresponds
to a (p,±q)-torus knot.

Remark 2.1. The slope convention here is the inverse of the slope conven-
tion in [13] and in much of the early contact topology literature, but agrees
with the convention typically used by topologists.

Remark 2.2. We always choose consistent orientations on the components
of a (np,±nq)-torus link (K1, . . . ,Kn). So we have that the linking numbers
lk(Ki,Kj) = ±pq, for all i ̸= j.

2.2. Farey graph

A convenient way to keep track of curves on T 2 is through the Farey graph.
Consider the unit disk D2 with the interior given the standard hyperbolic
metric. We will label a collection of points in ∂D2; these labeled points will
be in one-to-one correspondence with embedded curves on T 2.

Label the point (0, 1) by 0 = 0/1 and the point (0,−1) by ∞ = 1/0;
join these two labeled points by a hyperbolic geodesic. Now inductively
consider points (x, y) ∈ ∂D2 with x > 0 half way between two points with
labelings a/b and c/d. Label this point (a+ c)/(b+ d) and join it to the
points with labels a/b and c/d by hyperbolic geodesics. We can label points
in ∂D2 ∩ {x < 0} similarly except ∞ is considered as −1/0. See Figure 11.
Once we have a basis λ, µ fixed for H1(T

2), a point a/b in the Farey graph
corresponds to the embedded curve representing the homology class bλ+ aµ.
Additionally, two curves give a basis for H1(T

2) if and only if they are joined
by an edge in the Farey graph. It is also useful to know that if two curves
are represented by a/b and c/d, then their minimal geometric intersection
is given by |ad− bc|. Given two points s0 and s1 in the Farey graph, we
denote by [s0, s1] the interval on ∂D2 obtained from a clockwise-oriented
curve from s0 to s1.

2.3. Tight contact structures on T 2
× [0, 1]

In this section we will consider contact structures on thickened tori. In par-
ticular, we consider basic slices and minimally twisting contact structures,
which are stacks of basic slices. We also develop the notion of a “comple-
mentary annulus” for a non-rotative contact structure; this will be useful in
Section 6 when we analyze symmetries of negative torus links.
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∞

0

−1 1

−2 2

−1/2 1/2

−1/3 1/3

−2/3 2/3

−3/2 3/2

−3 3

Figure 11: The Farey graph: a basic slice can be represented by a signed
geodesic.

Throughout this paper, we will be using established facts about convex
surfaces. In particular, recall that a convex surface will have dividing curves
that more-or-less encode the contact structure near the surface. For con-
vex tori, we will often apply “Giroux Flexibility” [22] to assume that the
characteristic foliation is in standard form, meaning that it has curves of
singularities parallel to the dividing curves, called Legendrian divides, and
the rest of the foliation consists of linear curves (containing singularities) of
a slope s that is not equal to the slope of the dividing curves.

2.3.1. Basic slices and minimally twisting contact structures. A
basic slice is a tight contact structure ξ on T 2 × [0, 1] such that the boundary
tori Ti = T 2 × {i}, i = 0, 1, are convex with two dividing curves of slope si
that are connected by a geodesic in the Farey graph, and any convex torus T
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in T 2 × [0, 1] parallel to the boundary has dividing slope in [s0, s1] ⊂ ∂D2.
Honda [24] and Giroux [23] have shown that there are exactly two basic
slices ξ± for any such s0 and s1, and ξ− = −ξ+. So as unoriented contact
structures they are the same. A basic slice can be represented by a geodesic
in the Farey graph equipped with a sign. One can build explicit models
for a basic slice with boundary dividing slopes s0 and s1 and see that any
s ∈ (s0, s1) can be realized as the slope of a pre-Lagrangian torus parallel to
the boundary; recall a pre-Lagrangian torus is a torus with a non-singular
linear characteristic foliation.

A contact structure ξ on T 2 × [0, 1] is minimally twisting if the boundary
tori Ti = T 2 × {i}, i = 0, 1, are convex with dividing curves of slope si and
any convex torus T parallel to the boundary has dividing slope in [s0, s1] ⊂
∂D2. A minimally twisting contact structure is necessarily tight and when
each boundary component has just two dividing curves, it can be broken into
pieces that are basic slices, [23, 24]. More specifically, if one takes a minimal
path (of signed geodesics) in the Farey graph in the clockwise direction
from s0 to s1, then each edge in the path corresponds to a basic slice, and
(T 2 × [0, 1], ξ) is the concatenation of these basic slices. It is known that ξ is
universally tight if and only if all the signs are the same, [24]. Moreover if ξ
is universally tight, then for any s ∈ (s0, s1) there is a pre-Lagrangian torus
T in T 2 × [0, 1] whose characteristic foliation has slope s, [24]. In Section 6,
we will use the fact that this is not the case if the contact structure on
T 2 × [0, 1] is not universally tight:

Lemma 2.3. Let ξ be a minimally twisting contact structure on T 2 ×
[−1, 1] that is the union of a ∓ basic slice on T 2 × [−1, 0] and a ± basic
slice on T 2 × [0, 1]. If si denotes the slope of the dividing curves on T 2 × {i},
i = −1, 0, 1, then there is no pre-Lagrangian torus parallel to the boundary
in (T 2 × [−1, 1], ξ) whose characteristic foliation has slope s0.

Proof. For a contradiction, suppose T0 is a pre-Lagrangian torus in T 2 ×
[−1, 1] parallel to the boundary with characteristic foliation having slope s0.
Choose coordinates on T 2 so that s0 = 0. Since the characteristic foliation
of a surface determines the contact structure in a neighborhood, there is
a neighborhood N0 of T0 that agrees with the standard model T 2 × (−ϵ, ϵ)
with contact structure ker(cos t dϕ+ sin t dθ). For sufficiently large n, we can
find convex tori in this model with two dividing curves of slopes −1/n and
1/n that cobound a thickened torus N ′

0 ⊂ N0 that contains T0. Since N
′
0 is

minimally twisting (being a subset of T 2 × [−1, 1]) and in the Farey graph
we know that there are geodesic paths from −1/n to 0 and from 0 to 1/n,
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the contact structure on N ′
0 is the union of two basic slices. The contact

structure on N0 (and hence on N ′
0) is universally tight, and thus the signs

of the basic slices making up N ′
0 have the same sign. Let T ′

0 be the torus
in N ′

0 that divides N ′
0 into two basic slices, B− and B+ of the same sign.

Now T 2 × [−1, 1] \N ′
0 is a union of two thickened tori C− and C+ with

boundary slopes s−1 and −1/n on the first and 1/n and s1 on the second.
The assumption that T 2 × [−1, 1] is the union of two basic slices implies
that C− ∪B− and C+ ∪B+ are basic slices. Since they are both tight, by
Theorem 4.25 in [24], all the signs of the basic slices making up C− agree
with those of B−, and similarly all signs in the basic slices making up C+

agree with the sign of B+. But since we already observed that B− and B+

have the same sign, we see that all the signs that determine ξ on T 2 × [−1, 1]
must be the same. This means that ξ is universally tight, contradicting our
hypothesis. □

2.3.2. Non-rotative contact structures. A contact structure ξ on
T 2 × [0, 1] is called non-rotative if the boundary tori T0 and T1 are convex
with equal dividing slopes, s1 = s0, and any convex torus T in T 2 × [0, 1]
that is parallel to the boundary also has dividing slope s0; these conditions
imply ξ is tight. For a non-rotative (T 2 × [0, 1], ξ), we can construct a “com-
plementary annulus” as follows.

Definition 2.4 (Complementary Annulus). Suppose T 2 × [0, 1] has a
non-rotative contact structure with dividing slope s. Choose t such that
s and t are connected by an edge in the Farey graph. By isotopy, we can
assume the boundary of T 2 × [0, 1] has ruling curves of slope t; let Lt ⊂ T 2 be
a curve of slope t. It is possible to construct an annulus A in T 2 × [0, 1] such
that A is isotopic to Lt × [0, 1], A is convex, and ∂A consists of ruling curves.
We call this a complementary annulus for the non-rotative T 2 × [0, 1].

Lemma 2.5. A non-rotative contact structure on T 2 × [0, 1] of slope s is
uniquely determined by the dividing curves on a complementary annulus.

Proof. If you have two non-rotative contact structures on T 2 × [0, 1] with the
same boundary (and hence we assume the characteristic foliation on their
boundaries is the same) and the dividing curves on their complementary an-
nuli agree, then after isotopy we can assume that the complementary annuli
and the annuli’s characteristic foliations agree. Then the contact structures
are isotopic in a neighborhood of ∂(T 2 × [0, 1]) ∪A. The complement of this
region is a solid torus with convex boundary having two longitudinal di-
viding curves (since the slope of the dividing curves and the slope of the
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complementary annulus form a basis for the homology of T 2), which has a
unique tight contact structure; see Theorem 2.11. □

Remark 2.6 (Non-rotative models). Given an annulus A and a set
of curves Γ that can arise as the dividing curves for a non-rotative struc-
ture (that is the dividing curves run from one boundary component of the
annulus to the other), we can build an explicit model for a non-rotative
contact structure on T 2 × [0, 1] such that A is a complementary annulus
with dividing set Γ; our construction will yield a contact structure that is
S1-invariant in the direction of the dividing curves on the boundary. For
this construction, start with A and Γ ⊂ A. We first construct a foliation on
A satisfying the conditions of Γ being dividing curves for the foliation, [22].
There is an R-invariant contact structure on R×A that induces Γ as the
dividing curves on A× {0}. Quotienting by the action of Z on R will give
a contact structure on S1 ×A = T 2 × [0, 1] that is S1-invariant. Moreover,
one can show that the contact structure is non-rotative and that the divid-
ing curves on the boundary of T 2 × [0, 1] are parallel to the first S1 factor.
Thus we have an explicit model for any non-rotative contact structure that
is S1-invariant, where the S1-action is in the direction of the dividing curves
on the boundary.

In a pre-Lagrangian torus, there is a natural cyclic ordering of the leaves
of the foliation. In a convex torus, there is again a natural cyclic ordering
of leaves made from ruling curves, but it is less obvious how to define the
ordering of leaves formed from the Legendrian divides. In Subsection 2.3.3,
we will define a cyclic ordering of the Legendrian divides of a convex torus
that lies either in a basic slice or in a universally tight T 2 × [0, 1]. Our model
will be a convex torus with a non-rotative T 2 × I neighborhood that has a
complementary annulus A with a dividing set consisting of two curves that
run from one boundary component to the other. We now explain our model
T 2 × I and how the complementary annulus defines a cyclic ordering of the
Legendrian divides on convex tori in this model.

Lemma 2.7. Consider a non-rotative T 2 × [0, 1] of slope s with a comple-
mentary annulus A that has two dividing curves that run from one boundary
component of A to the other. A closed curve γ in the interior of A isotopic
to the core of A that transversally intersects the dividing curves of A gives
rise to a convex torus Tγ. From A, we can define a cyclic ordering of the
Legendrian divides of Tγ. Moreover, any complementary annulus isotopic to
A will induce the same cyclic ordering on the Legendrian divides of Tγ.
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Proof. As mentioned in Lemma 2.5, the slope of the non-rotative neigh-
borhood and the dividing curves on the complementary annulus uniquely
determine the contact structure. So let A be an annulus with dividing set Γ
consisting of two curves that each run from one boundary component to the
other. Using the construction from Remark 2.6, we obtain a non-rotative
contact structure ξ on T 2 × [0, 1] where each boundary torus will have two
dividing curves. This contact structure is S1-invariant in the direction of the
dividing curves on the boundary tori and is also [0, 1]-invariant.

From curves on A, we can construct convex tori. Let γ be any closed
curve in the interior ofA that is isotopic to the core ofA and has a transversal
intersection with Γ. Then Tγ = S1 × γ is a convex torus that splits T 2 × [0, 1]
into two thickened tori R− and R+. The contact structure ξ restricted to
each of these is non-rotative. We also know that the number of dividing
curves on Tγ is 2n = |γ ∩ Γ| and S1 × (γ ∩ Γ) are Legendrian divides on Tγ ,
since the dividing curves on A are precisely where the contact structure is
tangent to the S1 fibers.

The complementary annulus A defines a cyclic ordering of the Legen-
drian divides of Tγ as follows; see Figure 12.

γ

1 2 34 5 6 7 8

e0

e1

Figure 12: The annulus A in the construction of T 2 × [0, 1]. The dividing
curves are the horizontal red curves and γ is shown in blue. The dotted circle
is used to order the Legendrian divides on Tγ .

Recall Γ divides the convex A into positive and negative regions; for
i = 0, 1, let ei be the arc in S1 × {i} ⊂ ∂A that is contained in the negative
region of A. Then the union of e0, e1, and the two arcs in Γ form a closed
loop on A; orient this loop so that the portions of it coming from ei are
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oriented as the boundary of A. Now when one traverses this oriented loop,
one encounters all of the elements of γ ∩ Γ, and hence a cyclic order is
induced on these points, which correspond to the Legendrian divides on Tγ .

We claim any other convex annulus isotopic to A defines the same or-
dering. To see this let A′ be another annulus isotopic to A with boundary
rulings curves and intersecting Tγ in a ruling curve. The torus Tγ breaks A
and A′ into two sub-annuli A± and A′

± where A+ and A′
+ have boundary

on T 2 × {1}. Notice that A± × S1 is an S1-invariant contact structure de-
termined by the dividing curves on A±. According to [25, Proposition 4.4]
any other convex surface isotopic to A± will have dividing set containing
that of A± (after isotopy). Thus the dividing set of A′

± contains that of A±.
But since the dividing set of A± has arcs that run across the annuli, there
can be no closed dividing curves in A′

±. Moreover, since the number of times
the dividing curves intersect Tγ and T 2 × {i} is determined by the number
of dividing curves on Tγ and T 2 × {i}, we see that the dividing curves on
A′

± agree with those on A±. Thus the ordering of the Legendrian divides
coming from A′ will be the same as the one coming from A. □

2.3.3. Neighborhoods of pre-Lagrangian tori and convex tori. In
[13, Lemma 3.17], it is shown that the Legendrian divides on a convex torus
arise as the intersections of the convex torus with a pre-Lagrangian torus.
We will need an enhanced version of this lemma that includes a special
non-rotative neighborhood of the convex torus; the corresponding comple-
mentary annulus will enable us to define a cyclic ordering of the Legendrian
divides on the convex torus, which will coincide with the cyclic ordering on
the pre-Lagrangian. We explain this special neighborhood in the following
local model where we will start with a pre-Lagrangian torus and construct
models for convex tori.

Lemma 2.8. In any neighborhood of a pre-Lagrangian torus T , one can
construct a convex torus T ′ with Legendrian divides given as T ′ ∩ T . For
any choice of such T ′, one can find a non-rotative T 2 × I containing T ′

that has a complementary annulus A consisting of two dividing curves that
run from one boundary component to the other. This A induces a cyclic
ordering of the Legendrian divides of T ′, and this cyclic ordering agrees with
that given by the pre-Lagrangian T .

Proof. Recall that the characteristic foliation on a surface determines the
contact structure up to isotopy in a neighborhood of the surface. Thus
given a pre-Lagrangian torus T , we can choose coordinates on T so that
the foliation has slope 0, and the contact structure in a neighborhood
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T × (−ϵ, ϵ) is given by ker(cos t dϕ+ sin t dθ), where t ∈ (−ϵ, ϵ), and θ, ϕ ∈
S1 are angular coordinates on T . Consider the circle C ⊂ T × {t = 0} given
by C = {θ = 0, t = 0}, and then the annulus A = C × (−ϵ, ϵ) = {θ = 0, t ∈
(−ϵ, ϵ)} ⊂ T × (−ϵ, ϵ). Observe that A is convex: the contact vector field ∂

∂θ
is transverse to A, and the dividing curve of A is the circle C. Keep in mind
that our pre-Lagrangian T is S1

θ × C.

C

γ
12

3

4

5

6
7

8

γ+

γ−

Figure 13: Starting with a pre-Lagrangian torus T = C × S1
θ , Tγ = γ × S1

θ

is a convex torus with Legendrian divides given by (γ ∩ C)× S1
θ = Tγ ∩ T .

The tori Tγ± = γ± × S1
θ form the boundary of a region R with a non-rotative

contact structure such that A ∩R is a complementary annulus with dividing
curves given by A ∩ C. The dotted curve p, constructed as in the proof of
Lemma 2.7 from the dividing curves and portions of the boundary of the
complementary annulus, induces a cyclic ordering on the Legendrian divides
of Tγ that agrees with the cyclic ordering from T .

We now show how curves on A give rise to convex tori whose Legendrian
divides are given by the intersections of these tori with the pre-Lagrangian T .
Let γ ⊂ A be the image of the circle C under a smooth isotopy such that γ ∩
C ̸= ∅, and, for all p ∈ γ ∩ C, Tpγ is spanned by ∂

∂t ; see Figure 13. Then Tγ =
S1
θ × γ is a convex torus: singularities of the characteristic foliation happen

precisely along S1
θ × (γ ∩ C), and it follows that we can choose dividing

curves for the foliation thus guaranteeing Tγ is convex. By perturbing γ
relative to γ ∩ C, it is possible to assume the characteristic foliation is in
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standard form with ruling curves of slope ∞, meaning parallel to C ; observe
that there are |γ ∩ C| dividing curves and the Legendrian divides of Tγ are
exactly Tγ ∩ T .

Next we show that, from curves γ± on A, we can construct a non-rotative
neighborhood R of Tγ such that both boundary components of ∂R are con-
vex tori with two dividing curves, and the complementary annulus for R
is given by A ∩R. Let γ± ⊂ A be disjoint images of the circle C under a
smooth isotopy such that γ± transversally intersects C in two points, and
γ is contained in the region of A bounded by γ±; see Figure 13. Following
a procedure as in the construction of Tγ above, we let Tγ± = S1

θ × γ±; the
Tγ± are convex with two dividing curves of slope 0, meaning parallel to the
θ-axis. The contact structure on the region R between the two tori Tγ± is
non-rotative. It follows that R can be identified with an I invariant neigh-
borhood of a convex torus with two dividing curves. Notice that Tγ splits R
into two regions R− ∪R+. As mentioned above, we can assume all the curves
are chosen so that the tori Tγ− , Tγ and Tγ+ , have ruling curves of slope ∞.
The annuli A± = A ∩R± can be slightly perturbed to have boundary being
the union of ruling curves. Then the A± are convex annuli with Legendrian
boundary, and the dividing curves can be taken to be T ∩A± = C ∩A±.
The contact structure on each R± is non-rotative and is completely deter-
mined by the isotopy class of the dividing curves on A±. Notice that R is
exactly the type of non-rotative thickened torus considered in Lemma 2.7.
Thus the complementary annulus A+ ∪A− determines an ordering on the
Legendrian divides of Tγ that agrees with the ordering coming from T . □

The following is our needed enhancement of [13, Lemma 3.17].

Lemma 2.9. Consider a basic slice T 2 × [0, 1], where T 2 × {0} has slope
s0, and T

2 × {1} has slope s1. Suppose s ∈ (s0, s1) ⊂ ∂D2, and T ′ ⊂ T 2 ×
[0, 1] is a boundary parallel convex torus in standard form with slope s. Then:

1) There is a pre-Lagrangian torus T isotopic to T ′ that intersects T ′

transversely, and T ′ ∩ T is exactly the union of the Legendrian divides
of T ′.

2) Furthermore, T ′ is contained in a non-rotative thickened torus R′ of
slope s that has a complementary annulus A′ with two dividing curves
that run from one boundary component of A′ to the other; A′ defines
a cyclic ordering of the Legendrian divides of T ′ that agrees with the
cyclic ordering of these curves on the pre-Lagrangian T .
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The statement of (1) is given in [13, Lemma 3.17], but no explicit proof
is given. Here we will give the proof of the strengthened statement.

Proof. Fix a basic slice T 2 × I with boundary slopes s0, s1, and fix s ∈
(s0, s1).

Given a convex torus T ′ of slope s in a basic slice that is parallel to
the boundary, one can find convex tori T± in T 2 × [0, 1] that both have two
dividing curves of slope s and cobound a region R′ with a non-rotative con-
tact structure that contains T ′ (this is just by attaching bypasses to T ′ that
can be found on annuli from T ′ to T 2 × {i} with boundary being curves of
slope si). Choose a complementary annulus A′ (see Definition 2.4) for the
non-rotative region R′ where the boundary curves of A′ have slope t; the
convex A′ will have two dividing curves that run from one boundary compo-
nent to the other. In this way, we break our basic slice into three regions: R′

0

(containing T 2 × {0}), R′, and R′
1 (containing T 2 × {1}). Moreover, R′ is

split into two thickened tori R′
− ∪R′

+ by T ′ and we can set A′
± = A′ ∩R′

±.
We now move to a model situation that incorporates the pre-Lagrangian

torus that has the stated properties, and then we will prove this model is
contactomorphic to our situation as described in the previous paragraph.
In our basic slice, we can find a pre-Lagrangian torus T of slope s. By
Lemma 2.8, in any neighborhood of T we can find a convex torus Tγ and
convex tori Tγ± that bound a non-rotative region R containing Tγ . Choose
a complementary annulus A of slope t for R. The torus Tγ splits R into two
thickened tori R− ∪R+. Set A± = A ∩R±.

By the appropriate choice of γ we can assume that the dividing curves on
A± and A′

± agree. Now the tori Tγ± divide our basic slice into three pieces:
R0, R, and R1. Since the dividing curves on A and A′ agree, R and R′ are
contactomorphic; see Lemma 2.5. Moreover, this contactomorphism takes
Tγ to T ′. Indeed, since the dividing curves on A± and A′

± agree, there is a
contactomorphism from R− to R′

− and from R+ to R′
+. Taken together these

give the desired contactomorphism of R to R′. The classification of contact
structures on thickened tori implies that Ri and R

′
i are also contactomorphic.

Thus we have a contactomorphism of our basic slice that takes Tγ to T ′.
The image of T is the desired pre-Lagrangian torus that satisfies (1).

For the first part of statement (2) we can take T± to be the image of Tγ±

under the contactomorphism. In the model, the ordering of the Legendrian
divides on Tγ given by A is the same as given by T , and thus the same will
be true for T ′. □
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Remark 2.10. The lemma can be extended from basic slices to universally
tight contact structures ξ on T 2 × [0, 1]. We know that a universally tight ξ
is obtained by stacking together several basic slices with the same sign. If
the slope s lies in a basic slice then one just repeats the proof in this basic
slice and ignores the others. If s is one of the slopes on the boundary of one
(and hence two) basic slices, then from our discussion above we know that
there is a pre-Lagrangian torus with the desired slope contained in the union
of the two basic slices with boundary having slope s. Then one may repeat
the above proof with little modification to reach the same conclusion.

2.4. Tight contact structures on S1
× D2 and neighborhoods of

Legendrian knots

We begin with the simplest classification result.

Theorem 2.11 (Kanda 1997 [30]). For all q ∈ Z, there is a unique con-
tact structure on S1 ×D2 with convex boundary having two dividing curves
of slope q.

Remark 2.12. Classification results on contact manifolds with convex
boundary are usually stated in terms of the dividing curves. It is useful
to keep in mind that the characteristic foliation on the boundary is an in-
variant. So, for example, the uniqueness statement for contact structures on
S1 ×D2 with a “convex boundary having two dividing curves of slope q”
is shorthand for a uniqueness statement for contact structures on S1 ×D2

with a “fixed characteristic foliation that has two dividing curves of slope
q;” uniqueness then means unique up to an isotopy fixing the boundary.

Remark 2.13 (Model for solid torus with boundary slope 0). There
is a simple model for the unique contact structure on S1 ×D2 with convex
boundary having two dividing curves of slope 0. Consider a neighborhood
N0 of the x-axis in R3/ ∼, where (x, y, z) ∼ (x+ 1, y, z) and R3 has the
standard contact structure ξ = ker(dz − ydx). We can assume the boundary
of the neighborhood is convex with two dividing curves of slope 0. By Giroux
Flexibility [22], we can assume the characteristic foliation is in standard form
(as described at the beginning of Subsection 2.3). Notice that Λ0 = {y = z =
0} is a Legendrian knot inN0, and the annulus A0 = {y = 0} ⊂ N0 is foliated
by Legendrian curves isotopic to Λ0.

Remark 2.14. By considering the standard model in Remark 2.13, we see
that if S1 ×D2 has convex boundary with dividing slope q ∈ Z, for any
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s ∈ (−∞, q) ⊂ ∂D2 (as defined in Subsection 2.2), there is a pre-Lagrangian
torus T 2 parallel to the boundary that has slope s.

We use the N0 from Remark 2.13 as a “standard neighborhood” of a
Legendrian knot with tb = 0: the convex boundary of this neighborhood will
have two dividing curves and a characteristic foliation in standard form.
Standard neighborhoods for Legendrian knots with tb ̸= 0 are obtained by
applying a diffeomorphism to N0.

Definition 2.15. Given a Legendrian knot Λ, by the Legendrian Neigh-
borhood Theorem (see, for example, [18, Corollary 2.5.9]), we know there
is a neighborhood N of Λ and a contact diffeomorphism of N0 (as defined
in Remark 2.13) onto N ; such an N is a standard neighborhood of Λ. The
diffeomorphism from N0 to N sends Λ0 to Λ, the two slope 0 dividing curves
of ∂N0 to curves of slope tb(Λ) on ∂N , and the annulus A0 to an annulus A
in N foliated by curves isotopic to Λ.

The analog of Lemma 2.9 for solid tori is the following.

Lemma 2.16. Let (S1 ×D2, ξ) be a solid torus with convex boundary hav-
ing 2 dividing curves of slope 0 (that is they are parallel to S1 × {p}). Sup-
pose s ∈ Q satisfies s ∈ (−∞, 0) ⊂ ∂D2.

1) Given any convex surface T ′ ⊂ S1 ×D2 in standard form with bound-
ary slope s and isotopic to ∂(S1 ×D2), there is a pre-Lagrangian torus
T isotopic to T ′ that intersects T ′ transversely, and T ′ ∩ T is exactly
the union of the Legendrian divides of T ′.

2) Furthermore, there are two convex tori T− and T+ that co-bound a
non-rotative thickened torus R′ containing T ′ where T± each have two
Legendrian divides of slope s that arise as T± ∩ T . The tori T± together
with a complementary annulus A to the slope s define a cyclic ordering
of the Legendrian divides of T ′ that agrees with the cyclic ordering of
these curves on T .

Proof. Given the convex torus T ′ in Item (1) we can use the classification
of contact structures on solid tori to find a universally tight thickened torus
containing T ′ in S1 ×D2. The result now follows from Lemma 2.9 and Re-
mark 2.10. □

2.4.1. Neighborhoods of Legendrian knots. Given a Legendrian knot
Λ, inside a standard neighborhood N of Λ (as described in Remark 2.13),
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there is a standard neighborhood N± of the ± stabilized Λ. The dividing
curves on the boundary of N± have slope tb(K)− 1, so the region R± be-
tween N and N± is a basic slice. Moreover the sign of the basic slice is
determined by the sign of the stabilization.

2.4.2. Constructing (p,−q)-torus knots. At this point we review
the construction of non-trivial, maximal Thurston-Bennequin invariant
(p,−q)-torus knots (p > 1) with varying rotation numbers, [13, Section 4].
Choose m ∈ Z such that −m− 1 < −q/p < −m. We can decompose S3 as
U−m−1 ∪ ([0, 1]× T 2) ∪ S−m, where S−m is the closure of the complement
of a standard neighborhood of a Legendrian unknot U−m with tb = −m,
U−m−1 is a standard neighborhood of a Legendrian unknot U−m−1 with
tb = −m− 1, and T 2 × [0, 1] is a basic slice with dividing slopes −m− 1
and −m, see Figure 14. Thus in T 2 × [0, 1] there is a pre-Lagrangian torus

S
−m

U
−m−1 m− 1 basic slices

± ± ±

Figure 14: The decomposition of S3 used to find maximal Thurston-
Bennequin (p,−q)-torus knots. Each vertical line represents a Heegaard
torus for S3 and the (p,−q)-torus knot is found on the red torus.

with linear characteristic foliation of slope −q/p. Our Legendrian (p,−q)-
torus knot Kp,−q is one of the leaves of this pre-Lagrangian torus. In [13] it
was shown that any maximal Thurston-Bennequin invariant negative torus
knot sits on such a torus for some choice of unknots U−m and U−m−1.

For m > 1, there will be options for the Legendrian unknot U−m dis-
tinguished by r(U−m), and two choices for U−m−1 determined by whether
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a positive or negative stabilization is done to U−m; this leads to the 2m
Legendrian representatives of K(p,−q). The different choices for r(U−m) and
signs of stabilization for U−m−1 will determine r(Kp,−q).

When p = 1, the (1,−q)-torus knot is an unknot, but (n,−nq)-torus links
will be distinct links as q varies. One can still build models for maximal
Thurston-Bennequin invariant (n,−nq)-torus links using pre-Lagrangian
tori as shown in the proof of Lemma 5.2.

2.5. The n-copy

Many non-destabilizable Legendrian negative torus links will be n-copies of
a Legendrian torus knot.

Definition 2.17. For any Legendrian knot Λ, we see from Definition 2.15
that any standard neighborhood of Λ contains an annular region A contain-
ing Λ that is foliated by Legendrian curves isotopic to Λ; the image of any
n curves in A is the n-copy of Λ, see the bottom row of Figure 6 and upper
left picture in Figure 10 for examples of n-copies. If tb(Λ) = m, then the
n-copy is topologically the n(1,m)-cable of Λ.

Remark 2.18. In the front projection, the components of the n-copy can
be obtained as slight shifts of Λ in the z-direction, [33].

Lemma 2.19. Let T be a pre-Lagrangian torus and Λ a leaf of the char-
acteristic foliation of T . Then any n leaves in the characteristic foliation of
T can be taken to be the n-copy of Λ.

Proof. Let Λ1,Λ2, . . . ,Λn be n leaves in the characteristic foliation of T . Let
A ⊂ T be an annulus that contains ∪iΛi. Since the characteristic foliation on
a surface determines the contact structure in a neighborhood of the surface
we see that A has a neighborhood N contactomorphic to a neighborhood
of the A0 defined in Remark 2.13. So N is a standard neighborhood of Λ,
and Λi are leaves in the foliation of A. Thus the n leaves form the n-copy
of Λ. □

The n-copy exists for any Legendrian knot. When Λ is an unknot or a
negative torus knot with maximal tb, then the n-copy will be a torus link.

Lemma 2.20. 1) For q > p ≥ 2, gcd(p, q) = 1, if Λ is a nontrivial Leg-
endrian (p,−q)-torus knot with tb(Λ) = −pq, then the n-copy of Λ is a
Legendrian (np,−nq)-torus link L = (Λ1, . . . ,Λn) with tb(Λ1) + · · ·+
tb(Λn) = −npq.
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2) If Λ is a Legendrian unknot with tb(Λ) = −q, then the n-copy of Λ is
a Legendrian (n,−nq)-torus link L = (Λ1, . . . ,Λn) with tb(Λ1) + · · ·+
tb(Λn) = −nq.

Proof. We need to show that when Λ is an unknot or a negative torus knot,
the n-copy lies on a standardly embedded torus. This is clear when Λ is an
unknot. When Λ is a (p,−q)-torus knot with tb = −pq, as described in Sec-
tion 2.4.2, it was shown in [13] that Λ is a leaf in the characteristic foliation
of a pre-Lagrangian torus T that bounds an unknotted solid torus. Thus
taking n leaves in the foliation will give the n-copy of Λ by the Lemma 2.19;
but this is also the (np,−nq)-cable of the unknot, that is the (np,−nq)-torus
link. □

Remark 2.21. Notice that for any Legendrian knot Λ, the n-copy of Λ
will be a (n, n tb(Λ))-cable of Λ.

We will see in the next section, that these torus links formed as n-copies
will have maximal Thurston-Bennequin invariant.

2.6. Thurston-Bennequin invariant of Legendrian torus links

The Thurston-Bennequin invariant for a link L is defined in the same way
as for knots. In particular, if L′ is the Legendrian push-off of L (that is a
copy of L obtained by flowing a short time by a Reeb flow), then tb(L) is
the total linking of L with L′. Using the combinatorial description of tb from
a count of crossings and cusps, see for example [12, 2.62], and the fact that
each crossing is either from the same or different components, it is not hard
to see that for L = (Λ1, . . . ,Λn),

tb(L) = tb(Λ1) + tb(Λ2) + · · ·+ tb(Λn) + 2
∑

i<j

lk(Λi,Λj),

For (np,±nq)-torus links L = (Λ1, . . . ,Λn), since lk(Λi,Λj) = ±pq when i ̸=
j (see Remark 2.2), we have

(1) tb(L) = tb(Λ1) + tb(Λ2) + · · ·+ tb(Λn)± (n− 1)(n)pq.

From this we see that a link has maximal Thurston-Bennequin invariant
precisely when tb(Λ1) + tb(Λ2) + · · ·+ tb(Λn) is maximized.

We now have the following observation.



✐

✐

“2-Etnyre” — 2024/8/9 — 12:05 — page 46 — #36
✐

✐

✐

✐

✐

✐

46 J. Dalton, J. B. Etnyre, and L. Traynor

Proposition 2.22. For an oriented, Legendrian (np,±nq)-torus link, with
n ≥ 2, let Λ1, . . . ,Λn denote the n components.

1) For the Legendrian (np,+nq)-torus link, tb(Λ1) + · · ·+ tb(Λn) ≤
n(pq − p− q);

2) For the Legendrian (np,−nq)-torus link, tb(Λ1) + · · ·+ tb(Λn) ≤
−npq.

As discussed in the introduction we know the maximum Thurston-
Bennequin invariant of torus knots, from which the proposition easily fol-
lows for torus knots with knotted components (p > 1) and positive torus
knots with unknotted components (1 = p ≤ q). However, observe that for
(n,−nq)-links, which are negative torus links with unknotted components,
the known upper bound of −1 for a Legendrian unknot says that for a
Legendrian (n,−nq) torus link, tb(Λ1) + · · ·+ tb(Λn) ≤ −n, which is weaker
than Proposition 2.22 when q ≥ 2. For negative torus knots with unknotted
components we need the following result to prove the proposition.

Theorem 2.23 (Epstein 1997, [9]). If L is a Legendrian (np,−nq)-torus
link with np even, then tb(L) ≤ −n2pq.

Proof of Proposition 2.22. As discussed above we only need to verify that
for a Legendrian (n,−nq)-torus link with n ≥ 2 and q ≥ 2,

tb(Λ1) + · · ·+ tb(Λn) ≤ −nq.

We first assume that n is even. Then by Theorem 2.23, we know tb(L) ≤
−n2q. Thus Equation (1) gives

tb(Λ1) + tb(Λ2) + · · ·+ tb(Λn)− (n− 1)nq ≤ −n2q.

So tb(Λ1) + · · ·+ tb(Λn) ≤ −nq, as desired.
Lastly consider the case where n is odd, and thus n ≥ 3, and suppose

for a contradiction that it is possible to construct a Legendrian version of
(n,−nq) with tb(Λ1) + · · ·+ tb(Λn) > −nq. Then we know that there must
be at least one term with Thurston-Bennequin invariant greater than −q:
say

tb(Λ1) ≥ tb(Λ2) ≥ · · · ≥ tb(Λi) > −q ≥ tb(Λi+1) ≥ · · · ≥ tb(Λn).

If i ≥ 2, then Λ1 and Λ2 will make a (2,−2q)-torus link with tb(Λ1) +
tb(Λ2) > −2q, a contradiction to the paragraph above. If i = 1, then we
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can again conclude that tb(Λ1) + tb(Λ2) > −2q as follows. Write tb(Λ1) =
−q + j1, tb(Λ2) = −q − j2 for j1 > 0, j2 ≥ 0. We can argue that j1 > j2 as
follows. If j1 ≤ j2 then writing tb(Λi) = −q − ji where ji ≥ 0 for i = 3, . . . , n,
we have

tb(Λ1) + · · ·+ tb(Λn) = (−q + j1) + (−q − j2) + (−q − j3) + · · ·+ (−q − jn),

= −nq + (j1 − j2 − j3 − · · · − jn)

≤ −nq + (−j3 − · · · − jn)

≤ −nq,

a contradiction to our starting assumption. Thus j1 > j2 and so the compo-
nents Λ1, Λ2 make up a (2,−2q)-torus link with tb(Λ1) + tb(Λ2) = −q + j1 +
−q − j2 = −2q + j1 − j2 > −2q, a contradiction to the above paragraph. □

3. Positive torus links

In this section, we will give the unordered classification of all Legendrian pos-
itive torus links. In other words, we will classify all Legendrian links that are
topologically (np,+nq)-torus links with n ≥ 2, q ≥ p ≥ 1, and gcd(p, q) = 1.
Observe that when p = 1, these are all links of unknots. The ordered classi-
fication will be given in Section 6.

Theorem 3.1. Given 1 ≤ p ≤ q and gcd(p, q) = 1, an unordered, oriented
Legendrian (np,+nq)-torus link is classified by the Thurston-Bennequin in-
variants and rotation numbers of the components.

The strategy to prove this theorem is to understand all oriented Legen-
drian representatives of the (np,+nq)-torus link with maximal tb invariant,
and then show that if a link does not have maximal Thurston-Bennequin
invariant, it must destabilize to one with maximal tb.

Lemma 3.2. Given q ≥ p ≥ 1 and gcd(p, q) = 1, there exists a unique ori-
ented Legendrian (np,+nq)-torus link with maximal Thurston-Bennequin
invariant.

Proof. This argument parallels the proof of [13, Lemma 4.7]; additional de-
tails can be found there.

We first show the existence of a Legendrian (np,+nq)-torus link L with
components Λ1, . . . ,Λn such that tb(Λi) = pq − p− q, for all i. Let N be a
solid torus neighborhood of a Legendrian unknot with tb = −1 with convex
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Figure 15: The front projection of a 3(2,+3)-torus link.

boundary T in standard form. Then T has dividing curves of slope −1; we
can assume that the ruling curves have slope q/p. Let L consist of n ruling
curves on T . By analyzing the number of intersections between the ruling
and dividing curves, we find that each ruling curve has tb = pq − p− q, as
desired.

Next we consider uniqueness. If L and L′ are both Legendrian (np,+nq)-
torus links with maximal Thurston-Bennequin invariant, then we can assume
they lie as a subset of the ruling curves on convex tori T and T ′, where both
T and T ′ have two dividing curves of slope −1. By Honda’s classification of
contact structures on solid tori, we know there is a contact diffeomorphism
of S3 that takes T ′ to T , and then a result of Eliashberg [6, Corollary 2.4.3]
shows that there is a contact isotopy of S3 that takes T ′ to T . So after isotopy,
we can assume that L and L′ are both collections of ruling curves on the
same convex torus. It follows that there is an isotopy from the unordered
link L′ to L. □

Remark 3.3. There is a simple algorithm for constructing a front projec-
tion of the max tb Legendrian (np,+nq)-torus link:

• Begin with np nested copies of the max tb unknot with two cusps;

• Replace a trivial np-stranded tangle with q/p of a full positive twist;
this corresponds to repeating the fundamental positive crossing tangle,
as shown on the top of Figure 9, nq times.

See Figure 15.

Lemma 3.4. Suppose q ≥ p ≥ 1 and gcd(p, q) = 1. Let L = ⨿ni=1Λi be an
oriented Legendrian (np,+nq)-torus link. If tb(Λ1) + · · ·+ tb(Λn) < n(pq −
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p− q), then there exists a Legendrian (np,+nq)-torus link L′ = ⨿ni=1Λ
′
i such

that tb(Λ1) + · · ·+ tb(Λn) < tb(Λ′
1) + · · ·+ tb(Λ′

n) and L is a stabilization of
L′.

Proof. This argument parallels the proof of [13, Lemma 4.8]; additional de-
tails can be found there.

From the Relative Convex Realization Principle [30], we can assume
L sits on the convex boundary T of an unknotted solid torus. We first
notice that if the dividing curves on T do not intersect each component of
L minimally, then there is a bigon in T with one side on the dividing curves
and one side on L. This gives a bypass which can be used to destabilize L.
Thus after destabilization of some of the components of L , we can assume
that all components of L intersect the dividing curves minimally, and thus
can be assumed to be ruling curves of T .

If at this point, T has two dividing curves of slope −1, then all com-
ponents of T have maximial Thurston-Bennequin invariant. Else, either the
slope of the dividing curves on T is not −1, or T has more than 2 dividing
curves of slope −1. In both of these cases, it can be argued that there is a
convex torus T ′ that is disjoint from T and parallel to T with two dividing
curves of slope −1 and ruling curves of slope q/p. Applying the Imbalance
Principle, [24, Proposition 3.17], to an annulus with one boundary compo-
nent on a component of L in T and the other on a ruling curve of T ′ gives
the existence of a destabilization of the component of L, as desired.

In this way, we can continue the destabilization process until all compo-
nents have maximal Thurston-Bennequin invariant. □

Theorem 3.1 follows directly from Lemmas 3.2 and 3.4.

4. Negative torus links with knotted components

In this section, we will classify all Legendrian negative torus links with knot-
ted components, namely links that are topologically (np,−nq), with n ≥ 2,
q > p ≥ 2, and gcd(p, q) = 1. In this section, we only consider the unordered
classifcation. We will discuss the ordered classification in Section 6 below.

Theorem 4.1. Given q > p ≥ 2 and gcd(p, q) = 1, unordered, oriented Leg-
endrian (np,−nq)-torus links are determined by the Thurston-Bennequin
and rotation number invariants of the components.

As in Section 3, this classification follows from first understanding those
with max tb.
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Lemma 4.2. Given q > p ≥ 2 and gcd(p, q) = 1, choose m ∈ Z such that
−m− 1 < −q/p < −m. Then there are 2m Legendrian realizations of the
(np,−nq)-torus link with maximal Thurston-Bennequin invariant. Each of
these maximal tb examples arise as an n-copy of a Legendrian (p,−q)-torus
knot with maximal tb.

Proof. Compare the proof of [13, Lemma 4.11].
A Legendrian (np,−nq)-torus link L will have maximal Thurston-

Bennequin invariant precisely when tb(Λi) = −pq, for all i. It is well-known
that the difference between the Seifert framing and the framing coming from
T is −pq:

(2) tb(Λi)− tw(Λi, T ) = −pq.

Thus we find that tw(Λi, T ) = 0. Applying the Relative Convex Realiza-
tion Principle, we can assume that L lies in the convex boundary T of an
unknotted solid torus, and each component Λi must be disjoint from the di-
viding curves. We may thus take L to be a subset of the Legendrian divides
when T is isotoped to be a convex torus in standard form with dividing
slope −p/q. This torus sits inside a basic slice, and hence by Lemma 2.9,
we know that all the Legendrian divides are contained as leaves inside of
some pre-Lagrangian torus. Thus, by Lemma 2.19, any maximal Thurston-
Bennequin invariant (np,−nq)-torus link is the Legendrian n-copy of a max-
imal Thurston-Bennequin invariant (p,−q) torus knot. Hence all the com-
ponents have the same rotation number, and the link is classified by this
rotation number. □

Lemma 4.3. Given q > p ≥ 2 and gcd(p, q) = 1, let L = ⨿ni=1Λi be a Leg-
endrian (np,−nq)-torus link. If tb(Λ1) + · · ·+ tb(Λn) < −npq, then there ex-
ists a Legendrian (np,−nq)-torus link L′ = ⨿ni=1Λ

′
i such that tb(Λ′

1) + · · ·+
tb(Λ′

n) > tb(Λ1) + · · ·+ tb(Λn) and L is a stabilization of L′.

Proof. From the Relative Convex Realization Principle, we can assume that
L is contained in the convex boundary T of an unknotted solid torus. By
applying a destabilization if necessary, we can assume that each component
of L intersects the dividing set minimally.

If at this point if T has dividing curves of slope − q
p , then all components

of L have maximial Thurston-Bennequin invariant. Else, the slope of the
dividing curves on T is not − q

p . It can be argued that there is a convex

torus T ′ that is disjoint form T and parallel to T with dividing curves of
slope − q

p . Applying the Imbalance Principle, [24, Proposition 3.17], to an
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annulus with one boundary component being a Legendrian divide of T ′ and
the other a component of L in T (and is otherwise disjoint from L) gives
the existence of a destabilization of the component of L, as desired. □

We now know that every negative torus link will destabilize to one with
maximal Thurston-Bennequin invariant. To finish the classification, we need
to show that a given an n-tuple of vertices on the mountain range can
represent at most one (unordered) Legendrian link. Any n-tuple of vertices
that can be destabilized to at least one n-tuple peak with max tb invariant
can be represented by exactly one Legendrian link. Some n-tuples can be
destabilized to a unique n-tuple peak. However, there are many n-tuples of
vertices that can be destabilized to n-copies of different Legendrian knots
with max tb. For example, if L is the n-copy of the Legendrian (3,−7)-torus
knot with max tb and r = 2, and L′ is the n-copy of the Legendrian (3,−7)-
torus knot with max tb and r = 4, then we need to see that applying one +
and stabilization to all components of L produces a link that is Legendrian
isotopic to the link obtained from L′ by applying − stabilizations to all
components. That is we need to show that S+,allL is Legendrian isotopic
to S−,allL

′; here S+,allL (resp S−,allL
′) means that we have applied a +

(resp −) stabilization of all components of L (resp. L′). More generally, the
strategy for uniqueness is to show that the n-tuple arising from using the
valley point between adjacent peaks n times has a unique representative.
From this, it will follow that all n-tuples of vertices on the mountain range
that can represent a Legendrian link will represent a Legendrian link that
is unique up to isotopy.

As shown in [13], in the Legendrian mountain range of a (p,−q)-torus
knot, if q = mp+ e, all “adjacent” maximal tb representatives with have
rotation numbers that differ by 2e or by 2(p− e). In the following, if L is an
n-component link, Sm±,allL means that we have applied m ± stabilizations
to each component of L.

Lemma 4.4. Let L and L
′

be two topologically isotopic, oriented, Legen-
drian negative torus links with each component having maximal Thurston-
Bennequin invariant. If the rotation numbers of each component of L and
L

′

are r and r − 2e, respectively, then Se−,all(L) and Se+,all(L
′

) are Legen-

drian isotopic. If the rotation numbers of each component of L and L
′

are r
and r − 2(p− e), respectively, then Sp−e−,all(L) and Sp−e+,all(L

′

) are Legendrian
isotopic.

Proof. This argument parallels the proof of [13, Lemma 4.12]; additional
details can be found there.
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We consider the case where the rotation number of L′ is r − 2e; the
other case is similar. Let T be a convex torus containing L as in the proof of
Lemma 4.2. From the classification of contact structures on solid tori [24], we
know that parallel to T is a convex torus T ′ with dividing curves of slope −m
(where q = mp+ e) that bounds a solid torus containing T . Make the ruling
curves on T ′ have slope − q

p . Let Ls be any collection of n ruling curves on T ′.
By connecting L to Ls with n annuli and applying the Imbalance Principle,
[13, Proposition 3.11], one sees that Ls is S

e
−,all(L). Thus S

e
−,all(L) sits as n

ruling curves on the boundary of a standard neighborhood of a Legendrian
unknot with tb = −m and rotation number r; the calculation of the rotation
number is discussed on pages 88 and 89 of [13]. One can similarly realize
Se+,all(L

′

) as n ruling curves on the boundary of a standard neighborhood of
a Legendrian unknot with tb = −m and rotation number r. After applying
an isotopy, we can assume that both Se−,all(L) and S

e
+,all(L

′

) lie among the
ruling curves on the same convex torus, and thus are Legendrian isotopic. □

5. Negative torus links with unknotted components

In this section, we will classify all Legendrian negative torus links that have
unknotted components. In other words, we will classify all Legendrian links
that are topologically (n,−nq) for q ≥ 1. In this section, we only classify the
links as unordered Legendrian links; the ordered classification can be found
in Section 6. The following theorem summarizes the classification; the non-
destabilizable t-twisted n-copy of Legendrian unknot referenced here will be
defined in Definition 5.5.

Theorem 5.1. For q ≥ 1, two (unordered) oriented Legendrian (n,−nq)-
torus links L = ⨿ni=1Λi and L

′ = ⨿ni=1Λ
′
i are Legendrian isotopic if and only

if there exists σ ∈ Sn such that tb(Λi) = tb(Λ′
σ(i)) and r(Λi) = r(Λ′

σ(i)), for

all i. In addition, every Legendrian (n,−nq)-torus link is a stabilization of
either:

• the n-copy of the Legendrian unknot with rotation number r and tb =
−q, denoted nU r−q, or

• if q ≥ 2, the t-twisted n-copy of the Legendrian unknot with rotation
number r and tb = −q + t, for 1 ≤ t ≤ q − 1, denoted T t(nU r−q+t).

When q ≥ 2 and n ≥ 3, the t-twisted n-copies T t(nU r−q+t) do not have max-
imal Thurston-Bennequin invariant even though they do not destabilize.
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We saw in Lemma 2.20 that the n-copy of an unknot with tb = −q gives
us one way to construct a Legendrian (n,−nq)-torus link. In fact, when n ≥
3, all Legendrian (n,−nq)-torus links with maximal Thurston-Bennequin
invariant can be obtained as the Legendrian n-copy of a Legendrian unknot
with tb = −q.

Proposition 5.2. For n ≥ 3 and q ≥ 1, the unordered oriented n-
component (n,−nq)-torus link has precisely q Legendrian realizations with
maximal Thurston-Bennequin invariant. Such a version can be constructed
as the n-copy of one of the q Legendrian unknots with tb = −q.

Before giving the proof we make two observations.

Lemma 5.3. For n ≥ 2, if one component of a Legendrian (n,−nq)-torus
link has tb = −q + t, for t ≥ 1, then all the other components have tb ≤
−q − t.

Proof. Suppose L is a Legendrian (n,−nq)-torus link. Let Λ+ be a com-
ponent of L with tb(Λ+) = −q + t. If Λ is any other component of L then
Λ+ ∪ Λ is a (2,−2q)-torus link, and thus Proposition 2.22 says tb(Λ+) +
tb(Λ) ≤ −2q. The result follows. □

In Section 2.4.2 we explained that the max-tb non-trivial negative torus
knots lie as leaves of a pre-Lagrangian torus in a basic slice, or, equivalently
by Lemma 2.9, as the Legendrian divides on a convex torus in a basic slice.
Legendrian unknots can be seen as Legendrian divides of a convex torus in
a “nice” union of basic slices.

Lemma 5.4. Suppose T is a standardly embedded, convex torus in standard
form with Legendrian divides of slope −q, for q ≥ 1. Then T is contained in
the universally tight union of two basic slices.

Proof. Notice that T splits S3 into two solid tori V−∞ and V0, each with
convex boundary having dividing slope −q, where V−∞ contains convex tori
with dividing slope in the range (−∞,−q] and a torus T−∞ with two dividing
curves of slope −q; similarly, V0 contains convex tori with slopes in the
range [−q, 0) and a torus T0 with two dividing curves of slope −q. The
region RI between T0 and T−∞ is an I-invariant contact structure containing
T . Choose any s in [−q, 0) that has an edge to −q in the Farey graph.
Let B0 ⊂ V0 be the region between the convex torus with slope s and T0;
this is a basic slice with some sign. We know that V−∞ is a solid torus
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neighborhood of a Legendrian knot. Inside V−∞ we have two solid tori that
are neighborhoods N± of the ± stabilization of the Legendrian knot; B±

−∞ =
V−∞ \N± is a basic slice with sign ±. By choosing the appropriate B±

−∞

so that the sign agrees with the sign of B0, we find that T is contained in
B = B0 ∪

(
RI ∪B

±
−∞

)
, a universally tight union of basic slices. □

Proof of Proposition 5.2. We first argue that, when n ≥ 3, each component
of a max-tb, Legendrian (n,−nq)-torus link has tb = −q. From Lemma 5.3,
we know that if one component of a Legendrian (n,−nq)-torus link has
tb = −q + t, for t ≥ 1, then all other components have tb ≤ −q − t. Thus the
sum of the tb invariants of the components is at most −nq − (n− 2)t < −nq,
since n ≥ 3. So, by Proposition 2.22, in order for a Legendrian (n,−nq)-torus
link to have the max tb, all the components must have tb = −q.

There are q Legendrian unknots with tb = −q. By taking the n-copy of
each of these, we get q distinct Legendrian (n,−nq)-torus links with max
tb. We must now show that if L is any Legendrian (n,−nq)-torus link with
max tb, then L is isotopic to one of these n-copies. As argued in the above
paragraph, each component of L must have tb = −q. So if T is a standardly
embedded torus on which L sits then the twisting of each component of L
with respect to T is 0. Thus we may make T convex and standard relative to
L; vanishing twist tells us that L will be a subset of the Legendrian divides
on T . By Lemma 5.4, T is contained in the interior of a universally tight
union of two basic slices. This concludes the proof since by Remark 2.10
and Lemma 2.9 , L can be taken to be leaves in a pre-Lagrangian torus,
and thus, by Lemma 2.19, L is the n-copy of one of the leaves, which is a
Legendrian unknot with tb = −q. □

In contrast, when n = 2, not all max-tb Legendrian 2(1,−q)-torus links
are obtained as 2-copies. For example, Figure 6 shows numerous examples of
Legendrian 2(1,−3)-torus links with maximal tb. All elements of the bottom
row are obtained as doubles of an unknot with tb = −3. However elements
of the second and first rows have components with different tb invariants,
and thus cannot be doubles. These are obtained by introducing “Legendrian
twists” into 2-copies of unknots with tb = −2, and tb = −1, respectively.
In general, when q ≥ 2, one can construct Legendrian n(1,−q)-torus links
by introducing “Legendrian twists” into n-copies of an unknot with −q +
1 ≤ tb ≤ −1. Although in this section, we are only interested in twists of
Legendrian unknots, in Section 7 we will consider twists of more general
Legendrian knots, and so we give the general definition here.
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Definition 5.5. Given a Legendrian knot Λ and t ∈ Z+, the t-twisted n-
copy of Λ, denoted T t(nΛ) is constructed as follows. Consider a standard
neighborhood of Λ; there will be two dividing curves of slope tb(Λ), and we
can assume that the ruling curves have slope tb(Λ)− t. Then T t(nΛ) is the
union of Λ and (n− 1) ruling curves.

Remark 5.6. The 0-twisted 2-copy is merely the 2-copy; however, in the
spirit of Definition 5.5, we could also define the 0-twisted 2-copy to be the
union of Λ and a Legendrian divide on a standard neighborhood of Λ.

Lemma 5.7. If tb(Λ) = β + t and r(Λ) = ρ, then all components of T t(nΛ)
will have r = ρ; one component will have tb = β + t and the remaining n− 1
components will have tb = β − t.

Proof. It suffices to verify these calculations of tb and r in the t-twisted 2-
copy, for t ≥ 1. Let Λ1 be one of the ruling curves of slope tb(Λ)− t on a
standard neighborhood of Λ. Then tw(Λ1, ∂N) = −1

2#(Λ1 ∩ Γ∂N ) = −t, so,
using Equation (2),

tb(Λ1) = −t+ (tb(Λ)− t) = tb(Λ)− 2t = β − t.

It remains to show that r(Λ1) = r(Λ). Observe that topologically Λ1 =
1λ+ (tb(Λ)− t)µ, where λ is a Legendrian divide and µ is the Legendrian
boundary of a convex meridonal disk D for N ; r(λ) and r(µ) will determine
r(Λ1). First observe that λ is isotopic to Λ, and thus r(λ) = r(Λ). Next
observe that µ is an unknot. Since ∂N has two dividing curves, we see
that D will have a single dividing curve; it follows that tb(µ) = −1, and
thus r(µ) = 0. Then arguing as in Section 4.2 of [13], we see that r(Λ1) =
1r(λ)− (tb(Λ)− t)(r(µ)) = r(λ) = r(Λ), as claimed. □

Remark 5.8. From the proofs of Lemmas 5.9 and 5.12 below, we see that
the front projection of T t(nΛ) can be obtained as follows. Start with the
n-copy of Λ. Then replace a trivial n-stranded tangle with t copies of the
twist tangle as shown on the right side of Figure 16. For a general Λ with
tb(Λ) = β, the n-copy of Λ will be the slope β cable of Λ, and T t(nΛ) will
be the slope β − t cable of Λ.

In fact, all Legendrian (2,−2q)-torus links with max tb can be obtained
as the 2-copy of an unknot with tb = −q or as Legendrian twists of the 2-
copy of a Legendrian unknot with Thurston-Bennequin invariant in {−q +
1, . . . ,−1}.
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...
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...

...

...

...

Figure 16: The Legendrian twist operation for n strands.

Lemma 5.9. For the oriented topological (2,−2q)-torus link, there are pre-
cisely q(q + 1)/2 unordered Legendrian realizations with maximal Thurston-
Bennequin invariant. For every Legendrian unknot Λ1 with Thurston-
Bennequin invariant in {−1, . . . ,−q}, there will be a unique Legendrian
(2,−2q)-torus link with maximal Thurston-Bennequin invariant whose other
component is a Legendrian unknot Λ2 with tb(Λ2) = −2q − tb(Λ1) and
r(Λ2) = r(Λ1).

Proof. We have already seen that the 2-copy of a Legendrian unknot with
tb = −q and the t-twisted 2-copy of a Legendrian unknot with tb = −q + t,
t ≥ 1, are max-tb representatives of (2,−2q)-torus links; in these represen-
tatives, all components have equal rotation numbers.

To prove the uniqueness statement, suppose L′ = Λ′
1 ∪ Λ′

2 is any max-
tb Legendrian representative of the (2,−2q)-torus link. Since we know that
tb(Λ′

1) + tb(Λ′
2) = −2q, we know that tb(Λ′

1) = −q + t, for some t ≥ 0. Thus
there is a unique L = Λ1 ∪ Λ2, a 2-copy or a twisted 2-copy of a Legendrian
unknot with max tb as constructed above, such that tb(Λ′

1) = tb(Λ1) and
r(Λ′

1) = r(Λ). Since the unknot is a Legendrian simple knot, we can Leg-
endrian isotop Λ′

1 to Λ1, and hence we can assume that L′ = Λ1 ∪ Λ′
2. It

remains to show that L and L′ are Legendrian isotopic. We give separate
uniqueness proofs in the cases of t = 0 and t > 0.

When t > 0, as in Definition 5.5, we let N1 be a standard neighborhood
of Λ1: ∂N1 is convex with two dividing curves of slope −q + t and ruling
curves of slope −q. Let T ′ be a torus, parallel to ∂N1, on which Λ′

2 sits.
Since tw(Λ′

2, T
′) = −t < 0, we can make T ′ convex. Since we can assume T ′

lies in the complement of N1, we know the dividing slope of T ′ is greater than
or equal to −q + t. If the dividing slope s is greater than −q + t, then we can
argue2, #(Λ′

2 ∩ ΓT ′) > 2t, and thus tw(Λ′
2, T

′) < −t, a contradiction. Thus

2To see that #(Λ′

2 ∩ ΓT ′) > 2t, choose an integer k such that 0 ≥ −k ≥ s ≥
−k − 1 ≥ −q + t. If γk, γk+1 are simple closed curves in T 2 representing the ho-
mology class (1,−k) and (1,−(k + 1)) respectively, then Λ′

2 · γk = −k + q > t and
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the dividing slope of T ′ is −q + t, and #(Λ′
2 ∩ ΓT ′) = 2ℓt where 2ℓ is the

number of dividing curves. Then since tb(Λ′
2) = −q − ℓt must equal −q − t,

we know that T ′ has exactly two dividing curves of slope −q + t. Moreover
Λ′
2 minimally intersects the dividing set and hence can be made one of the

ruling curves on T ′. Now T ′ and ∂N1 cobound a T 2 × [0, 1]. Since the contact
structure on here is minimally twisting and the dividing slope on T 2 × {0}
and T 2 × {1} are the same there is a product structure on T 2 × [0, 1] such
that the contact structure is [0, 1]-invariant. Thus there is a contact isotopy
that takes T ′ to ∂N1, and so we can assume that Λ′

2 is a ruling curve on
∂N1. Since any two ruling curves on ∂N1 are Legendrian isotopic, we see
that L is Legendrian isotopic to L′.

A similar proof will work to show uniqueness when tb(Λ1) = −q except
now Λ′

2 is a Legendrian divide on T ′. If there are only two Legendrian di-
vides on T ′ then we can proceed as above: there will be a [0, 1]-invariant
neighborhood T 2 × [0, 1] between T ′ and ∂N1, and thus we can assume Λ′

2

is also a Legendrian divide of ∂N1. Then as follows from Lemma 2.9, there
exists a pre-Lagrangian torus containing all the Legendrian divides, and
so in particular Λ2, Λ

′
2, are among its leaves. If there are more than two

Legendrian divides on T ′, then observe that we can find another standard
neighborhood N ′

1 of Λ1 such that T ′ is inside N ′
1. Thus working in a standard

model of a Legendrian knot it is easy to see that we can reduce the number
of dividing curves on T ′ without moving Λ′

2. This completes the uniqueness
statements for the unordered Legendrian (2,−2q)-torus links with maximal
Thurston-Bennequin invariant. □

Now that we understand the Legendrian (n,−nq)-torus links with max
tb, it is natural to ask if all Legendrian (n,−nq) will destabilize to one with
max tb. We will see that this is true if n = 2, however, this is not true if
n ≥ 3; see Figure 17.

Lemma 5.10. For n ≥ 3 and t ≥ 1, the t-twisted n-copies of a Legendrian
unknot with tb = −q + t are Legendrian representatives of the (n,−nq)-torus
link that do not have maximal Thurston-Bennequin invariant yet do not
destabilize.

Λ′

2 · γk+1 = −(k + 1) + q ≥ t with equality only when −k − 1 = −q + t. Let γ be a
simple closed curve on T 2 representing the homology class given by the slope s. We
may find non-negative integers a, b such that γ = aγk + bγk+1. Notice that if a = 0,
then b = 1 and k + 1 < q − t since, by assumption, s > −q + t. One may now easily
see that Λ′

2 · γ > t, proving #(Λ′

2 ∩ ΓT ′) > 2t.
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Proof. Let L be a t-twisted n-copy of a Legendrian unknot with tb =
−q + t, where t ≥ 1. Then, since n ≥ 3, tb(Λ1) + · · ·+ tb(Λn) = (−q + t) +
(n− 1)(−q − t) < −nq, showing the non-maximality of tb. If L had a desta-
bilization, then using the component that can be destabilized together
with another appropriately chosen component of L, we could construct a
(2,−2q)-torus link with tb(Λ1) + tb(Λ2) > −2q, a contradiction to Proposi-
tion 2.22. □

Figure 17: A Legendrian (3,−6)-torus link with non-maximal Thurston-
Bennequin invariant that cannot be destabilized.

Our next lemma basically says that as long as the Thurston-Bennequin
invariants of a Legendrian (n,−nq)-torus link do not agree with those of
a t-twisted n-copy of a Legendrian unknot with tb = −q + t, then we can
destabilize.

Lemma 5.11. For n ≥ 2, consider a Legendrian (n,−nq)-torus link Λ with
components

Λ1,Λ2, . . . ,Λn

satisfying tb(Λ1) ≥ tb(Λ2) ≥ · · · ≥ tb(Λn).

1) If tb(Λ1) ≤ −q and tb(Λ1) + · · ·+ tb(Λn) < −qn, then Λ has a desta-
bilization.

2) If tb(Λ1) = −q + t, for 1 ≤ t ≤ q − 1, and tb(Λ2), . . . , tb(Λn) do not
all equal −q − t, then Λ has a destabilization.

Proof. We will proceed by considering the cases where tb(Λ1) = −q, tb(Λ1) <
−q, and tb(Λ1) > −q. Below, tw(Λi) will always refer to tw(Λi, T ), where
T is a standardly embedded Heegaard torus for S3 on which Λi sits as a
(1,−q)-curve.
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In the case where tb(Λ1) = −q, we have that tw(Λ1) = 0 and tw(Λn) =
−k < 0. Thus the link (Λ1, . . . ,Λn) lies as curves of slope −q on a standardly
embedded torus T that can be perturbed to be convex. Since tw(Λ1) = 0,
we have #(Λ1 ∩ ΓT ) = 0, and thus Λ1 is parallel to and disjoint from the
dividing set ΓT . The curve Λn also has slope −q and so could be topologically
isotoped to be disjoint from ΓT . However #(Λn ∩ ΓT ) = 2k > 0, so there
must be Whitney disks that cancels a pair of extraneous intersection points.
An innermost Whitney disk can be used to construct a bypass for Λn on T
that is disjoint from Λ1, . . . ,Λn−1. Thus we may destabilize Λn.

In the case where tb(Λ1) < −q, tw(Λ1), . . . , tw(Λn) are all negative so
we can assume all the components Λ1,Λ2, . . . ,Λn lie on a convex torus T as
slope −q curves. If the dividing slope of T is −q then we can argue as above
to destabilize Λn (and Λ1, . . . ,Λn−1), thus we assume that the dividing slope
is s ̸= −q. If Λi does not intersect ΓT minimally, then there will be Whitney
disks as above and we can find a bypass to destabilize Λi. So we can assume
that Λ1, . . . ,Λn intersect ΓT minimally, and hence we can isotop T , relative
to Λ1 ∪ · · · ∪ Λn, so that Λ1, . . . ,Λn are ruling curves. The torus T splits
S3 into two solid tori, one of which has convex tori parallel to T with any
dividing slope in (−∞, s] and the other containing convex tori parallel to T
with any dividing slope in [s, 0). Thus we can find a standard convex torus
T ′ disjoint from T with dividing slope −q. We can now take an annulus
A whose interior is disjoint from T ∪ T ′ and has one boundary component
a dividing curve on T ′ and the other boundary component being Λn. This
annulus can be made convex. The dividing curves on A will be disjoint from
A ∩ T ′ but non-trivially intersect Λn. Thus, by the Imbalance Principle, [13,
Proposition 3.11], there will be boundary parallel dividing curves on A that
can be used to construct bypasses for Λn on A. Hence we can destabilize Λn
(without moving Λ1 ∪ · · · ∪ Λn−1).

Lastly consider the case where tb(Λ1) > −q; say tb(Λ1) = −q + t, 1 ≤
t ≤ q − 1. So, in particular, tw(Λ1) > 0. Recall that by Lemma 5.3, we then
know that tw(Λi) < 0, for i ≥ 2. Now Λ1 does not lie on a convex torus as a
−q curve. Consider a standard neighborhood of Λ1. This will be a solid torus
N1 with boundary a convex torus with two dividing curves of slope −q + t;
by Giroux’s Flexibility Theorem we can assume that the ruling curves are of
slope −q. Since N1 can be made arbitrarily small, we can assume the curves
Λ2, . . . ,Λn lie on a convex torus T in the complement of N1, and thus the
slope of ΓT is greater than or equal to −q + t. As in the previous paragraph,
we can assume that Λi, i ≥ 2, and ΓT intersect minimally (or we would
already have a destabilization of Λi), thus we can assume that Λ2, . . . ,Λn
are ruling curves on T . If the dividing slope is −q + t then #(Λn ∩ ΓT ) = 2lt,
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where 2l is the number of dividing curves on T . Thus tb(Λn) = −q − lt. Since
we know tb(Λn) < −q − t we must have l > 1. If we take an annulus A from
∂N1 to T with boundary on the ruling curves (and not Λ2 ∪ · · · ∪ Λn), then
the Imbalance Principle says there is a bypass for T on A. Attaching this
bypass to T will reduce the number of dividing curves of T so that Λn (also
Λ2, . . .Λn−1) no longer intersects the dividing set minimally and we can
hence find a destabilization of Λn. We are left to consider the case when the
dividing slope s of T satisfies s > −q + t. An argument as in the proof of
Lemma 5.9 shows that #(Λn ∩ ΓT ) > 2t. Given this we can take an annulus
A between T and ∂N1 as above, except this time A will have one boundary
component on Λn. The Imbalance Principle once again gives a bypass for
Λn on A, and hence Λn destabilizes. □

Lemma 5.12. For n ≥ 3, there exist Legendrian (n,−nq)-torus links with
non-maximal Thurston-Bennequin invariant that do not destabilize to one
with maximal Thurston-Bennequin invariant. All such links have precisely
one component Λ1 with Thurston-Bennequin invariant greater than −q and
are T t(nU r−q+t) where nU r−q+t is the Legendrian n-copy of a Legendrian
unknot with Thurston-Bennequin invariant −q + t and rotation number r.

Proof. Let Λ be a Legendrian (n,−nq)-torus link with components tb(Λ1) ≥
· · · ≥ tb(Λn). If Λ does not have maximal tb and it does not destabilize to one
with maximal tb, then by Lemma 5.11, we know n ≥ 3, tb(Λ1) = −q + t, 0 <
t < q, and tb(Λi) = −q − t, for i = 2, . . . , n.

We can put Λ′ = Λ2 ∪ · · · ∪ Λn on a torus T that bounds a solid torus
N containing Λ1. Since the twisting of the Λi with respect to T is less than
0, we can make T convex. Arguing as in the proof of Lemma 5.9, we can
assume that the slope of the dividing curves on T is −q + t and that there
are just two dividing curves. Thus Λ′ sits as ruling curves on the boundary
of a standard neighborhood of Λ1, and the isotopy class of Λ is determined
by that of Λ1. □

We now understand the set of links to which all Legendrian (n,−nq)-
torus link destabilize. As a last step, we need to understand how these
non-destabilizable Legendrian (n,−nq)-torus links are related under stabi-
lization. Recall we denote the n-copy of the unknot with tb = −q and ro-
tation number r by nU r−q. When listing the non-destabilizable Legendrian
(n,−nq)-torus links we write Lr−q for nU r−q. The other non-destabilizable
links are Legendrian twists of n-copies of unknots with tb > −q: T t(nU r−q+t),
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where 0 < t < q. For shorter notation, we denote this by Lr−q+t. So the non-
destabilizable Legendrian (n,−nq)-torus links are:

L0
−1

L−1
−2, L1

−2

...

L−q+1
−q , L−q+3

−q , . . . , Lq−3
−q , L

q−1
−q

We always label a component with largest Thurston-Bennequin invariant
as Λ1. We then arbitrarily label the other components Λ2, . . . ,Λn. A ±-
stabilization on the ith component of a link L is denoted by S±,i(L), and
simultaneously stabilizing all components is denoted by S±,all(L).

Lemma 5.13. Consider the non-destabilizable realizations of the (n,−nq)-
torus link. We have the following relations.

S+,all(L
j
−q) = S−,all(L

j+2
−q ).

If −q < k ≤ −1, then

S±,1(L
j
k) = S∓,2 ◦ · · · ◦ S∓,n(L

j±1
k−1).

Thus as soon as the invariants of the components of two non-destabilizable
Legendrian (n,−nq)-torus links become the same under stabilization the links
will become isotopic.

Proof. The proof that S+,all(L
j
−q) = S−,all(L

j+2
−q ) parallels the proof of

Lemma 4.4: the strategy is to show that both these links can be isotoped so
that they lie as ruling curves on a standard neighborhood of a Legendrian
unknot with tb = −(q + 1) and r = j + 1. We will first argue that S+,all(L

ℓ
−q)

sits as ruling curves on the boundary of a standard neighborhood of a Leg-
endrian unknot with tb = −(q + 1) and r = ℓ+ 1 as follows. The link Lℓ−q
lies as a subset of Legendrian divides of slope −q on a convex torus T . Con-
sider the Heegard splitting of S3 with respect to T : S3 = V0 ∪T V1. Inside V0
there is a solid torus V +

q+1 with two dividing curves of slope −(q + 1) which
is a standard neighborhood of a Legendrian unknot with tb = −(q + 1) and
rotation number ℓ+ 1. Let T+

q+1 be the boundary of this solid torus. By

Giroux’s Flexibility Theorem, we can assume the ruling slope of T+
q+1 is −q.

Consider n disjoing convex annuli Ai of slope −q between T and T+
q+1 each

having one boundary on a component of Lℓ−q, which recall is a Legendrian
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divide of T , and the other on a ruling curve of T+
q+1. Let Ki ⊂ Lℓ−q ⊂ T and

K+
i ⊂ T+

q+1 denote the boundary components of Ai. The dividing curves of

Ai do not intersect ∂Ai ∩ T = Ki but will intersect ∂Ai ∩ T
+
q+1 = K+

i twice.
So on each Ai, there is one boundary parallel dividing curve separating a
disk that must be positive since r(K+

i )− r(Ki) = 1. Unfortunately we can-
not get a bypass from this disk as we cannot Legendrian realize a bypass
on Ai since the dividing set is connected. However, we can isotop the Ai
so that its boundary component in T intersects the dividing curve twice.
Now the Ai will have either two dividing curves running from one boundary
component to the other, or two boundary parallel dividing curves, one on
each boundary. In the former case we can foliate Ai by “ruling curves” and
use those to isotop K+

i to a curve on T and on T we can use a Whitney
disk for K+

i and the dividing set to destabilize K+
i . In the latter case we

can find a bypass on Ai to destabilize K+
i . In particular we get a link L̃

that lies between Tq+1 and T . Notice that each component of L̃ has tb = −q
and r = ℓ. Put L̃ on a convex torus T̃ parallel to but disjoint from T . We
know the dividing set of T̃ will have slope −q. Thus L̃ is a subset of the
Legendrian divides of T̃ and thus as argued in the proof of Lemma 5.2 we
see that L̃ can be taken to be leaves in the characteristic foliation of a
pre-Lagrangian torus. Hence, by Lemma 2.19, we see L̃ is the n-copy of a
tb = −q unknot. Moreover, since the rotation numbers of the components
of L̃ agree with those of L we know that L̃ and L are both n-copies of the
same Legendrian unknot and hence are isotopic. A similar argument shows
S−,all(L

ℓ
−q) sits as ruling curves on the boundary of a standard neighborhood

of a Legendrian unknot with tb = −(q + 1) and r = ℓ− 1. Here instead of
V +
q+1, we consider V

−
q+1 which is a standard neighborhood of a Legendrian un-

knot with tb = −(q + 1) and r = ℓ− 1. The corresponding annuli will now
have one boundary parallel arc separating off a negative disk. Combining
these, we see that both S+,all(L

j
−q) and S−,all(L

j+2
−q ) sit as ruling curves on

the boundary of standard neighborhoods of an unknot with tb = −(q + 1)
and r = j − 1. Since all such neighborhoods are isotopic, we can assume
S+,all(L

j
−q) and S−,all(L

j+2
−q ) sit as ruling curves on the same torus, and thus

they must be isotopic.
To see that if −q < k ≤ −1, then S±,1(L

j
k) = S∓,2 ◦ · · · ◦ S∓,n(L

j±1
k−1) no-

tice that the proof of Lemma 5.11 shows that if Λ1 in Ljk is stabilized,
then one may destabilize the components with the most negative Thurston-
Bennequin invariant which, in this case, will be Λ2, . . . ,Λn. □
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6. Ordered classification

Now that we have established the unordered classification of all Legendrian
torus links, we move on to the ordered classification. The positive torus links
and stabilized negative torus links will have a great deal of flexibility in the
permutations that are allowed, while the negative torus links with maximum
Thurston-Bennequin invariant will have a great deal of rigidity.

The unordered classification of positive torus links is given in Theo-
rem 3.1. For positive torus links, any tb and r invariant-preserving permu-
tation of the components is possible:

Theorem 6.1. For q ≥ p ≥ 1 and gcd(p, q) = 1, consider an ordered, ori-
ented Legendrian (np,+nq)-torus link L = (Λ1, . . . ,Λn). Any permutation of
the components of L preserving the Thurston-Bennequin and rotation num-
ber invariants can be achieved by a Legendrian isotopy.

Proof. We prove the statement when L is a (np,+nq)-torus link with max
tb; the general case follows from Lemma 3.4. As in the proof of Lemma 3.2,
we know L sits on a convex torus T as ruling curves of slope q/p. There is a
neighborhoodN = T 2 × [−1, 1] of T such that T 2 × {0} = T and the contact
structure is invariant in the [−1, 1] direction, [13, 24]. So each T 2 × {pt}
is foliated by ruling curves of slope q/p. We can isotop each component
of L to a different torus in N , and then further isotop the components
on the different levels so that their order is permuted by any preassigned
permutation. Finally we isotop the permuted components back to T . □

Remark 6.2. It is possible to do the permutations in the front diagram as
was shown by the first author [3].

Next we move on to study the ordered classification of Legendrian neg-
ative torus links. Theorem 5.1 gives the unordered classification of Legen-
drian (n,−nq)-torus links with q ≥ 1, while Theorem 4.1 gives the unordered
classification of Legendrian (np,−nq) torus links with q > p ≥ 2. We now
consider the ordered classification.

We will see that there is rigidity to the allowable permutations among
the set of components having the maximal of tb = −pq; recall that all these
components with tb = −pq must have the same rotation number. For the
components with maximal tb, a pre-Lagrangian torus determines a cyclic
ordering of the components.
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Definition 6.3. Let L = (Λ1, . . . ,Λn) be a Legendrian (np,−nq)-torus link
such that tb(Λi) = −pq, for all i. Then L is the union of leaves of a pre-
Lagragian torus T0, and L can also be seen as the Legendrian divides of
a convex torus T ; if p > 1, T, T0 are contained in a basic slice, and if p =
1, T, T0 are contained in a universally tight union of two basic slices (see
Lemma 5.4). Then T0 (and equivalently, by Lemma 2.9 and Remark 2.10,
a complementary annulus for T , as defined in Definition 2.4) gives a cyclic
ordering of the components of L. We will always assume that the Λi are
numbered according to this ordering. This ordering is well-defined up to
cyclic permutation.

Lemma 6.4. Let L = (Λ1, . . . ,Λn) be a Legendrian (np,−nq)-torus link
such that tb(Λi) = −pq, for all i. Then it is possible to do a cyclic permuta-
tion of the components of L via a Legendrian isotopy.

Proof. As described in Definition 6.3, L lies among the leaves of a pre-
Lagrangian torus T0. One may cyclically permute the components of L
through the leaves of the pre-Lagrangian T0. □

As seen in Lemma 4.2 and Proposition 5.2, when p > 1, these max tb
representatives of the (np,−nq)-torus links are the n-copies of a Legendrian
(p,−q)-torus knot Λ with max tb, and when p = 1, these max tb representa-
tives of the (n,−nq)-torus links are the n-copies of a Legendrian unknot Λ
with tb = −q. In the front projections, these n-copies can be seen as slight
shifts of Λ in the z-direction, and the cyclic ordering corresponds to increas-
ing z-coordinate, with the uppermost component circling back to become
the lowest.

Theorem 6.5. For q ≥ p ≥ 1 and gcd(p, q) = 1, let L = (Λ1, . . . ,Λn) be
an oriented, ordered Legendrian (np,−nq)-torus link. Let I1 be the subset
of {1, . . . , n} containing the indices such that tb(Λi) = −pq, and let I2 be
its complement. Then there is a Legendrian isotopy from (Λ1, . . . ,Λn) to
(Λσ(1), . . . ,Λσ(n)) where σ is an element of the symmetric group Sn if and
only if

1) σ preserves the partition I1 ∪ I2,

2) σ restricted to I1 is a cyclic permutation, and

3) for all i ∈ I2, Λi and Λσ(i) have the same Thurston-Bennequin and
rotation number invariants.
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̸=

=

Figure 18: A noncylic permutation of the Legendrian 3(1,−2)-torus link
when all components have tb = −pq is not possible, however once compo-
nents are stabilized, non-cyclic permutations are possible.

Before proving Theorem 6.5, we note that it is the last step needed to
complete the proof of the ordered classification of torus links, Theorem 1.2.

Proof of Theorem 1.2. The result immediately follows from the unordered
classification, 3.1, 4.1, and 5.1, and Theorem 6.1 and 6.5. □

We begin the proof of Theorem 6.5 by observing that permutations men-
tioned are possible.

Lemma 6.6. With the notation from Theorem 6.5, the permutations of the
components of L listed there can be achieved through a Legendrian isotopy.

Proof. Let I1 be the subset of {1, . . . , n} containing the indices such that
tb(Λi) = −pq, I2 the subset with tb(Λi) = −pq − 1 that have been positively
stabilized once, and I3 the subset with tb(Λi) = −pq − 1 that have been
negatively stabilized once. We will show the result holds in the case where
I1 ∪ I2 ∪ I3 = {1, . . . , n}; all the other cases will be stabilizations of this case,
and hence the result will also follow in these other cases.

We begin by assuming that −q/p is not an integer, i.e., p ̸= 1. Suppose
that −q/p arises in the Farey graph from the sum of s and s′; observe that
s, s′ ∈ Q ∩ [−∞,−1]. Since there is also an edge in the graph between s and
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s′, there will be a basic slice B with dividing slopes s and s′ that is embedded
in S3 as a neighborhood of a Heegaard torus. We take the ruling slopes on
∂B to be −q/p. Inside B is a pre-Lagrangian torus T whose characteristic
foliation has slope −q/p. Let Λ1 be a leaf of the foliation of T . We claim
that the ruling curves on one boundary component of B are positive sta-
bilizations of Λ1, and the ruling curves on the other boundary component
are negative stabilizations of Λ1. To see this, consider a convex annulus hav-
ing one boundary component on Λ1 and the other on a ruling curve of ∂B.
Since there is an edge in the Farey graph between −q/p and s (and between
−q/p and s′), we know that the ruling curves intersect each dividing curve
on ∂B exactly once. Thus the Thurston-Bennequin invariant of the ruling
curve is one less that that of Λ1. Moreover, an annulus between a ruling
curve and Λ1 has a singe boundary parallel dividing curve, thus the rotation
number of the ruling curve differs by one from Λ1 (the difference in rotation
numbers can be computed in terms of the positive and negative regions of
the convex annulus between them, see the proof of [13, Section 3.2]). From
the classification of Legendrian torus knots (or Lemma 4.3) we see that the
ruling curves are stabilizations of Λ1. To see that the curves on different
boundary components of B are different stabilizations, we note that if A is
an annulus in B connecting the ruling curves then the relative Euler class
of B evaluated on A is ±2; (this follows from the formula for the relative
Euler class in [24], but to see it easily one may change coordinates so that
s = −∞,−q/p = −1, and s′ = 0. Then the relative Euler class is Poincare
dual to the ±[1, 1] curve on T 2 and hence evaluates on the [1,−1] annulus as
±2). The difference in the rotation numbers of the boundary of this annulus
agrees with this relative Euler class, [13, Section 3.2], and so we see that the
rotation numbers of the ruling curves on the different boundary components
of B differ by 2, and thus they are different stabilizations. Now L can be
realized with the components indexed by I1 as leaves in the foliation of T
and the components indexed by I2 and I3 as ruling curves on the bound-
ary components of B. The components on T can be cyclically permuted
and, arguing as in the proof of Lemma 6.1, we can arbitrarily permute the
components on a common boundary component of B.

If p = 1, which implies −q/p is an integer, then for the (n,−nq)-
torus links with non-maximal Thurston-Bennequin invariant that do not
destabilize, the result is clear from the model constructed in the proof of
Lemma 5.11. For the (n,−nq)-torus links with max tb, the proof follows the
ideas in the p ̸= 1 case except we cannot take s, s′ as above since one of s
or s′ is −∞, and so the desired basic slice does not exist in S3. However,
by Lemma 5.4, we know that our link lies on a torus in the universally
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tight union of two basic slices. Hence the pre-Lagrangian torus T with fo-
liation of slope −q still exists [24], and the argument now proceeds exactly
as above. □

We must now see that only cyclic permutations will produce equivalent
Legendrian links negative torus links with maximal Thurston-Bennequin
invariant. The first work along these lines was done for n-copies of any
Legendrian unknot by Mishachev using the Chekanov-Eliashberg DGA.

Theorem 6.7 (Mishachev 2002, [33]). For any q ≥ 1, let (Λ1, . . . ,Λn)
be the ordered max tb Legendrian representative of the (n,−nq)-torus link
obtained as the n-copy of a Legendrian unknot with tb = −q. Then there is
a Legendrian isotopy from (Λ1, . . . ,Λn) to (Λσ(1), . . . ,Λσ(n)) where σ ∈ Sn
only if σ is a cyclic permutation.

Remark 6.8. In Mishachev’s DGA approach, he worked with the unique
augmentation ϵ of Λ, where Λ is either the Legendrian unknot with tb = −1
or the 2-copy of a Legendrian unknot with tb = −q, for q ≥ 2. To different
orderings, one can define “characteristic algebras” CH123(ϵ) and CH132(ϵ)
associated with non-cyclic permutations of 3-copies of Λ. In fact, one of
these characteristic algebras has zero divisors while the other does not,
which shows that non-cyclic permutations are never possible. Extending
Mishachev’s DGA approach to Legendrian (np,−nq)-torus links for p ≥ 2
has difficulties. There is again a unique augmentation of the (2,−q)-torus
knot, for all q > 2, but the characteristic algebras of interest both have 0-
divisors. L. Ng observed that we can handle this (2,−q) case by analyzing
product structures. When p ≥ 3, one needs to double the knot to get an aug-
mentation, and one gets many augmentations. For example, when trying to
apply this approach to study non-cyclic permutations of (3,−4), one needs
to find augmentations of Λ = 2(3,−4) = (6,−8). There are now 3 augmenta-
tions of Λ, which translates into 27 “minimal” augmentations of the 3-copy
of Λ arising from lifts of augmentations of Λ. The authors made a number of
attempts to extend the DGA approach, including looking at matrix-valued
augmentations, but with little success. We give a convex surface argument
that works in all cases.

Theorem 6.9. For q ≥ p ≥ 1 and gcd(p, q) = 1, let L be a Legendrian
(np,−nq)-torus link such that all the components have tb = −pq. Then no
non-cyclic permutation can be achieved via a Legendrian isotopy.

With this theorem we can now complete the proof of Theorem 6.5.
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Proof of Theorem 6.5. The existence of the claimed permutations of the
Legendrian link follows from Lemmas 6.4, 6.6, and the restrictions on the
permutations follows from Theorem 6.9. □

We begin the proof of Theorem 6.9 by observing limitations on Legen-
drian isotopies in a basic slice, and then reduce the above theorem to this
observation.

6.1. Forbidding non-cyclic permutations in basic slices

Theorem 6.10. Let (T 2 × [0, 1], ξ) be a basic slice, and suppose T is
a boundary-parallel, pre-Lagrangian torus in this basic slice. Let L =
(Λ1, . . . ,Λn) be a Legendrian link consisting of leaves in the characteristic
foliation of T ordered as they appear on T . Then a non-cyclic permutation
of the components of L cannot be achieved by a Legendrian isotopy.

Proof. Let (T 2 × [0, 1], ξ) be a basic slice with dividing curves on T 2 × {i}
having slope si, for i = 0, 1, and T ⊂ T 2 × [0, 1] be a boundary-parallel pre-
Lagrangian torus. Since we are in a basic slice, we know the characteristic
foliation of T will have slope s ∈ (s0, s1).

For the reader’s convenience, we will first outline the steps of the proof.

Step 1. If there is a contact isotopy ϕt of L in T 2 × [0, 1] such that ϕ1(L) =
L and ϕ1 realizes a non-cyclic permutation of its components, then there
is a 3-component link (Λ1,Λ2,Λ3) consisting of leaves of the characteristic
foliation of T , a neighborhood N of Λ1, and a contact isotopy ψt of (T

2 ×
[0, 1], ξ) such that ψt = id on N and in a neighborhood of the boundary,
ψ1(Λ2) = Λ3, and ψ1(Λ3) = Λ2.

Step 2. There is a contact embedding of (T 2 × [0, 1], ξ), which is a basic
slice with boundary slopes s0 and s1 that contains the pre-Lagrangian torus
T of slope s, into (T 2 × [−1, 2], ξ′), where ξ′ is tight and each component
of the boundary of T 2 × [−1, 2] is convex with two dividing curves of slope
s. The contact structure ξ′ can be chosen such that the S1-action given by
rotating in the s-direction preserves ξ′. We extend the contact isotopy ψt
defined on (T 2 × [0, 1], ξ) in Step 1 by the identity to obtain an isotopy ψt
defined on (T 2 × [−1, 2], ξ′). We can write (T 2 × [−1, 2], ξ′) = (Σ× S1, ξ′),
where Σ = S1 × [−1, 2] and Σ× {θ} is a convex annulus.

The S1-invariance allows us to represent important objects in our 3-
manifold on the annular surface Σ.
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Step 3. There are tubular neighborhoods Ni of Λi, with N1 ⊂ N ,
that are invariant under the S1-action from Step 2. Letting X1 =
(T 2 × [−1, 2])−N1, X1 is diffeomorphic to Σ1 × S1, where Σ1 is an annulus
with a disk removed, and the contact isotopy ψt from Step 2 restricts to define
a contact isotopy ψ1

t of X1. Letting X123 = (T 2 × [−1, 2])− (N1 ∪N2 ∪N3),
X123 is diffeomorphic to Σ123 × S1, where Σ123 is Σ1 with two disks removed,
and the contact diffeomorphism ψt|t=1 from Step 2 gives rise to a contact dif-
feomorphism of ψ123 of X123. The neighborhoods Ni can be chosen such that
X123 has boundary consisting of convex tori with dividing curves of slope
∞, meaning parallel to the S1-action, and horizontal Legendrian rulings,
meaning that the boundary of Σ123 × {θ} is a union of Legendrian ruling
curves.

Step 4. For all θ, Σ123 × {θ} is convex with Legendrian boundary. From the
convex surface ψ123(Σ123 × {θ}), we can construct a convex surface Σ′ whose
boundary agrees with the boundary of Σ123 × {θ} yet the dividing curves of
Σ123 × {θ} and the the dividing curves of Σ′ connect the 3 boundary com-
ponents coming from the neighborhoods of the Λi in topologically different
ways. Since there is an isotopy rel boundary taking Σ′ to Σ123 × {θ}, we get
a contradiction to the following “minimality” proposition due to Honda.

Proposition 6.11. [25, Proposition 4.4] Suppose Σ is compact with bound-
ary. Consider an S1-invariant tight contact structure on Σ× S1 where the
boundary of Σ× S1 consists of convex tori with dividing curves of slope
∞ (meaning parallel to the S1-action) and horizontal Legendrian rulings
(meaning for all θ, ∂Σ× {θ} is a Legendrian ruling curve). Then Σ× {θ}
minimizes dividing curves in the following sense: if Σ′ ⊂ Σ× S1 is a convex
surface that is isotopic rel boundary to Σ× {θ}, then there exists an isotopy
ϕt of Σ

′ with ϕ1(Σ
′) = Σ× {θ} and ϕt|∂Σ′ = id such that ΓΣ×{θ} ⊂ ϕ1(ΓΣ′).

In particular, if ∂1 and ∂2 are two components of ∂(Σ× {θ}) and there there
is a dividing curve on Σ× {θ} that connects p1 ∈ ∂1 and p2 ∈ ∂2, then there
will be a dividing curve on Σ′ that connects p1 and p2.

Now we begin to verify the claims in Step 1. Suppose there is a contact
isotopy ϕt of L = (Λ1, . . . ,Λn) such that ϕ1(L) = L and ϕ1 realizes a non-
cyclic permutation of its components. We can do further cyclic isotopies by
sliding L along the leaves of the pre-Lagrangian torus T . By such an isotopy
we can assume that ϕ1(Λ1) = Λ1. If we now label two components of L that
have their order interchanged (but the components are not necessarily sent
to each other) by Λ2 and Λ3. By a further isotopy along T we can assume
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that Λ2 and Λ3 are interchanged. Disregarding the other components we
see that if there is an isotopy of L realizing a non-cyclic permutation of
its components, then there is a Legendrian link, (Λ1,Λ2,Λ3) on T , and an
isotopy ϕt such that ϕ1(Λ1) = Λ1, ϕ1(Λ2) = Λ3, and ϕ1(Λ3) = Λ2. In our
labeling, we are assuming that with respect to the pre-Lagrangian T , one
encounters Λ1 = ϕ1(Λ1), then Λ2 = ϕ1(Λ3), and then Λ3 = ϕ1(Λ2).

Consider the pre-Lagrangian torus T ′ = ϕ1(T ). Notice that T ∩ T ′ con-
tains L. The following lemma about pre-Lagrangian annuli will allow us to
modify ϕt to a contact isotopy that is the identity on a neighborhood of Λ1.

Lemma 6.12. Let A and A′ be two pre-Lagrangian annuli whose charac-
teristic foliations consist of circles. Assume that Λ ⊂ A ∩A′ is a Legendrian
circle on both A and A′. Then A′ may be isotoped through pre-Lagrangian
annuli so that a neighborhood U of Λ in A′ is a subset of A. Moreover, Λ
and ∂A′ can be fixed throughout the isotopy.

Proof. We construct a model for a neighborhood of A. Let A be the xz-
plane in R3/ ∼, where (x, y, z) ∼ (x+ 1, y, z), with contact structure ξ =
ker(dz − y dx); Λ is modeled by the x-axis S1 × {0}. We know that the
annulus A′ is transverse to the y-direction along the x-axis, since a tangency
would give a singularity in the characteristic foliation of A′. Thus we can
write A′ near S1 × {0} as a graph over A: there is some function f(x, z)
so that a neighborhood U ′ of S1 × {0} in A′ is {(x, f(x, z), z)}. The front
projection of the foliation of U ′ onto A will give a foliation of a neighborhood
of the x-axis by curves. As will be explained in the next paragraph, these
curves can be straightened out near the x-axis, and this straightening gives
the isotopy from U ′ to a subset of A.

To make this precise, notice that the projection of the foliation of U ′

to the xz-plane can be parameterized by F : S1 × [−ϵ, ϵ] → S1 × R, where
F (θ, t) = (θ, t+ ft(θ)) and the constant t curves are the front projections
of leaves of the characteristic foliation of A′. Notice that f0(θ) = 0, and

near t = 0 we have ∂ft(θ)
∂t is small since here the front projection of the

corresponding leaves are almost horizontal: we can assume there exists ε
and B such that

∣∣∣∣
∂ft(θ)

∂t

∣∣∣∣ ≤ B < 1, ∀t ∈ [−ϵ, ϵ], ∀θ ∈ S1.

To construct an isotopy of pre-Lagrangian annuli, consider an increas-
ing function g : [−ϵ, ϵ] → [−ϵ, ϵ] such that g = 0 on a neighborhood of 0 and
g(t) = t near ±ϵ. Then set Fg(θ, t) = (θ, t+ fg(t)(θ)). If Fg is an embedding,
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then by considering each constant t curve as the front projection of a Leg-
endrian knot, we can lift the image of Fg to a pre-Lagrangian annulus U ′

that will coincide with A along the center circle of this annulus and with A′

near its boundary. Towards seeing that Fg is an embedding, we first claim
that it is possible to choose ϵ and g so that Fg is an immersion. Observe

that detDFg = (1 +
∂fg(t)(θ)

∂t ), and thus we want to guarantee that with an

appropriate choice of g,
∂fg(t)(θ)

∂t > −1. Choose C > 1 such that |BC| < 1; it
is possible to choose g such that |g′(t)| < C, for all t ∈ [−ϵ, ϵ]. By the chain

rule, we then see that |
∂fg(t)(θ)

∂t | < 1, which will guarantee that Fg is an im-
mersion. Moreover, we see that Fg is an embedding by arguing Fg is injective
as follows. First observe that if Fg(θ1, t1) = Fg(θ2, t2), then θ1 = θ2. Now by
our choice of g, for a fixed θ, the map t 7→ t+ fg(t)(θ) has positive derivative
and thus is injective. In addition, there is a family of such g starting with
the identity map and ending with a pre-chosen g, thus we get an isotopy
through pre-Lagrangian annuli. □

We can use Lemma 6.12 to complete Step 1.

Corollary 6.13. If there is a contact isotopy ϕt of L in the basic slice (T 2 ×
[0, 1], ξ) such that ϕ1(L) = L and ϕ1 realizes a non-cyclic permutation of its
components, then there is a 3-component link (Λ1,Λ2,Λ3), a neighborhood
N of Λ1, and a contact isotopy ψt of (T

2 × [0, 1], ξ) such that ψt = id on N
and in a neighborhood of the boundary, ψ1(Λ2) = Λ3, and ψ1(Λ3) = Λ2.

Proof. Let A be an annular neighborhood of Λ1 on the pre-Lagrangian
torus T and let A′ be an annular neighborhood of Λ1 on T ′ = ψ1(T ). By
Lemma 6.12, we can isotop T ′ to a pre-Lagrangian torus T ′′ that agrees
with T in a neighborhood U of Λ1. We can then use the leaves of the char-
acteristic foliation on T to isotop Λ2 ∪ Λ3 into the neighborhood U (without
moving a neighborhood of Λ1), and then using T ′′ we can further isotop them
back to Λ3 ∪ Λ2 (interchanging order). We can now extend this Legendrian
isotopy to a global contact isotopy ψt as desired. □

Now we move onto Step 2, the first part of which is accomplished through
the following lemma.

Lemma 6.14. There exists an embedding of our basic slice (T 2 × [0, 1], ξ),
which has boundary slopes s0 and s1 and contains the pre-Lagrangian torus
T of slope s, into (T 2 × [−1, 2], ξ′) where ξ′ is tight and each of the boundary
components of T 2 × [−1, 2] is convex with two dividing curves of slope s. The
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contact structure ξ′ can be chosen such that the S1-action given by rotating
in the slope s-direction preserves ξ′.

Proof. Our strategy will be to build a model for (T 2 × [−1, 2], ξ′) that con-
tains a basic slice; our result will then follow from the fact that basic slices
are unique up to orientation.

Begin by writing T 2 = S1 × S1 so that {p} × S1 is the curve of slope s.
That is, we change coordinates on T 2 so that the pre-Lagrangian is foliated
by lines of slope s = ∞; let vi denote the boundary slopes si of the basic
slice in these new coordinates. We denote the angular coordinates on the S1

factors by θ1 and θ2. In these coordinates, consider T 2 × R with the contact
structure ker(− cos t dθ1 + sin t dθ2). The torus T 2 × {0} is pre-Lagrangian
with slope ∞, as are the tori T 2 × {±π}. This contact structure is well-
known to be tight3, and the S1-action given by rotating in the θ2-direction
preserves the contact structure. As argued in the proof of Lemma 2.9, one
may perturb the tori T 2 × {±π} such that each are convex, have two di-
viding curves of slope ∞, and have horizontal ruling curves. The region R
between these convex tori is invariant under the S1-action, and R is further
divided into two regions R− and R+ by T 2 × {0}, where R− contains t coor-
dinates with negative values. From our local model, we see that by choosing
a sufficiently small perturbation of the T 2 × {±π}, we can be guaranteed
to find a pre-Lagrangian torus of slope v0 in R− and a pre-Lagrangian of
slope v1 in R+. Perturb each of these tori to be convex with two dividing
curves, and let B be the region between them. Then T 2 × {0} is contained
in B, and B is a basic slice. So we have built a model for our original basic
slice T 2 × [0, 1]. Moreover the complementary regions R \B are the claimed
thickened tori that can be added to T 2 × [0, 1] to create (T 2 × [−1, 2], ξ′),
as desired. □

Remark 6.15. For future arguments, it will be convenient to think of
(T 2 × [−1, 2], ξ′) as (Σ× S1, ξ′), where Σ = S1 × [−1, 2] is an annulus, and
ξ′ is invariant in the S1-direction.

Remark 6.16. The surfaces Σ = {θ2 = c} × [−1, 2] will be denoted by Σ×
{c}. For later purposes, it will be important to notice that the dividing curves
of Σ× {c} will contain (Σ× {c}) ∩ T , where T is the boundary-parallel, pre-
Lagrangian torus containing our link L = (Λ1,Λ2,Λ3): the pre-Lagrangian
T is foliated by lines that are tangent to the direction of the S1-action.

3For example, this is the contact structure on a Z-fold cover of the standard tight
contact structure on T 3, which is universally tight.
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As the contact isotopy ψt defined on (T 2 × [0, 1], ξ) in Corollary 6.13 is
the identity near ∂(T 2 × [0, 1]), ψt extends by the identity to an isotopy ψt
of (T 2 × [−1, 2], ξ′). This completes Step 2.

Turning to Step 3, we will first find special neighborhoods Ni of Λi.

Lemma 6.17. There are S1-invariant neighborhoods Ni of Λi such that
each Ni has a convex torus boundary with dividing slope parallel to the S1-
action and ruling slope 0. Furthermore, we can assume that N1 ⊂ N , and
ψt|N1

= id.

Proof. By changing coordinates the model for the S1-invariant contact
structure on a neighborhood of our pre-Lagrangian T is S1 × S1 × (−1, 1)
with contact form −dθ1 + t dθ2, the S1-action being rotation in the θ2-
direction and T = S1 × S1 × {0}. We can moreover assume that Λ1 = {θ1 =
0} × S1 × {0}, and note that a neighborhood of this curve can by given by
(−2ϵ, 2ϵ)× S1 × (−1, 1) with contact from −dx+ t dϕ.

Now consider the embedding

ν : D2 × S1 → (−2ϵ, 2ϵ)× S1 × (−1, 1)

(r, θ, ϕ) 7→ (ϵr cos θ, ϕ, ϵr sin θ).

By construction, the image of this map is an S1-invariant neighborhood N1

of Λ1, and in these coordinates the characteristic foliation on the boundary
is given by ν∗(−dx− tdϕ)|r=1 = ϵ sin θ (dθ + dϕ). So ∂N1 has two circles
worth of singularities (Legendrian divides) at θ = 0, π, and is non-singular
elsewhere. Thus ∂N1 is a standard convex torus, and in (θ, ϕ) coordinates
the dividing slope is ∞ and the ruling slope is −1.

By construction we have vertical dividing curves, but the ruling curves
have slope −1 rather than the desired slope of 0. To fix this, we claim that we
can add an S1-invariant collar neighborhood ∂N1 so that the new boundary
has ruling slope 0 and dividing curves of slope ∞. That such an invariant
neighborhood exists is implicit in [24], but as a proof does not seem to
exist in the literature, we will prove it in the following lemma. In fact, the
following lemma shows that we could make the slope of the ruling curves
be any finite number while keeping the infinite slope of the dividing curves.
To set up convenient coordinates, observe that there is a diffeomorphism of
∂N1 that takes the ruling curves of slope −1 and the dividing curves of slope
∞ to a torus T0 with ruling curves of slope 0 and dividing curves of slope
∞. As both ∂N1 and T0 will have [−1, 1]-invariant neighborhoods that are
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related by a contact diffeomorphism, the desired collar of ∂N1 will follow
from the following statement.

Lemma 6.18. If ξ is a [−1, 1]-invariant contact structure on T 2 × [−1, 1]
with dividing curves of slope ∞ and rulings of slope 0 that is invariant under
rotations in the ∞ direction, then in any neighborhood of T 2 × {0} there is a
torus T ′ isotopic to T 2 × {0} that is also invariant under rotation in the ∞
direction and has dividing curves of slope ∞ and rulings of any slope other
than ∞.

Proof. We will use coordinates (θ, ϕ, t) on T 2 × [−1, 1], and take our contact
structure to be given by cos θ dt+ sin θ dϕ. This contact structure is invariant
in the ϕ and t directions. Observe that any torus given by t = constant has
two Legendrian divides at θ = 0, π and has ruling curves of slope 0, meaning
in the θ-direction in the θϕ-plane. We will first build a piecewise smooth
torus with the desired properties, and then show that we can find a smooth
torus with the desired properties.

Suppose we want to realize a torus Ts with ruling curves of slope
s < 0; we later explain how the argument needs to be modified to han-
dle s > 0. Given any neighborhood of T 2 × {0}, there is some ϵ > 0
such that T 2 × [−2ϵ, 2ϵ] is contained in the neighborhood. For any fixed
θ0 ∈ (0, π/2) consider the torus Tθ0 obtained from T 2 × {0} by remov-
ing A0

[θ0,π/2]
= {(θ, ϕ, 0) : θ0 ≤ θ ≤ π/2} and replacing it with the union of

three annuli A
[0,ϵ]
θ0

= {(θ, ϕ, t) : θ = θ0, 0 ≤ t ≤ ϵ}, Aϵ[θ0,π/2] = {(θ, ϕ, ϵ) : θ0 <

θ < π/2}, and A
[0,ϵ]
π/2 = {(θ, ϕ, t) : θ = π/2, 0 ≤ t ≤ ϵ}. Denote by A0 the com-

plement of A0
[θ0,π/2]

in T 2 × {0}. Then

Tθ0 = A0 ∪A
[0,ϵ]
θ0

∪Aϵ[θ0,π/2] ∪A
[0,ϵ]
π/2

is a piecewise smooth torus. The characteristic foliation on A0 has ruling
curves of slope 0 (parallel to the θ direction in the θϕ-plane) and two dividing

curves of slope ∞. In addition, foliations on the annuli A
[0,ϵ]
θ0

, Aϵ[θ0,π/2], and

A
[0,ϵ]
π/2 are non-singular and of slope − cot θ0 (in the tϕ-plane), 0 (parallel to

the θ-direction in the θϕ-plane), and 0 (parallel to the t-direction in the

tϕ-plane), respectively. By choosing θ0 appropriately the slope on A
[0,ϵ]
θ0

can
be any negative number. In particular, if we choose θ0 so that the slope on

A
[0,ϵ]
θ0

is s/ϵ then the slope of the ruling curves on the piecewise smooth Tθ0
is s.
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Now to get a smooth torus, first notice that Tθ0 = Γ× S1
ϕ, where Γ is

a closed curve with four corners in the θt-plane. By replacing each corner
of Γ with curves approximating quarter circles of radius δ where 0 < δ ≪
ϵ, we can obtain a smooth curve γδ in the θt-plane and a smooth torus
Tθ0,δ = γδ × S1. As δ goes to 0, the ruling curves on Tθ0,δ approach those
on Tθ0 . Choose 0 < θ−0 < θ0 < θ+0 < π/2. The construction of the previous
paragraph shows that on the piecewise smooth tori Tθ±0 , the ruling curves will

have slopes s± satisfying s− < s < s+. By choosing δ sufficiently small, the
smooth tori Tθ±0 ,δ will have ruling curves of slopes s±δ satisfying s−δ < s < s+δ .
By continuity, the Intermediate Value Theorem tells us that there exists a
θs, with θ

−
0 < θs < θ+0 such that the smooth torus Tθs,δ has ruling curves of

slope s < 0 and dividing curves of infinite slope, as desired.
To realize a torus with ruling curves of slope s > 0, we start by choosing

θ0 ∈ (π/2, π) and removing the annulus A0
[π/2,θ0]

= {(θ, ϕ, 0) : π/2 ≤ θ ≤ θ0}.
Following a parallel procedure produces a smooth torus with ruling curves
of slope s > 0 and dividing curves of infinite slope, as desired. □

To complete the proof of Lemma 6.17, first observe that the desired
neighborhoods N2 and N3 can be constructed similarly. Lastly, we need to
verify that we can assume that ψt = id on N1. Recall that above we showed
that our isotopy ψt can be assumed to be the identity on a neighborhood
N of Λ1. Since the neighborhood N1 constructed above can be assumed to
be arbitrarily small we can assume that N1 ⊂ N , and thus our isotopy ψt is
the identity on N1. □

Step 3 will be concluded once we prove the following corollary.

Corollary 6.19. The manifold X1 := (T 2 × [−1, 2])−N1 is diffeomorphic
to Σ1 × S1, where Σ1 is an annulus with a disk removed, and the con-
tact isotopy ψt from Step 2 restricts to define a contact isotopy ψ1

t of
(X1, ξ

′|X1
). The space X123 := (T 2 × [−1, 2])− (N1 ∪N2 ∪N3) is diffeomor-

phic to Σ123 × S1, where Σ123 is Σ1 with two disks removed, and the contact
diffeomorphism ψ1 from Step 2 gives rise to a contact diffeomorphism of
ψ123 of (X123, ξ

′|X123
).

Although we know that ψ1 interchanges Λ2 and Λ3, we will need to argue
that ψ1 induces a contactomorphism that interchanges the neighborhoods
N2 and N3. To prove this, we will employ the following lemma that is well
known, but does not seem to be in the literature.
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Lemma 6.20. Suppose that T1 and T2 are disjoint convex tori in standard
form with the same ruling and dividing slopes in a contact manifold (M, ξ)
such that the region R between T1 and T2 is non-rotative. Then there is a
contact isotopy of (M, ξ) that is supported in a neighborhood of R and takes
T1 to T2.

Proof. We begin by building a model for R. Given a surface Σ with a singular
foliation F that admits dividing curves, there is an R-invariant contact struc-
ture ξ′ on Σ× R that induces F on each Σ× {t}, see [22, Proposition 3.4].
We will show that given any a < b there is a contact isotopy of Σ× R taking
Σ× {a} to Σ× {b} that is supported in an arbitrarily small neighborhood
of Σ× [a, b]. The lemma will then follow this since the hypotheses on R im-
ply that R has a neighborhood contactomorphic to a region T 2 × [a, b] with
such an R-invariant contact structure.

Let α be an R-invariant contact form for the R-invariant contact struc-
ture ξ′ on Σ× R. The function H = α(∂t) is the contact Hamiltonian gener-
ating the contact vector field ∂t. Now let g(t) be a function that is 1 on some
interval [a, b] and 0 outside a slightly larger interval. Then gH generates a
new contact vector field v that agrees with ∂t on [a, b] and is zero where g is
zero. The flow of v gives a contact isotopy of Σ× R that will take Σ× {a}
to Σ× {b} and has support near Σ× (a, b). □

Now we can complete the proof of Corollary 6.19, and thus complete
Step 3.

Proof of Corollary 6.19. Since N1 is not moved by ψt, we have an induced
isotopy ψ1

t onX1. The only thing left to see is that we may assume that ψ1
1 in-

terchanges N2 and N3. We will use an “intermediate” torus and Lemma 6.20
to extend ψ1

1 by an isotopy to guarantee this happens. Notice that Λ2 is con-
tained in N2 ∩ ψ

1
1(N3), and thus there is an S1-invariant neighborhood N ′

2

of Λ2 that is contained in this intersection such that the dividing and ruling
slopes on ∂N ′

2 agree with those on ∂N2 and ∂ψ
1
1(N3). Tightness implies that

the regions between ∂N ′
2 and ∂(ψ

1
1(N3)) and between ∂N ′

2 and ∂N2 are non-
rotative. Thus, from Lemma 6.20, we can find a contact isotopy extending
ψ1
t that takes ∂(ψ1

1(N3)) to ∂N ′
2, and then another isotopy taking ∂N ′

2 to
∂N2. Renaming the new isotopy ψ1

t again, we have ψ1
1(N3) = N2. A similar

argument arranges that ψ1
1(N2) = N3. □

We are now ready for Step 4, where we derive our contradiction. The
contradiction will arise by studying dividing curves on convex surfaces. In
(T 2 × [−1, 2], ξ′) = (Σ× S1, ξ′), observe that for all θ, Σ× {θ} is a convex
annulus with dividing set containing (Σ× {θ}) ∩ T ; see Remark 6.16. Now
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consider the two convex surfaces Σ123 × {θ}, ψ123(Σ123 × {θ}) ⊂ X123. We
see that the dividing curves of Σ123 × {θ} and ψ123(Σ123 × {θ}) connect
the boundary components corresponding to Λ1,Λ2, and Λ3 in topologically
different ways:

Lemma 6.21. On Σ123 × {θ} there is a component γ of the dividing set
that connects ∂N1 and ∂N2; letting p = γ ∩ ∂N1, the dividing curve γ′ of
ψ123(Σ123 × {θ}) containing p connects ∂N1 and ∂N3.

Proof. As the dividing set of Σ123 × {θ} contains (Σ123 × {θ}) ∩ T , it is clear
that there is a connected component of the dividing set, γ, connecting ∂N1

and ∂N2. The end of γ intersecting ∂N1 never moves throughout the isotopy
ψ1
t since the isotopy is supported away from N1. Let p = γ ∩ ∂N1, and let

γ′ be the connected component of the dividing set of ψ123(Σ123 × {θ}) that
contains p. Since ψt(Σ123 × {θ}) is convex with dividing curves given as the
image under ψt of the dividing curves of Σ123 × {θ}, we know that for all
t, there will be a component of the dividing curve on ψ1

t (Σ1 × {θ}) that
connects p to ψ1

t (∂N2). Thus γ
′ connects ∂N1 and ∂N3 = ψ1

1(∂N2). □

If we knew there was a topological isotopy relative to the bound-
ary of ψ123(Σ123 × {θ}) to (Σ123 × {θ}), we would immediately have a
contradiction to Honda’s result mentioned in Propositon 6.11. Although
ψ123(Σ123 × {θ}) may not satisfy this isotopy condition, we can guarantee
the existence of a surface Σ′ that does.

Lemma 6.22. There exists a convex surface Σ′
ψ so that ∂Σ′ = ∂(Σ123 ×

{θ}), Σ′
ψ is isotopic to Σ123 × {θ}, and the dividing curves on Σ′

ψ and

ψ123(Σ123 × {θ}) topologically connect the boundary components in the same
way.

Proof. To abbreviate notation, let Σ123 denote Σ123 × {θ}. From ψ123(Σ123),
we can construct a new surface Σ′

ψ with the desired properties by an isotopy
we call “sliding the boundary along the boundary”. To define this sliding,
let A be an annulus in a (torus) boundary component B of X123 with one
boundary component of A on ∂(ψ123(Σ123)) ∩B, the other boundary com-
ponent a ruling curve on B, and the rest of A disjoint from ψ123(Σ123). Then
we can glue A and ψ123(Σ123) together, round the corner between the two
pieces, and push the interior of the new surface slightly into the interior of
X123. We can think of this new surface as obtained by isotoping one of the
boundary components of ψ123(Σ123) along a boundary component of X123

guided by A; we say this is the result of sliding the boundary. This isotopy
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can also be done where A is actually an entire (torus) boundary component
of X123 rather than an annulus. If one always wants to work with annuli,
then this would be a two step process: write a boundary of component B as
the union of two annuli A1 and A2 and perform two slides using A1 then A2.
We call a slide of ψ123(Σ123) along an entire boundary component of X123

a complete boundary slide. The dividing curves on the annulus A added to
ψ123(Σ123) during a slide just run from one boundary component of A to the
other, so when we slide the surface the combinatorics of how the dividing
curves intersect the boundary is unchanged.

We can clearly slide the boundary components of ψ123(Σ123) along the
boundary of X123 to get a surface Σψ such that Σψ and Σ123 have the
same boundary, and the dividing curves on Σψ and ψ123(Σ123) connect the
boundary components the same way. Also notice that, since ψ123 is the
identity near ∂1, we do not need to slide ψ123(Σ123) along ∂N1.

We now complete our argument by showing that we may isotop Σψ via
complete boundary slides to get a convex surface Σ′

ψ that is isotopic to Σ123

relative to the boundary. Let a1, a2, a3, and a4 be arcs on Σ123 that cut Σ123

into a disk. If we label the boundary components of Σ123 by C0, C1, C2, C3,
and C4, where C0 ∪ C4 is the boundary of the original annulus then we can
choose the ai such that ai connects Ci−1 to Ci. Let Ai = ai × S1. We can
isotop the Ai so that they are transverse to Σψ. The intersection of Ai with
Σψ will consist of a single arc going from one boundary component of Ai
to the other and possibly some simple closed curves. All such simple closed
curves must bound disks on Ai, since the arc prevents them from being
essential, and each must bound a disk on Σψ, since Σψ is incompressible.
One may use a standard innermost disk argument to isotop Ai to remove
the circles of intersection. Thus each Ai intersects Σψ in exactly one arc ηi.
The arcs ai and ηi have the same boundary, but ηi might not be isotopic to
ai on Ai; after complete boundary slides of Σψ along boundary components
of X123, we can assume ηi is isotopic to ai on Ai. Since some of the ai have
end points on the same boundary component, doing slides to “fix” one of
the ηi can may mess up another. But we can fix all the ηi if we do so in
the correct order. For example, we can first fix η1 and η2 by boundary slides
along C0 and C2, respectively. Then fix η3 by boundary slides along C3, and
fix η4 by slides along C4. Observe that we never needed to move Σψ along the
boundary component on ∂N1. Thus we may assume, after compete boundary
slides, that all the ηi are isotopic to ai on Ai. We can extend the isotopies
of the ηi to an ambient isotopy that will take Σψ to a surface Σ′

ψ whose
boundary agrees with the boundary of Σψ (which agrees with the boundary
of Σ123), and Σ′

ψ also agrees with Σ123 along the curves ai. By cutting X123
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open along the Ai, X123 is cut open to D2 × S1, and Σ123 and Σ′
ψ are cut

open into meridional disks that have the same boundary; two such disks are
isotopic relative to their boundary. This isotopy can be done back in X123

so we see that Σ′
ψ is isotopic relative to the boundary to Σ123. Moreover,

since Σ′
ψ is obtained by boundary sliding ψ123(Σ123), but never moving the

boundary component on ∂N1, the combinatorics of the dividing curves on
Σ′
ψ agree with those of Σψ, which agreed with those of ψ123(Σ123). □

This completes Step 4 and hence the proof of Theorem 6.10. □

As a corollary to Theorem 6.10, we can say something about the inter-
sections of pre-Lagrangian tori in a basic slice.

Corollary 6.23. Let (T 2 × [0, 1], ξ) be a basic slice containing two
boundary-parallel pre-Lagrangian tori T, T ′ of the same slope. Suppose a
link L can be realized as a collection of leaves in the foliations of both T and
T ′. Then with respect to both tori, L has the same cyclic ordering.

Proof. For a contradiction, suppose there exists such a link L whose com-
ponents are ordered differently by the pre-Lagrangian tori T and T ′. By
considering a sublink and using arguments as in Step 1 of the proof of The-
orem 6.10, we can assume L has 3 components that are ordered differently
with respect to T and T ′. Suppose on T , these components are cyclically
ordered as (Λ1,Λ2,Λ3), and on T ′ they are cyclically ordered as (Λ1,Λ3,Λ2).
As in Step 1 of the proof of Theorem 6.10, we can isotop T ′ so that it agrees
with T near Λ1 and then isotop Λ2 and Λ3 along T into the region where T
and T ′ agree near Λ1 and then out along T ′ to exchange them, which is a
contradiction to Theorem 6.10. □

Remark 6.24. It would be interesting to know if in a basic slice, two pre-
Lagrangian tori that contain common leaves in their intersection must in fact
be isotopic. We note that each leaf in the characteristic foliation of one of
the tori must intersect the other torus. To see this, suppose we had two such
tori T and T ′ in a basic slice T 2 × [0, 1] and a leaf L of T was disjoint from
T ′. Then let T ′′ be a convex torus disjoint from T ′ that contains L. It will
have to have dividing slope that agrees with the slope of the characteristic
foliation on T ′ (since the twisting of the contact structure along L will be
zero with respect to the torus framing and thus cannot intersect the dividing
set). But since T ′ is pre-Lagrangian we can use a local model for it to see
that between T ′ and T ′′ we have tori with dividing slopes different from
that of T ′′. This implies that the region between T ′ and T ′′ is not minimally
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twisting, contradicting the fact that this is all taking place in a basic slice.
This observation together with the above corollary strongly indicate that
two such pre-Lagrangian tori must indeed be isotopic.

6.2. Forbidding non-cyclic permutations in S3

Having establishing the fact that it is not possible to do a non-cyclic per-
mutation of the leaves of a pre-Lagrangian in a basic slice, we now move to
the setting of S3. The proof of Theorem 6.9 will follow from the following
proposition.

Proposition 6.25. For q ≥ p ≥ 1, let L be an ordered Legendrian
(np,−nq)-torus link in S3 with each component having tb = −pq. Let T be
a pre-Lagrangian torus containing L; assume the components of L are given
the cyclic ordering from T . If there exists a contact isotopy ψt of S

3 such
that ψ1(L) realizes a permutation of L, then there exists a basic slice con-
taining pre-Lagrangian tori T and T ′ such that both T and T ′ contain L as
leaves of their foliations, T induces the cyclic ordering given by L, and T ′

induces the cyclic ordering given by ψ1(L).

Before proving Proposition 6.25, we observe that Propositon 6.25 leads
to a short proof of Theorem 6.9.

Proof of Theorem 6.9. By Proposition 6.25, a non-cyclic permutation of the
leaves of a Legendrian (np,−nq)-torus link L in S3 where all the components
have tb = −pq implies the existence of two pre-Lagrangian tori in a basic slice
that induce different cyclic orderings on the leaves of L, a contradiction to
Corollary 6.23. □

To prove Proposition 6.25, we will first establish three lemmas about
the image of a pre-Lagrangian torus containing L under a contact isotopy
ψt such that ψ1(L) is a permutation of L.

First we develop a dimension reduction set up. In the proof of Theo-
rem 6.10, Step 2 allowed a dimension reduction so that we could represent
important objects in our 3-dimensional basic slice in a 2-dimensional annu-
lus. Similarly, the following lemma will allow us to represent relevant tori,
solid tori, and annuli in S2 rather than S3. The annuli constructed in this
lemma will later be used to find a basic slice containing two pre-Lagrangian
tori containing L.
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Lemma 6.26. Suppose L ⊂ S3 is a Legendrian (p,−q)-torus link that
arises as the leaves of a pre-Lagrangian torus T0 of slope −q/p, and ψt is a
contact isotopy of S3 such that ψ1(L) is a permutation of L; let T1 = ψ1(T0).
There is a Seifert fiber structure on S3 with regular fibers being (p,−q)-torus
knots. The base of the fibration is S2; if p ̸= 1, there are two singular fibers
K0,K1, while if p = 1 only K1 is singular. The fibers K0,K1, given as the
pre-image of the poles of S2, form a Hopf link. With respect to this Seifert
fiber structure, we can arrange the following.

1) We can assume our link L is contained in the pre-Lagrangian torus
T0, which is the pre-image of the equator. The torus T0 separates S3

into two solid tori S0 and S1.

2) The pre-Lagrangian torus T1 = ψ1(T0) can be isotoped relative to L to
be a convex torus T ′

1 such that T ′
1 is the pre-image of a curve c ⊂ S2

that separates the poles; the torus T ′
1 separates S3 into two solid tori

S′
0 and S′

1. Thus the pre-image of the poles of S2 give Ki, which are
core-curves of both the solid tori Si and S

′
i, i = 0, 1.

3) The pre-image of curves in S2 joining the poles to points on the equa-
tor in the complement of the curve c define annuli Ai with embedded
interiors such that ∂Ai is the union of a Legendrian (p,−q)-curve on
T0 and, when i = 0, a curve that wraps p times around K0 and, when
i = 1, a curve that wraps −q times around K1. Moreover, Ai is disjoint
from T ′

1 and intersects T0 only along its boundary, which is a leaf of
the characteristic foliation of T0.

Proof of Lemma 6.26. We will view S3 as the unit sphere in C2; the standard
contact structure on S3 is then given by the kernel of α|TS3 = (r1dθ1 +
r2dθ2)|TS3 , where zj = rje

iθj . The Seifert fiber structure is well known. We
first view S3 as the join of two circles: consider the map

Ψ : S1 × S1 × [0, 1] → S3 : (θ1, θ2, t) 7→
(
cos

(π
2
t
)
eiθ1 , sin

(π
2
t
)
eiθ2

)
.

Then Ψ restricted to S1 × S1 × (0, 1) parametrizes S3 −H, where H =
(S1 × {0}) ∪ ({0} × S1) is the Hopf link, and S1 × S1 × {0, 1} is “collapsed”
onto H. In these coordinates the vector field p∂θ1 − q∂θ2 generates the or-
bits of the Seifert fiber structure on S3. All the claimed properties about
the Seifert fiber structure of S3 are seen in this model.

To verify (1), first observe that in the coordinates given by Ψ the contact
planes are always tangent to the [0, 1]-factor, have slope −∞ as t limits to
0 and then rotation through negative numbers and limit to slope 0 as t
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approaches 1. In our identification of the orbit quotient of S3 to S2, we
can assume that the preimage of the equator is the pre-Lagrangian T0 with
characteristic foliation having slope −q/p. From our unordered classification
of negative torus links, we can assume that L is a subset of the leaves of the
foliation on T0. We can now define S0 and S1 as the pre-image of the upper
and lower hemispheres of S2. The Ki, defined as the preimages of the poles,
are the cores of Si. This completes Item (1).

For Item (2), we first isotop T1 = ψ1(T0) relative to L to a convex torus
T ′
1 such that T0 and T ′

1 intersect transversally, and T0 ∩ T
′
1 consists of L and

potentially other curves on both tori.
Claim: We can choose the isotopy so that T ′

1 is the pre-image of a curve
c ⊂ S2, where the curve c separates the poles of S2.

Proof of Claim. The intersection T0 ∩ T
′
1 consists of simple closed curves

containing L: 2n of them are (p,−q) curves on both tori, and m of them
are null-homotopic curves on both tori. Using a standard innermost disk
argument, T ′

1 can be isotoped, relative to L, to remove the null-homotopic
curves.

Now each component of T ′
1 \ (T0 ∩ T

′
1) is an annulus in S0 or S1 with

boundary consisting of (p,−q) curves in T0. Thus the annuli are incompress-
ible in S0 or in S1, since inclusion induces an injection on their fundamental
groups. We will have our desired existence of the curve c if we can show that
we can isotop T ′

1 relative to T0 ∩ T
′
1 so that each of these annuli become a

union of fibers. An incompressible annulus in a Seifert fiber space is either
boundary parallel or boundary incompressible, see [28, Section 7] and [29,
Section 5]. Moreover a boundary incompressible surface is isotopic to either
a vertical (union of regular fibers) or horizontal (transverse to each fiber)
surface. Since the boundary condition on the annuli imply that the annuli
cannot be horizontal, the annuli must be either boundary parallel annuli
or vertical surfaces, which in this case are also boundary parallel. Notice
that a boundary parallel annulus with boundary a union of fibers can be
isotoped to be a vertical surface, since there is a vertical surface with the
same boundary, and any two annuli with the same boundary will be isotopic.
Thus after isotopy relative to T0 ∩ T

′
1, we can assume T ′

1 is also a vertical
surface. In particular, there is a simple closed curve c in S2 such that T ′

1 is
the pre-image of c under the fibration.

Furthermore, we can argue that c separates the poles of S2 as follows.
If not and p ̸= 1 then there is a disk D bounded by c that contains both
singular points; the pre-image of D is not a solid torus (in fact it is the
complement of a (p,−q)-torus knot), which contradicts T ′

1 being isotopic to
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T0. When p = 1, if c does not separate the poles, then since K0 is a regular
fiber, and we can further isotop T ′

1 past K0. □

Now that we have established Item (2), we move on to the last item. If
one takes arcs a0 from the north pole to the equator and a1 from the south
pole to the equator, both avoiding c, then their pre-images will be the annuli
A0 and A1 satisfying the properties claimed in Item (3). □

Moving on, it will be helpful to keep in mind that the convex T ′
1, which

has the nice description as the pre-image of the curve c ⊂ S2, was obtained
from a potentially large isotopy of the pre-Lagrangian T1 = ψ1(T0). We now
show that the cyclic ordering of the components of L on T ′

1 agrees with the
cyclic ordering on T1. To do this, we will find a non-rotative neighborhood for
the convex torus T ′

1; recall that in Definition 2.4, we defined a complementary
annulus for a non-rotative contact structure, and in Lemma 2.9 we discussed
how such a complementary annulus can be used to define a cyclic ordering
of the Legendrian divides of a convex torus.

Lemma 6.27. Suppose L, T0, T1, and T ′
1 are as in the statement of

Lemma 6.26. The convex torus T ′
1 has a neighborhood R1 = T ′

1 × [−ϵ, ϵ] such
that ξ restricted to R1 is [−ϵ, ϵ]-invariant, each boundary component of R1

has two dividing curves, and the cyclic ordering of L induced by a comple-
mentary annulus in R1 agrees with the one induced by the pre-Lagrangian
torus T1. Moreover, the annuli Ai constructed in Lemma 6.26 can be con-
structed to be disjoint from R1.

Proof. We will start by constructing a convex torus T ′′
1 that has a neighbor-

hood with the desired properties, and then use a Discretization of Isotopy
technique to show that T ′′

1 can be moved to our T ′
1 in such a way that the

desired neighborhood properties persist.
By Lemma 2.8, we know that from the pre-Lagrangian T1, we can find

a convex torus T ′′
1 that has a neighborhood R′′ with the desired properties.

Since both T ′
1 and T ′′

1 are isotopic to T1 fixing L, there is a smooth isotopy
of T ′′

1 to T ′
1 fixing L . By the Discretization of Isotopy technique, [27, Sec-

tion 2.2.3], we can find a sequence of convex surfaces F0,. . . , Fl, such that
F0 = T ′′

1 , Fl = T ′
1, and each pair Fi ∪ Fi+1 cobound a thickened torus. As

the Fi are disjoint, they cannot all contain L; however each convex surface
Fi will contain an ordered link among its Legendrian divides that can be
canonically identified with L since we can assume that all the Fi intersect
T1 near L in leaves isotopic to L. We will abuse terminology and say L is
on all the Fi using this identification.
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We will inductively prove that each torus Fi contains L as a link with
the same ordering as that given by T1. Namely we will argue that each Fi
contains L as a subset of its Legendrian divides and is contained in an I-
invariant thickened torus Ri whose boundary components have two dividing
curves each of slope −q/p, and the cyclic order of L on Fi induced from a
complementary annulus in Ri agrees with the order coming from T1.

The base case is immediate from construction with R0 = R′′. Now we
inductively assume the result is true for Fk. Notice that Fk splits Rk into
two pieces R±

k . Now Fk+1 is either on the positive or negative side of Fk.
We assume the positive side; the argument for the negative side is analo-
gous. We will find a thickened torus neighborhood Rk+1 of Fk+1 where R

−
k+1

contains R−
k . Consider S

3 \ Fk+1: there will be two copies of F+
k+1 and F−

k+1

of Fk+1 in the cut open manifold, and F±
k+1 will bound a solid torus S±

k+1,

with S−
k+1 containing R−

k . As the slope of convex tori in S+
k+1 parallel to

the boundary is not fixed, we know that there is a thickened torus R+
k+1

in S+
k+1 with one boundary component F+

k+1 and the other boundary com-
ponent being a convex torus with two dividing curves of slope −q/p. Let
Rmk+1 be the region between Fk and Fk+1, and set R−

k+1 = R−
k ∪Rmk+1. Then

Rk+1 = R+
k+1 ∪R

−
k+1 is an I-invariant thickened torus containing Fk+1. We

now need to check the statement about the ordering on L induced by a com-
plementary annulus in Rk+1. To this end, notice that R+

k and Rmk+1 ∪R
+
k+1

are both non-rotative outermost layers for F+
k in S3 \ Fk as described in

[26]. So if A+
k is any complementary annulus in R+

k , and A′
k is a comple-

mentary annulus in Rmk+1 ∪R
+
k+1, then the dividing curves on these annuli

are disk equivalent [26, Theorem 1.3]. This means that if we add a disk
to the outermost boundary of these annuli and extend the dividing set
by an arc in the new disk then the resulting multi-curves in the disk are
isotopic. This implies that the ordering on the components of L induced
by A−

k ∪A+
k and A−

k ∪A′
k are the same. But we can write the annulus

A′
k as A+

k+1 ∪A
m
k+1 by splitting it along a ruling curve in Fk+1 and then

A−
k ∪A′

k = A−
k ∪Amk+1 ∪A

+
k+1 = A−

k+1 ∪A
+
k+1. And thus the orders on L in-

duced by the complementary annuli in Rk and Rk+1 are the same, and the
induction argument is complete. The desired neighborhood R1 of T ′

1 is the
Rl constructed in the induction argument.

We must now see that the Ai can be chosen to be disjoint from R1. We
first construct a thickened torus R2 that contains T

′
1 is non-rotative with two

dividing curves on each side and is disjoint from the Ai. If we achieve this
then notice that T ′

1 breaks R1 into two pieces R1
1 ∪R

+
1 and breaks R2 into

two pieces R−
2 ∪R+

2 . Both R
−
1 and R−

2 are non-rotative outermost layers for
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a component of S3 \ T ′
1 and so are disk equivalent, and similarly for R+

1 and
R+

2 . Thus as discussed above, the ordering of the Legendrian divides on T ′
1

coming from R1 and R2 is the same. Thus we may replace R1 with R2 to
complete the proof.

To construct R2 we will use the notation of Lemma 6.26. Notice that we
can draw two circles γ± on S2 that enclose the curve c from Lemma 6.26
that defines T ′

1. These curves can be chosen to each intersect the equator
transversely in two points and separate the poles. Moreover, let T± be the
pre-image tori of γ± under the projection S3 → S2 given in Lemma 6.26.
Notice T± has two Legendrian −q/p curves coming from its intersection
with the equator. We claim that T± has just two dividing curves. If it had
more than two dividing curves, then one region in the complement of the
curves would have to be disjoint from T0 (the pre-image of c). Thus we
could Legendrian realize a (p,−q)-torus knot on it. This knot would have
tb = −pq and be disjoint from T0. However, arguing as in Remark 6.24 this
would imply that the contact structure was overtwisted. Thus the region R2

is simply the thickened torus bounded by T− and T+. □

Next we show that T0 and the neighborhood R1 of T ′
1 are contained in

a basic slice.

Lemma 6.28. Suppose L, T0, T1, and T ′
1 are as in the statement of

Lemma 6.26, and R1 is the non-rotative neighborhood of T ′
1 as in the state-

ment of Lemma 6.27. Then there is a thickened torus V in S3 that contains
T0 and R1 such that ξ|V is a basic slice.

Proof. We first consider the case where p ̸= 1, and thus −q/p is not an
integer. The strategy here will be to start with standard neighborhoods of
Legendrian realizations of the Hopf Link K0 ∪K1 that are disjoint from
T0 and R1, and use the annuli Ai from Lemma 6.26 to show that these
neighborhoods can be thickened so that their complement is a basic slice V
that contains T0 and R1.

Let Ui be a small neighborhood of Ki that is disjoint from R1 ∪ T0. To
describe slopes on the torus boundary neighborhoods of Ki, we will always
use longitude-meridian coordinates coming from T0, whose orientation co-
incides with the orientation as the boundary of the solid torus S0 with core
K0. We can assume that ∂Ui is convex and that the dividing slope for ∂U0

is −l for some large integer l, and the slope for ∂U1 is −1/k for some large
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integer k4. We can use the annuli Ai to create embedded annuli A′
i with

boundary consisting of a ruling curve of slope −q/p on ∂Ui and a leaf γi
of the characteristic foliation on T0. Moreover the interiors of the A′

i are
disjoint from R1 ∪ T0. Then Ai intersects the dividing curves on ∂Ui exactly
2|lp− q|, respectively 2|p− kq| times. Thus, since the dividing curves of A′

i

do not intersect γi, the Imbalance Principle [24] says there is a bypass for
∂Ui along A

′
i. Assume −m− 1 < −q/p < −m, for m ∈ Z; we can find such

bypasses to raise the slope of U0 to −m− 1 and U1 to −m. Notice that
these solid tori are still disjoint from R1 ∪ T0. Now let V = S3 \ (U0 ∪ U1).
By construction V is a basic slice and contains T0 and R1.

In the case where p = 1, arguing as in the case when p ̸= 1, we can find
a thickened torus T 2 × [0, 1] in S3 that contains T0 and the non-rotative
neighborhood R1 of T ′

1 and has dividing curves of slope s0 = −q − 1 and
s1 = −q + 1 on T 2 × {0} and T 2 × {1}, respectively, if −q ̸= −1 and s0 =
−1/2 and s1 = −2 if −q = −1. Notice that ξ restricted to T 2 × [0, 1] is the
union of two basic slices one with boundary slopes s0 and −q and the other
with slopes −q and s1. Since there is a pre-Lagrangian torus of slope −q
in this contact manifold, Lemma 2.3 says the signs of the basic slices must
agree; say they are both positive. We can now glue the positive basic slice
with boundary slopes 0 and s0 to the back of T 2 × [0, 1] and the positive
basic slice with slopes s1 and −∞ to the front of T 2 × [0, 1]. The resulting
thickened torus T2 × [−1, 2] is a basic slice by [24, Theorem 4.25], and it
contains T0 and the non-rotative neighborhood R1 of T ′

1. □

We now complete the proof of Proposition 6.25.

Proof of Proposition 6.25. Suppose that L is a Legendrian (np,−nq)-torus
link where each component has tb = −pq. Assume there exists a Legendrian
isotopy ψt of S

3 such that ψ1(L) is a permutation of L. Let T0, T1 = ψ1(T0)
be the pre-Lagrangian tori containing L and ψ1(L), let T

′
1 be the convex

torus that is isotopic to T1 relative to L guaranteed by Lemma 6.26, let
R1 be the non-rotative neighborhood of T ′

1 guaranteed by Lemma 6.27, and
let V be the basic slice containing T0 and R1 guaranteed by Lemma 6.28.
If we knew that the pre-Lagrangian T1 was also in this basic slice V , we
would be done by Corollary 6.23. As we cannot guarantee this inclusion of
T1, we will show that there is a contactomorphism κ from the basic slice
V to a basic slice (T 2 × [0, 1], ξ) such that κ(T ′

1) is a convex torus whose
Legendrian divides are given by κ(T ′

1) ∩ P1, where P1 is a pre-Lagrangian

4The meridian and longitude of U1 is reversed from those of U0, which explains
the fraction
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torus, and the ordering of κ(L) on κ(T ′
1) coming from P1 and from κ(R1)

are the same. Observe that κ(T0) will be a pre-Lagrangian torus containing
κ(L). By Corollary 6.23, we know that the cyclic ordering of κ(L) from κ(T0)
and P1 (and thus T1) must agree. This means that the cyclic orderings of L
through T0 and T1 agree, thus establishing Proposition 6.25.

To see that the claimed contactomorphism exists notice that we can start
with our non-rotative R1 and attach a thickened torus to the front and back
faces of R1 to obtain a basic slice (T 2 × [0, 1], ξ) and thus a contactomor-
phism κ : V → T 2 × [0, 1]. Now Lemma 2.9 says there is a pre-Lagrangian
torus P1 inside of T 2 × [0, 1] such that the Legendrian divides of κ(T ′

1) are
given by κ(T ′

1) ∩ P1, and there is a non-rotative thickened torus RP1
contain-

ing κ(T ′
1) and P1 that orders the divides of κ(T ′

1) in the same way as P1. We
claim that RP1

and κ(R1) order the divides of κ(T
′
1) in the same way, which

will complete the proof. To see this notice that κ(T ′
1) splits κ(R1) and RP1

into two pieces κ(R1)
± and R±

P1
, respectively. Now κ(R1)

+ and R+
P1

are non-
rotative outer layers for (T 2 × [0, 1]) \ κ(T ′

1) and thus are disk equivalent (as
discussed in the proof of Lemma 6.27), and thus their complementary annuli
are disk equivalent. Similarly for κ(R1)

− and R−
P1
. Thus, as in the proof of

Lemma 6.27, we see that RP1
and κ(R1) define the same cylic ordering of

the divides of κ(T ′
1), as desired. □

7. Cable links

In this section, we will always assume that K is an oriented smooth knot
type. As described in Section 1.2, for n ≥ 1 and p, q ∈ Z with p ≥ 1 and
gcd(p, q) = 1, K(np,nq) will denote the n-component, slope q/p-cable link for
the knot type K.

We begin the section by describing the non-destabilizable Legendrian
representatives of K(np,nq): these will be “standard Legendrian cables” and,
for some integral slope values, “twisted n-copies”. The standard Legendrian
cables will always have max tb, and the twisted n-copies will have max tb if
and only if n = 2. This leads to the unordered classification of Legendrian
cables in Section 7.2; see Theorem 7.6. We then move on to understand the
ordered classification. All components of the standard Legendrian cables are
Legendrian isotopic, and in Section 7.3 we examine which permutations can
be realized. This leads to the proof of the ordered classification of Legendrian
cables stated in Theorem 1.10.
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7.1. Non-destabilizable Legendrian cables

We begin by defining “standard Legendrian cables,” which are Legendrian
representatives of the cable links K(np,nq); their construction will depend
on the slope q/p and will use a standard neighborhood of a Legendrian
representative Λ of K with specified tb value, as defined in Definition 2.15.
We will use the notation ⌈q/p⌉ to denote the least integer greater than or
equal to q/p.

Definition 7.1. Given a knot type K and p, q ∈ Z such that p ≥ 1 and
gcd(p, q) = 1, fix a Legendrian representative Λ of K such that

tb(Λ) =

{
tb(K), q/p ≥ tb(K)

⌈q/p⌉, q/p < tb(K).

Fix n ≥ 1. Then from Λ, when q/p ≥ tb(K) (or when p = 1 and q/p <
tb(K)), we define the standard Legendrian (np, nq)-cable of K, denoted
Λ(np,nq) (respectively, Λ(n,nq)), and when q/p < tb(K) and p > 1, we define
two standard Legendrian (np, nq)-cables of K, denoted Λ±

(np,nq), as follows.

greater-slope cables: Suppose q/p > tb(K). Let N be a standard neigh-
borhood of Λ with ruling curves of slope q/p. Then Λ(np,nq) is defined
by taking n ruling curves on ∂N .

tb(K)-slope cables: When p = 1 and q/p = tb(K), Λ(n,nq) is defined to be
the n-copy of Λ. Recall this involves taking leaves of a pre-Lagrangian
annular neighborhood inside a standard neighborhood of Λ; see Defi-
nition 2.17.

integral and lesser-slope cables: When p = 1 and q/p < tb(K), Λ(n,nq)

is defined to be the n-copy of Λ.

nonintegral and lesser-slope cables: Suppose p > 1 and q/p < tb(K).
Let N be a standard neighborhood of Λ; inside N are standard neigh-
borhoods N± of Λ±, the ±-stabilizations of Λ. There exists a pre-
Lagrangian torus T± of slope q/p in the basic slice N \N±, see Re-
mark 2.4.1, and Λ±

(np,nq) is defined by taking n leaves in the foliation

of T±.

Remark 7.2. These definitions of the standard (np, nq)-cables generalize
the construction of our max-tb Legendrian torus links. For suppose that K is
the unknot and take, as usual, |q| ≥ p ≥ 1 with gcd(p, q) = 1. Then observe:
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• q/p > tb(K) = −1 implies q ∈ Z+, and the construction of the stan-
dard Legendrian greater-slope cables of the unknot agrees with the
construction of the max-tb positive torus links;

• q/p = tb(K) = −1 implies q = −1, and the construction of the stan-
dard Legendrian tb(K)-slope cables of the unknot agrees with the con-
struction of the max-tb representatives of the (n,−n)-torus link.

• q/p < tb(K) = −1 and p = 1 implies q ∈ Z−, and the construction
of the standard Legendrian lesser-slope cables of the unknot agrees
with the construction of the symmetric max-tb representatives of the
(n,−nq)-torus links, which are obtained as n-copies.

• q/p < tb(K) = −1 and p > 1 implies q ∈ Z−, and the construction of
the standard Legendrian lesser-slope cables of the unknot agrees with
the construction of the max-tb representatives of the negative torus
links with non-trivial components.

Remark 7.3. All components of any of the standard Legendrian cables
are Legendrian isotopic. Moreover, in Lemma 2.1 of [15] it is shown how to
compute the Thurston-Bennequin invariant of cables, while in Lemmas 2.2
and 3.8 of [15] it is shown how to compute the rotation number of cables
(but note that the slope conventions in [15] are reversed to the conventions
in this paper). This leads to:

1) In the standard Legendrian greater-slope cables, each component Λi
of Λ(np,nq) has

tb(Λi) = pq − |p · tb(K)− q| = pq − q + p · tb(K), and r(Λi) = pr(Λ).

2) In the standard Legendrian tb(K)-slope cables, each component Λi of
Λ(n,nq) has

tb(Λi) = tb(K), and r(Λi) = r(Λ).

3) In the standard Legendrian integral and lesser-slope cables, if q =
tb(K)− s, for s > 0, each component Λi of Λ(n,nq)has

tb(Λi) = tb(K)− s = q, and r(Λi) = r(Λ).



✐

✐

“2-Etnyre” — 2024/8/9 — 12:05 — page 90 — #80
✐

✐

✐

✐

✐

✐

90 J. Dalton, J. B. Etnyre, and L. Traynor

4) In the standard Legendrian nonintegral and lesser-slope cables, if qp =

⌈ qp⌉ −
s
p , for 0 < s < p, each component Λ±

i of Λ±
(np,nq)has

tb(Λ±
i ) = pq, and r(Λ±

i ) = p r(Λ)± s = p r(Λ)± (p⌈q/p⌉ − q).

When n ≥ 2, the standard Legendrian cables of uniformly thick knot
types will always have maximal Thurston-Bennequin invariant.

Lemma 7.4. If K is a uniformly thick knot type, then, for n ≥ 2, the
standard Legendrian (np, nq)-cable of K realizes tb(K(np,nq)), for all p, q ∈ Z,
p ≥ 1, and gcd(p, q) = 1.

Proof. As described in Section 2.6, for a link L = (Λ1, . . . ,Λn),

tb(L) = tb(Λ1) + tb(Λ2) + · · ·+ tb(Λn) + 2
∑

i<j

lk(Λi,Λj).

As the linking number contribution is a topological invariant, we see that
tb(L) is maximized when tb(Λ1) + tb(Λ2) + · · ·+ tb(Λn) is maximized. Since
each component of a K(np,nq) cable link is a K(p,q) cable knot, it is important
to understand the max tb values that can be obtained for cable knots and
how those values compare to the Remark 7.3 calculations of the tb values in
the components of our standard Legendrian cable.

In fact, the maximum value of tb is known for cable knots of uniformly
thick knot types, [15]. When p = 1, the q/p cable is topologically K. It
follows that when q/p ∈ Z we have

tb(Kp,q) = tb(K).

The max tb of a cable knot when q/p /∈ Z and K is uniformly thick was
established in [15, Theorem 3.2 and 3.6]:

1) If q/p /∈ Z and q/p > tb(K), tb(Kp,q) = pq − |p · tb(K)− q|;

2) If q/p /∈ Z and q/p < tb(K), tb(Kp,q) = pq.

Observe that when q/p > tb(K(p,q)), the integral and nonintegral formulas

for tb(K(p,q)) agree: when p = 1,

pq − |p · tb(K)− q| = q − |tb(K)− q| = q − (q − tb(K)) = tb(K).
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Thus the formula given in (1) applies for all slopes q/p > tb(K). However,
if q/p < tb(K), then the formula for tb(Kp,q) is more restrictive in the non-
integral case: when p = 1,

pq = q < tb(K).

In the construction of the standard Legendrian cables, we see that if
either q/p ≥ tb(K) or q/p < tb(K) and q/p is not an integer, then each
component of the standard Legendrian (np, nq)-cable has tb equal to the
maximum possible tb for a (p, q)-cable of K; see Remark 7.3. It remains to
show that when q/p < tb(K) and q/p is an integer, then

∑
tb(Λi) is bounded

above by nq rather than by the larger quantity n tb(K).
By Equation (2), the inequality

(3) tb(Λ1) + . . .+ tb(Λn) ≤ nq.

is the same as saying that the sum of the contact twisting along the Λi, rela-
tive to a convex torus T they sit on as (1, q)-curves, is less than or equal to 0.
For a contradiction, suppose L violates Inequality (3), and so the sum of the
twistings is positive. By the uniform thickness of K we can assume that L is
contained in a solid torus S that is a standard neighborhood of a Legendrian
representative of K. So the dividing curves on ∂S have slope tb(K) and L
will be a collection of (1, q)-curves inside of S. The torus is contactomorphic
to a solid torus with dividing slope −1 (given by cutting along a meridional
disk and re-glueing after −tb(K)− 1 full twists) and under this contactomor-
phism L will be sent to a collection of Legendrian (1, q − tb(K)− 1)-curves.
Now this solid torus can be identified with a neighborhood of the maximal
Thurston-Bennequin invariant unknot U in S3. When this is done L will be
a (1, k)-torus link for some k < −1 with total twisting relative to the torus
it sits on greater than 0, a contradiction to Proposition 2.22. Inequality (3)
follows. □

In parallel to what was seen for negative torus links with unknotted
components, for the integral and lesser-slope cables, there will be additional
non-standard Legendrian representatives of K(np,nq) formed by twisted n-
copies, as defined in Definition 5.5. When n = 2, these twisted versions will
have max tb; for larger n, these will not have max tb yet will not destabilize
to one with max tb.

Lemma 7.5. Suppose p = 1 , q ∈ Z, and q/p ≤ tb(K). Let k be the num-
ber of lattice points in the Legendrian mountain range of K on or above
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the line tb = q. Then consider the following set of Legendrian representa-
tives of K(n,nq) consisting of n-copies and t-twisted n-copies of Legendrian
representatives Λ and Λt of K:

A = {nΛ : tb(Λ) = q} ∪
{
T t(nΛt) : tb(Λt) = q + t, t > 0

}
.

Then all k elements of A are non-destabilizable, and the Legendrian twist
versions will have max tb if and only if n = 2.

Proof. The argument parallels the proofs of Lemma 5.12 and 5.11. Here we
will use the uniform thickness property of K: the standard neighborhood
with two dividing curves of slope tb(K) replaces the role played by the
Heegaard torus for the torus knots. □

7.2. Unordered classification of Legendrian cables

Now that we understand all of the non-destabilizable Legendrian (np, nq)-
cables, we can state the main unordered classification result for cable links
of knot types K that are uniformly thick and Legendrian simple. In this
statement, the standard Legendrian cables of K(np,nq) are defined in Defini-
tion 7.1, and the t-twisted n-copy of Λ is defined in Definition 5.5.

Theorem 7.6. (Unordered Cable Link Classification) Let K be a uniformly
thick and Legendrian simple knot type. Consider two oriented Legendrian
links L and L′ that are topologically equivalent to K(np,nq), where n ≥ 2,
p ≥ 1, and gcd(p, q) = 1. If we can write L = ⨿ni=1Λi, L

′ = ⨿ni=1Λ
′
i such that

tb(Λi) = tb(Λ′
i) and r(Λi) = r(Λ′

i), i = 1, . . . , n, then there exists a contact
isotopy taking L to L′ (but not necessarily Λi to Λ′

i). Moreover, the precise
range of the classical invariants is given as follows:

greater-slope cables: Suppose q/p > tb(K). For each max tb Legendrian
representative Λ of K, there exists a unique max-tb Legendrian rep-
resentative of K(np,nq) given by Λ(np,nq), the standard Legendrian
(np, nq)-cable of K(np,nq). Each component of this representative as-
sociated to Λ will satisfy

tb = pq − |p · tb(K)− q| = pq − q + p · tb(K), and r = p r(Λ).

Any non-maximal Thurston-Bennequin invariant representative of
K(np,±nq) can be destabilized to one in this set of max tb represen-

tatives, {Λ(np,nq) : tb(Λ) = tb(K)}.
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nonintegral and lesser-slope cables: Suppose q/p < tb(K) and q/p /∈
Z. For every Legendrian representative Λ of K with tb(Λ) = ⌈q/p⌉,
there exist two Legendrian representatives of K(np,nq) with max tb given
by Λ±

(np,nq), the standard Legendrian (np, nq)-cables of K(np,nq). Each

component of Λ±
(np,±nq) will have equal tb and r values given by

tb = pq, r = pr(Λ)± (p⌈q/p⌉ − q).

Any non-maximal tb Legendrian representative of K(np,±nq) can be
destabilized to one in the set {Λ±

(np,nq) : tb(Λ) = ⌈q/p⌉}.

tb(K)- or integral and lesser-slope cables: Suppose p = 1 and q/p ≤
tb(K). Let k be the number of lattice points in the Legendrian moun-
tain range of K on or above above the line tb = q. Then there is a set
of k non-destabilizable Legendrian realizations of K(n,nq) consisting of:
• nΛ, the n-copy of a Legendrian representative Λ of K with tb(Λ) =
q, and

• for every Legendrian representative Λt of K with tb(Λt) = q + t
with t > 0, the Legendrian t-twisted n-copy of Λt, T

t(nΛt).
The n-copy will have max tb while the Legendrian twist version will
have max tb if and only if n = 2. Any other Legendrian representative
of K(np,nq) will destabilize to one in this non-destabilizable set, {nΛ :
tb(Λ) = q} ∪ {T t(nΛt) : tb(Λt) = q + t, t > 0}.

The claimed max tb representatives of K(np,nq) was established in Lem-
mas 7.4 and 7.5. So the unordered classification of Legendrian cables of a
simple and uniformly thick knot type given by Theorem 7.6 will follow easily
from the next two propositions.

Proposition 7.7. Suppose K is a uniformly thick knot type, q/p /∈ Z, and
n ≥ 2. Then K(np,nq) is Legendrian simple and every Legendrian representa-
tive of K(np,nq) will destabilize to a standard Legendrian (np, nq)-cable of K.

Proof. This proof closely follows the proof of the unordered classification of
torus links and so we only sketch the proof.

Let K be a uniformly thick, Legendrian simple knot type. Assume that
q/p is not an integer. We begin by noticing that, according to [15, Section 3],
if L is any Legendrian link in the link type of K(np,nq) then it can be put on
a convex torus T bounding a solid torus realizing the knot type K. This is
because each of the components of L has non-positive contact twisting with
respect to T .
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If q/p > tb(K), then as in the proof of Lemma 3.4 we can destabilize the
components of L until they become ruling curves on a convex torus isotopic
to T with two dividing curves of slope tb(K). The result in this case follows
as in the proof of Lemma 3.2 coupled with the argument in [15, Section 3]
that maximal tb invariant (p, q)-cables are distinguished by their rotation
numbers and become Legendrian isotopic after stabilization as soon as their
invariants become the same.

If q/p < tb(K) is not an integer, then as in the proof of Lemma 4.3
the components of L can be destabilized to become Legendrian divides on
a convex torus isotopic to T . Then as in the proof of Lemma 4.2 such a
destabilized L has maximal Thurston-Bennequin invariant and is an n-copy
of a maximal Thurston-Bennequin (p, q)-cable of K. Finally, the rest of the
classification follows as in the proof of Lemma 4.4. □

Proposition 7.8. Suppose K is a uniformly thick knot type, p = 1, and
q/p ≤ tb(K). Let A be the set of k non-destabilizable Legendrian represen-
tatives of K(n,nq) as described in Lemma 7.5. Any other Legendrian rep-
resentative of K(n,nq) will destabilize to one in this non-destabilizable set;
moreover, K(n,nq) is Legendrian simple.

Proof. The proof is completely analogous to the proofs of Lemma 5.11
and 5.13. So we only sketch the ideas.

First number the components of the link L so that tb(K1) ≥ tb(K2) ≥
· · · ≥ tb(Kn). If tb(K1) = q then we can put the link on a convex torus T
as n curves of slope q. Since the twisting of K1 is 0 we see that it will
be parallel and disjoint from the dividing curves. We can destabilize the
other Ki until they are also dividing curves. Now using uniform thickness
we can assume T is contained in a standard neighborhood N of a maximal
Thurston-Bennequin representative of K. Lemma 2.16 says that there is a
pre-Lagrangian torus in N that contains the destabilized L as a union of its
leaves.

Now if tb(K1) < q then we can again put L on a convex torus T . If the
slope of the dividing curves on T is equal to −q then we can proceed as
above. If not, we can destabilize the components of L until they become
ruling curves on T . Now since K is uniformly thick we can find a solid
torus S in the knot type K that contains T and has dividing slope q and at
least n dividing curves. We can then use convex annuli with one boundary
component on a component of L and the other a dividing curves on ∂S to
destabilize L further to be dividing curves on ∂S. So we are again finished
as above.
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Finally if tb(K1) = q + t for some 0 < t < tb(K) + 1− q, then by the
bound on the Thurston-Bennequin invariant in Lemma 7.4 we must have
all the other components of L have tb ≤ q − t (since taking any component
together with K1 we will have to have the sum of the Thurston-Bennequin
bounded above by 2q). Thus we can put K2 ∪ . . . ∪Kn on a convex torus
around K1. Now as in the proof of Lemma 5.11 we can destabilize all the
Ki for i > 1 until they are ruling curves on a standard neighborhood of K1.

The proof is complete by showing K(n,nq) is Legendrian simple. This
follows exactly as in the proof of Lemma 5.13. □

Proof of Theorem 7.6. Suppose K is a uniformly thick and Legendrian sim-
ple knot type. Lemmas 7.4 and 7.5 established the non-destabilizable rep-
resentatives of K(np,nq), and Propositions 7.7 and 7.8 show that every Leg-
endrian representative of K(np,nq) will destabilize to one of these and are
determined by their classical invariants. The values of tb and r that can
be obtained for those in the non-destabilizable sets was established in Re-
mark 7.3. □

7.3. Symmetries of Legendrian cables

We now move on to study the ordered classification of Legendrian repre-
sentatives of the cable link K(np,nq). All the rigidity will appear in the max
tb representatives formed as standard Legendrian cables. We now recall our
main result from the Introduction.

Theorem 1.6. Let K be a uniformly thick knot type. If L = (Λ1, . . . ,Λn)
is a standard Legendrian (np, nq)-cable of K, where the Λi are ordered as
they appear on the torus or annulus used in the definition of the standard
Legendrian cables, then the following permutations of the components are
possible via a Legendrian isotopy.

greater-slope cables: If q/p > tb(K), then any permutation of the Λi is
possible.

tb(K)-slope cables: If q/p = tb(K) and K is not a cable knot or K is an
(r, s)-cable and q/p ̸= rs, then no permutation of the Λi can be realized
by a Legendrian isotopy.

integral and nonintegral lesser-slope cables : If q/p < tb(K) and K
is not a cable knot or K is an (r, s)-cable and q/p ̸= rs, then only
cyclic permutations of the Λi can be realized.



✐

✐

“2-Etnyre” — 2024/8/9 — 12:05 — page 96 — #86
✐

✐

✐

✐

✐

✐

96 J. Dalton, J. B. Etnyre, and L. Traynor

This theorem will be proven in Section 7.3.2. The proof that arbitrary
permutations are possible for the greater-slope standard Legendrian cables
will parallel the proof that one can arbitrarily permute the components in a
max-tb Legendrian positive torus link. The strategy to forbid arbitrary per-
mutations of tb(K)- and lesser-slope standard Legendrian cables will parallel
the strategy used to forbid arbitrary permutations of the components in a
max tb Legendrian negative torus link. This time, instead of initially re-
stricting to a basic slice, we will first work in a solid torus with convex
boundary having two dividing curves and show that it is not possible to
perform any permutation of the leaves of a pre-Lagrangian annulus, and it
is only possible to do cyclic permutations of the leaves of a pre-Lagrangian
torus. We then show that the existence of permutations of the components
of a tb(K)-slope (or lesser-slope) standard Legendrian cable implies the ex-
istence of permutations of components of the pre-Lagrangian annulus (or
pre-Lagrangian torus) of the solid torus. After establishing Theorem 1.6, we
will easily be able to give the ordered classification of Legendrian cables.

7.3.1. Links in solid tori. In Theorem 6.10, we showed that it is not
possible to do a non-cyclic permutation of the leaves of a boundary-parallel,
pre-Lagrangian torus in a basic slice. Now we will show that when a solid
torus has a convex boundary with two longitudinal curves, it is not possible
to do any permutations of the components of a link L that is formed from
leaves in a pre-Lagrangian annular slice of the solid torus. This will later be
important for studying forbidden permutations in the tb(K)-slope cables.

Theorem 7.9. Let (S1 ×D2, ξ) be a solid torus with convex boundary hav-
ing two dividing curves of slope 0, meaning they are parallel to S1 × {p}, and
ruling curves of slope ∞. Inside the solid torus, there is a pre-Lagrangian an-
nulus A = S1 × γ for some properly embedded γ ⊂ D2; let L = (Λ1, . . . ,Λn)
be the link consisting of distinct leaves of A. Then no non-trivial permutation
of the components of L can be realized by a Legendrian isotopy.

The proof of Theorem 7.9 is very similar to the proof of Theorem 6.10.

Proof. By Kanda’s classification result, see Theorem 2.11, it suffices to show
the desired statement in a standard model: we will build an S1-invariant
model for (D2 × S1, ξ) such that the meridional disks {θ} ×D2 are convex
and have Legendrian boundary.

To build the model, let D2 be the unit disk in R2. We may find a map of
D2 into (R3, ξstd) so that ∂D is sent to a Legendrian unknot with Thurston-
Bennequin invariant −1. This will induce a characteristic foliation on D2
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that can be divided by a single arc γ. Since the foliation on D2 is divided by
γ, there is an R-invariant contact structure on R×D2 such that each {p} ×
D2 has the given foliation. Let S1 ×D2 be the S1-invariant contact manifold
formed by the quotient of this manifold by the Z-action generated by (t, p) 7→
(t+ 1, p). Since the boundaries of the meridional disks are Legendrian and
the contact planes are tangent to ∂(S1 ×D2) at exactly two points on each
meridional disk, we see that there are two lines of singularities with slope
0 in the characteristic foliation of ∂(S1 ×D2). Thus ∂(S1 ×D2) has two
Legendrian divides of slope 0, and the rest of the foliation consists of non-
singular leaves of slope ∞, as desired.

In this model, S1 × γ is a pre-Lagrangian annulus, A. Choose n distinct
points on γ, and let L = (Λ1, . . . ,Λn) be the corresponding distinct leaves on
A. Suppose ϕt is a Legendrian isotopy that realizes a non-trivial permutation
of the components of L. We can extend this to an ambient contact isotopy
ψt of S

1 ×D2 that is the identity near the boundary.
Now as in the proof of Theorem 6.10, Step 3, we can choose S1-invariant

neighborhoodsNi of the Legendrian knots Λi such that ∂Ni is convex and the
contact isotopy ϕt induces a contact diffeomorphism from (S1 ×D2) \ ∪Ni.
Moreover, (S1 ×D2) \ ∪Ni is diffeomorphic to S1 × Σ where Σ is D2 with
n sub-disks removed from the interior. The boundary of S1 × Σ is convex
with dividing curves of slope 0 and ruling curves of slope ∞, and the contact
structure on S1 × Σ is S1-invariant. For a fixed θ, {θ} × Σ and ψ1({θ} × Σ)
are convex surfaces, and, after doing “boundary slides” as in the proof of
Theorem 6.10, Step 4, we can assume that their boundaries are the same
and that these surfaces are isotopic relative their boundaries. The dividing
curves on {θ} × Σ are simply the intersection of γ with Σ and the dividing
curves on ψ1({θ} × Σ) are the image of these curves under the map ψ1. Thus
any non-trivial permutation gives a contradiction to Proposition 6.11, since
the dividing curves connect the boundary components differently. □

Next we study allowed permutations of the leaves of a pre-Lagrangian
torus inside a solid torus. This will be used later to study permutations of
the lesser-slope cables.

Theorem 7.10. Let (S1 ×D2, ξ) be a solid torus with a convex boundary
having two dividing curves of slope 0, meaning they are parallel to S1 × {p}.
For any slope q/p < 0, there is a boundary-parallel, pre-Lagrangian torus
T with characteristic foliation having slope q/p. Let L = (Λ1, . . . ,Λn) be n
distinct leaves on T labeled cyclically as they appear along T . Then via a
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Legendrian isotopy, cyclic permutations of the components of L are possible
but non-cyclic permutations of the components of L cannot be attained.

Proof. By moving along the leaves of T , it is clear that one can do cyclic
permutations of L.

Now assume, for a contradiction, that it is possible to do a non-cyclic
permutation of the leaves of L. As argued in Corollary 6.13, we can assume
there is a 3-component link L = (Λ1,Λ2,Λ3) consisting of leaves of the char-
acteristic foliation of T and a contact isotopy ψt of (S

1 ×D2, ξ) such that
ψt = id in a neighborhood of the boundary, ψ1(Λ1) = Λ1, ψ(Λ2) = Λ3, and
ψ1(Λ3) = Λ2. We will now argue that this non-cyclic isotopy implies the ex-
istence of a non-cyclic isotopy among the leaves of a pre-Lagrangian torus in
a basic slice, thus contradicting Theorem 6.10. The argument is very similar
to that in the proof of Proposition 6.25, so we only sketch it here.

First assume that q/p /∈ Z. As in the proof of Lemma 6.26, we know
S1 ×D2 has the structure of a Seifert fiber space over a disk D ⊂ S2 with one
singular fiber and the regular fibers being q/p curves. We can assume that
the pre-Lagrangian torus T0 = T containing L is the pre-image of a curve
c0 ⊂ D that bounds a disk containing the singular point. Let T1 = ψ1(T0);
we can isotop T1 relative to L to be a convex torus T ′

1 that is the pre-image
of a curve c1 that bounds a disk containing the singular point and intersects
c0 transversely. We can choose arcs a0 and a1 that are disjoint from c1, the
first of which connects the singular point to a point on c0 and the second
connecting a point on the boundary of D to a point on c0, and are otherwise
disjoint from c0. The pre-image of these arcs are annuli A0 and A1. Then,
as argued in the proof of Lemma 6.27, the torus T ′

1 has a neighborhood
R1 = T ′

1 × [−ϵ, ϵ], disjoint from the annuli A0, A1, such that ξ restricted to
R1 is [−ϵ, ϵ]-invariant, each boundary component of R1 has two dividing
curves, and the cyclic ordering of L induced by a complementary annulus
in R1 agrees with the one induced by the pre-Lagrangian torus T1. Lastly,
as in the proof of Lemma 6.28, we can further thicken R1 to a basic slice V
that contains T0 and R1. Thus, the existence of our non-cyclic permutation
of our link L implies the existence of two pre-Lagrangian tori in a basic slice
that induce different cyclic orderings on the leaves of L, a contradiction to
Corollary 6.23.

Now consider the case where p = 1 so q/p = q ∈ Z: now S1 ×D2 will
fiber over a disk D ⊂ S2 where all fibers are q-curves, and the center core
curve of the solid torus corresponds to the center O ∈ D is not a singular
fiber. We can now again arrange T0 to be the pre-image of a curve about O.
When trying to do the same for T1, the initial curves whose pre-image is T1
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might not contain O (when q/p ̸∈ Z this is prevented for topological reasons,
but since the center curve is a regular fiber now it is not), but we can further
isotop T1, relative to L, so that it does contain O. Now we cannot argue as
above to find a basic slice in the solid torus that contains T0 ∪R1, but we
can argue as in Lemma 6.28 to show that it is in the union of two basic slices
that have the same sign that can be embedded into a basic slice. □

7.3.2. Isotopies of the standard Legendrian cables. In this section,
we will establish Theorem 1.6. We begin with the greater-slope cables of K,
that is q/p > tb(K).

Lemma 7.11. Let K be a uniformly thick knot type. Suppose q/p > tb(K)
and L = (Λ1, . . . ,Λn) is a standard Legendrian (np, nq)-cable of K. Then
any permutation of the Λi can be achieved via a Legendrian isotopy.

The proof of this lemma parallels the proof of Theorem 6.1, which states
that components of a max-tb Legendrian (np,+nq)-torus link can be arbi-
trarily permuted.

Proof. By definition, L can be realized as the ruling curves on the boundary
torus T of a standard neighborhood of max-tb Legendrian representative of
K. Since T is convex, there is a neighborhood T × I on which the contact
structure is I-invariant. Thus, for all a ∈ I, T × {a} is foliated by ruling
curves of slope q/p. By a Legendrian isotopy, we may move the components
of L to sit on different tori, then by another Legendrian isotopy we can
independently move the components through ruling curves on these different
tori, and lastly move the components back through a Legendrian isotopy
to the original torus. In this way, we can achieve any permutation of the
components of L by a Legendrian isotopy. □

To forbid non-cyclic permutations in the lesser-slope cables and any
permutations in tb(K)-slope cables of non-cable knots K, we will use the
following two lemmas that allow us to “localize” isotopies into solid tori.

Lemma 7.12. Let K be a uniformly thick knot type, and suppose q/p <
tb(K). We assume that K is not a cable or if K is a cable, K = K ′

(r,s),

we additionally suppose that q/p ̸= rs. Let L = (Λ1, . . . ,Λn) be a standard
Legendrian (np, nq)-cable of K, with the components ordered cyclically as
they appear in the pre-Lagrangian torus used in the definition of the standard
Legendrian cable. If there is a non-cyclic permutation of the components of
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L, then there is also a non-cyclic permutation of the leaves of a boundary-
parallel, pre-Lagrangian torus in a solid torus with convex boundary having
two Legendrian divides.

Lemma 7.13. Let K be a uniformly thick knot type, and suppose q/p =
tb(K). We assume that K is not a cable or if K is a cable, K = K ′

(r,s),

we additionally suppose that q/p ̸= rs. Let L = (Λ1, . . . ,Λn) be a standard
Legendrian(np, nq)-cable of K. If there is a non-trivial permutation of the
components of L, then there is also a non-trivial permutation of the leaves
of a properly embedded, pre-Lagrangian annulus in a solid torus with a tight
contact structure and a convex boundary having two Legendrian divides.

Our main results about isotopies of the standard Legendrian cable links,
Theorem 1.6, now easily follows.

Proof of Theorem 1.6. The fact that all permutations of the components of
the greater-slope standard Legendrian (np, nq)-cable link of K are possible
is the content of Lemma 7.11. The statements about the tb(K)-slope and
lesser-slope standard Legendrian cables now follow from Lemma 7.12 coupled
with Theorem 7.10, and Lemma 7.13 coupled with Theorem 7.9. □

Now we move on to proving our localization results for cables of uni-
formly thick, non-cable knot types. We will first highlight a useful property
we have for knots with essential annuli in their complements. This result
seems to be well-known, see [1, Lemma 15.26].

Theorem 7.14. If K ⊂ S3 and A is an annulus in XK := S3 \N(K) with
boundary on ∂XK that is not boundary-parallel, then either

1) K = K1#K2 and ∂A has slope ∞ on ∂XK , or

2) K = K ′
(r,s) and ∂A has slope rs on ∂XK .

In the following proof, we will apply Theorem 7.14 to deduce that an
annulus is boundary parallel.

Proof of Lemma 7.12. Assume, for a contradiction, that it is possible to do
a non-cyclic permutation of the leaves of L. As argued in Corollary 6.13, we
can assume there is a 3-component link L = (Λ1,Λ2,Λ3) consisting of leaves
of the characteristic foliation of T and a contact isotopy ψt of S

3 such that
ψ1(Λ1) = Λ1, ψ(Λ2) = Λ3, and ψ1(Λ3) = Λ2.
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By construction, there is a pre-Lagrangian torus T0 that contains L as
a subset of the leaves in its characteristic foliation. Let T1 = ψ1(T0). Let S0
be the solid torus with core in the knot type K that T0 bounds.

Claim: We can perturb T1, relative to L, to a convex torus T ′
1 satisfying

1) T ′
1 is transverse to T0,

2) the union T0 ∪ T
′
1 is contained in a solid torus S with core in the knot

type K and standard convex boundary with dividing slope tb(K), and

3) T ′
1 is contained in a non-rotative thickened torus R1 with convex bound

each having two dividing curves of slope q/p and the ordering on the
components of L induced from a complementary annulus agrees with
the ordering from T1.

Proof of Claim. There is a C∞-perturbation of T1 relative to L to a convex
torus and a further C∞-perturbation, relative to L, that makes it transverse
to T0. Denote the resulting torus by T ′

1. Claim (1) has now been established.
To verify Claim (2), since K is a uniformly thick knot type, it suffices to

show that both T0 and T
′
1 are contained in a solid torus that has a core curve

in the knot type of K; this is where we will use the fact that K is a non-
cable knot type or that K is a cable knot type, K = K ′

(r,s), and q/p ̸= rs.

The intersection of T ′
1 and T0 consists of simple closed curves. The null-

homologous curves can be eliminated by an isotopy of T ′
1 using a standard

innermost disk argument. So we are left with T ′
1 ∩ T0 consisting of curves

that are parallel to L, and thus have slope q/p. The curves in T0 ∩ T
′
1 cut T ′

1

into several annuli. The annuli that lie on the interior of T0 do not obstruct
the existence of the solid torus S that engulfs T0 and T ′

1. If A is an annulus
on the outside of the solid torus S0, then ∂A are not meridians (of slope ∞),
and by hypothesis K is not a cable or K is a cable, K = K ′

(r,s), such that

q/p ̸= rs. So by Theorem 7.14 we see that the A must be boundary-parallel.
In particular, each such exterior annulus A together with an annulus on T0
cobound a solid torus. Thus the union of S0 and the A is contained in a solid
torus whose core is in the knot type K. By the uniform thickness of K this
torus can be further enlarged to a torus S that is a standard neighborhood
of a maximum Thurston-Bennequin invariant representative of K, as stated
in Claim (2).

For Claim (3), we can find R1 using a state transition argument as we
did in the proof of Lemma 6.27. □

To complete the proof of the lemma we now notice that Lemma 2.16 says
that inside S there is a pre-Lagrangian torus P1 that intersects T ′

1 in its
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Legendrian divides (in particular the intersection contains L) and the or-
dering on L coming from R1 and P1 is the same. Of course the ordering of
the components of L coming from T0 is different by hypothesis. Thus as in
Step 1 of the proof of Theorem 6.10 we see that there is an isotopy of L in
S that permutes the components non-cyclically, as desired. □

Proof of Lemma 7.13. By definition, the (np, nq)-cable of K is formed by
taking a standard neighborhood of N of a maximal Thurston-Bennequin
invariant representative of K and then taking n leaves of the foliation of the
pre-Lagrangian annulus A in N . If there were a non-trivial permutation of
the components of the (np, nq)-cable ofK, then two of the components of the
cable on A interchange their order; by sliding through the leaves of A we see
that we have interchanged two leaves of characteristic foliation of A. So if we
show that this cannot happen, then there are no permutations of the cable
of K. So assume, for a contradiction, that there is a non-trivial permutation
of the (2p, 2q)-cable of K. More specifically, there is a Legendrian knot Λ
in the knot type K such that L is a union of two leaves Λ1 and Λ2 of
the characteristic foliation on a pre-Lagrangian annulus A in a standard
neighborhood N of Λ and there is a Legendrian isotopy exchanging Λ1 and
Λ2. This Legendrian isotopy can be extended it to an ambient contact isotopy
and then further extended, using Lemma 6.12, so that A and the image of
A under the isotopy, denoted by A′, agree in a neighborhood of Ai of Λi.
Because an orientation of the contact structure puts a co-orientation on the
foliation of A and A′, that must agree where the annuli agree, we see the
intersection of A and A′, near L, must be as shown in Figure 19. Let N ′

be the image of N under this isotopy, and denote ∂N and ∂N ′ by T and
T ′, respectively. By shrinking N and N ′ we may assume Ai contains the
dividing curves of T and T ′.

Claim: There is a contact isotopy, fixing the annuli Ai, that takes A
′ to an

annulus contained in a solid torus B such that either ∂B ⊂ N (but B ̸⊂ N),
or N ∪B ⊂ S, where S is a solid torus in the knot type of K.

To finish the proof of Lemma 7.13, suppose ∂B ⊂ N . Then N ∪B = S3

(since B is not contained in N) so T is a Heegaard torus for S3, and thus K
is the unknot. Since we are assuming K is uniformly thick and hence not an
unknot, this cannot be the case. So we are left to deal with the case when
N ∪B is contained inside a solid torus S in the knot type of K. By the
uniform thickness of K, we can assume that S is a standard neighborhood
of a maximal Thurston-Bennequin invariant representative of K. But now
S contains A ∪A′ and we can use these to guide an isotopy exchanging Λ1

and Λ2 inside of S, giving us the desired conclusion of the lemma. □
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A

A
′

Λ1

Λ2 N
N

′

Figure 19: This is a cross section of N ∪N ′. We see that annulus A in red
and the annulus A′ in blue. They agree near Λ1 ∪ Λ2; in the figure they
have been slightly offset so that they can both be seen. The grey regions are
N and N ′. The sets A′ and N ′ could be more complicated, but A, N and
A ∩A′ are as shown in the figure.

Proof of Claim. We can C∞ perturb T ′, fixing the Ai, so that T ′ is trans-
verse to T . We will first show that there is a topological isotopy of T ′, fixing
the annuli Ai, such that T ′ is contained in N or T ′ intersects T in a union
of simple closed curves parallel to the dividing curves on T ; we will then
apply a Discretization of Isotopy argument and, if needed, an “engulfing”
argument to construct the desired S.

Observe that T ∩ T ′ consists of a disjoint union of simple closed curves
where each closed curve is either null-homologous or parallel to the dividing
curves on T . A standard innermost disk argument can be made to isotop T ′

so as to remove null-homologous closed curves. In the case that are no addi-
tional curves of intersection, then we have shown that there is a topological
isotopy of N ′ such that ∂N ′ ⊂ N . Otherwise, all the remaining circles of
intersections between T and T ′ are homologically essential, and since they
must be disjoint from ∂Ai they must be parallel to ∂Ai. Since Ai ∩ T are
the dividing curves of T , we see that the curves of intersection are parallel
to the dividing curves of T , which have slope q/p = q.

Now using the Discretization of Isotopy technique, [27, Section 2.2.3], we
can find a sequence of convex tori T0,. . . , Tl, such that T0 is the original T ′,
Tl is the result of T ′ under the above isotopy, each Ti intersects Ai in a leaf
of Ai, and each pair Ti ∪ Ti+1 cobound a thickened torus that is the result
of a bypass attachment. We inductively claim that for each i there exists a
solid torus Bi such that ∂Bi = Ti and there exists a boundary parallel torus
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T ′
i ⊂ Bi that is contact isotopic to T ′. For the base case of i = 0 , we can

take B0 = N ′. Now inductively assume this is true for Ti, and we will verify
that it is true for Ti+1.

To see this if Ti+1 is not contained in Bi, then let Bi+1 be the torus that
Ti+1 bounds, and T ′

i+1 = T ′
i (clearly T ′

i+1 = T ′
i ⊂ Bi ⊂ Bi+1) is the desired

torus. If Ti+1 is contained in Bi then let Bi+1 be the torus that it bounds.
Since Bi+1 is a solid torus with longitudinal dividing curves on it, we know
that it is contactomorphic to a standard model, and thus we know inside
Bi+1 there is a torus T ′

i+1 having two dividing curves of slope q/p = q. Now
since K is uniformly thick Bi (and hence Bi+1) is contained in a standard
neighborhood S′ of a maximal Thurston-Bennequin invariant representative
of K. We know that since T ′

i and T
′
i+1 both have two dividing curves of slope

the same as ∂S′ that Ti and Ti+1 are both contact isotopic to ∂S′ and hence
to each other. That is T ′

i+1 is isotopic to T ′ as claimed.
So after contact isotopy we can assume that N ′ (and A′) is contained in

a solid torus B such that ∂B is contained in N or intersects T transversely
and in curves parallel to the dividing set of T which have slope q/p = tb(K).
In the former case we are done and in the latter we have that ∂B is divided
into annuli by ∂B ∩ T . If one of these annuli is outside of N then since K is
not cable, or if K is a (r, s)-cable then q/p ̸= rs, we know by Theorem 7.14
it must be parallel to ∂N . Thus there is a solid torus that contains N and
this annulus. Arguing similarly for all the annuli there is a solid torus S that
contains N and B, and hence N ∪N ′. □

Now that the hard work has been done to prove Theorem 1.6, which
determines the possible permutations in the max tb representatives, we can
easily establish the ordered classification of cable links.

Proof of Theorem 1.10. With Theorem 1.6 in hand, the proof is almost iden-
tical to that of the proof of the ordered classification of Legendrian torus
knots, Theorem 1.2. □
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