
Bryn Mawr College Bryn Mawr College 

Scholarship, Research, and Creative Work at Bryn Mawr College Scholarship, Research, and Creative Work at Bryn Mawr College 

Mathematics Faculty Research and Scholarship Mathematics 

2023 

Reduced model for female endocrine dynamics: Validation and Reduced model for female endocrine dynamics: Validation and 

functional variations functional variations 

Erica Graham 
Bryn Mawr College, ejgraham@brynmawr.edu 

Noémie Elhadad 
Columbia University 

David Albers 
University of Colorado Denver 

Follow this and additional works at: https://repository.brynmawr.edu/math_pubs 

 Part of the Mathematics Commons 

Let us know how access to this document benefits you. 

Citation Citation 
Graham, E. J., Elhadad, N. & D. Albers. 2023. "Reduced model for female endocrine dynamics: Validation 
and functional variations." Mathematical Biosciences 358: 108979. 

This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College. 
https://repository.brynmawr.edu/math_pubs/31 

For more information, please contact repository@brynmawr.edu. 

https://repository.brynmawr.edu/
https://repository.brynmawr.edu/math_pubs
https://repository.brynmawr.edu/mathematics
https://repository.brynmawr.edu/math_pubs?utm_source=repository.brynmawr.edu%2Fmath_pubs%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=repository.brynmawr.edu%2Fmath_pubs%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/open-access-feedback.html
https://repository.brynmawr.edu/math_pubs/31
mailto:repository@brynmawr.edu


Reduced model for female endocrine dynamics: Validation and functional
variations

Erica J. Grahama,∗, Noémie Elhadadb, David Albersc

aMathematics Department, Bryn Mawr College, Bryn Mawr, PA 19010, USA
bDepartment of Biomedical Informatics, Columbia University, New York, NY 10032, USA

cPediatrics Department, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO 80045, USA

Abstract

A normally functioning menstrual cycle requires significant crosstalk between hormones originating in ovar-
ian and brain tissues. Reproductive hormone dysregulation may cause abnormal function and sometimes
infertility. The inherent complexity in this endocrine system is a challenge to identifying mechanisms of
cycle disruption, particularly given the large number of unknown parameters in existing mathematical
models. We develop a new endocrine model to limit model complexity and use simulated distributions of
unknown parameters for model analysis. By employing a comprehensive model evaluation, we identify a
collection of mechanisms that differentiate normal and abnormal phenotypes. We also discover an intermedi-
ate phenotype–displaying relatively normal hormone levels and cycle dynamics–that is grouped statistically
with the irregular phenotype. Results provide insight into how clinical symptoms associated with ovulatory
disruption may not be detected through hormone measurements alone.

Keywords: Ovulation, endocrinology, polycystic ovary syndrome

1. Introduction1

Female endocrine physiology is an incompletely understood system, particularly as it pertains to repro-2

ductive health and disease. Metabolic and mental health problems are also associated with dysfunctional3

female reproductive endocrinology [1, 2]. Two relatively common disorders, which independently affect4

between 5 and 20% of individuals of reproductive age, are polycystic ovary syndrome (PCOS) [2] and en-5

dometriosis (EM) [3]. PCOS is often characterized by infrequent or absent ovulation and excess ovarian6

production of androgens (male sex hormones), especially testosterone [4]. EM is characterized by lesions of7

endometrial-like tissue throughout the body, significant pain, and infertility [3]. The systems physiologic8

understanding of PCOS and EM is both incomplete and unavoidably complex. Given the prevalence of these9

disorders, comprehensive reproductive hormone data is relatively limited. Aside from their relatively high10

prevalence, both conditions have unknown etiologies, are often associated with infertility, and can lead to11

additional complications and a significant reduction in quality of life. As a result, PCOS and EM are good12

targets for mathematical physiology, which has the ability to link endocrine function/dysfunction with its13

physiological underpinnings in a quantitative manner.14

Although the importance of these disorders and their clinical impact cannot be overstated, of particular15

importance in quantitative approaches is an understanding of baseline ovulatory function, which depends16

on the interactions of several reproductive hormones and their targets tissues. Collectively, this system17

is known as the hypothalamic-pituitary-ovarian (HPO) axis. Briefly we describe the essential processes18

involved in developing a basic quantitative description of ovulation and HPO function, for which there are19
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three primary components. First is the signal generated in the hypothalamus which, through gonadotropin-20

releasing hormone (GnRH) neurons, triggers the production of follicle-stimulating hormone (FSH) and21

luteinizing hormone (LH) from the pituitary gland. Second, there are the FSH- and LH-dependent processes22

of (1) follicle growth and maturation, (2) ovulatory follicle selection, and (3) ovum release. Third, there23

is the feedback from ovarian steroid hormones–e.g., estrogens, progesterones, and inhibins–which regulate24

production and release of FSH and LH from the brain.25

Relative to typical ovulatory function, in many cases of PCOS the HPO axis is altered by elevated26

androgen, e.g. testosterone, production resulting from insulin resistance, increased LH synthesis due to27

disrupted GnRH pulse frequencies, and an increased LH:FSH ratio [4]. The consequence of these disruptions28

is reduced or complete absence of ovulation–which can be observed by very low P4 levels. In EM, the story29

is less clear, as pituitary and ovarian hormone levels tend to be relatively similar between individuals with30

and without EM [1]. In fact, alleviation of severe pain in EM can be achieved through intentional disruption31

of ovulation, which prevents estrogen production and the resulting pain-causing inflammation [5]. Reducing32

other sources of circulating estradiol, e.g. from fat, skin, or endometrial tissue, could also be therapeutic33

in EM [4]. While PCOS can result from dysregulation of reproductive hormones, EM instead reflects34

pathological responses to those hormones.35

A number of mathematical models of ovulation have been developed over the past few decades, each36

focusing on one or more aspects of the HPO axis. For example, GnRH neuron pulse generation has been37

modeled in [6, 7], whereas the downstream effect on FSH and LH is modeled in [8]. Follicle dynamics have38

been described mathematically in [9, 10, 11, 12], and ovarian steroid biosynthesis in [13, 14], with a semi-39

mechanistic approach taken in [15]. Some models focus on a two-part pituitary-ovarian axis [16, 17, 18, 19],40

whereas others describe the multi-scale behavior of the HPO-axis, including GnRH pulse regulation [20, 21,41

22, 23, 24]. Of these models, [19, 25, 15] incorporate testosterone and are capable of producing PCOS-like42

dynamics in the form of ovulatory dysfunction and anovulation. Although a recent model in [26] describes a43

phenomenological-based model of endometrial dynamics, there appears to be no mathematical models that44

address endometriosis in the context of the ovulatory cycle.45

Whereas existing mathematical models may highlight one specific disease or another, we aim initially to46

reduce the viable parameter space of fundamental models using a ‘bottom-up’ approach: physiology first,47

pathophysiology second. In particular, we aim to improve tractability while still maintaining a reasonable48

quantitative representation of the underlying physiology.49

In this paper, and toward building a unified, physiologically-based framework to shed light on diseases like50

PCOS and EM, we develop a new endocrine model with reduced complexity, both in biological description51

and in the number of unknown parameters. We hypothesize that structural reduction of the model may52

provide greater insight to relevant and essential processes governing the typical ovulatory cycle and aid in53

identifiability. Although PCOS and EM are important disorders with many open questions regarding their54

etiologies, we presently aim to study generalized ovulatory dysfunction, which may or may not stem from55

existing clinical phenotypes, including hyperandrogenic PCOS and EM. The goal is to fit the new model56

to available data (described in Section 2.2) and follow up with a comprehensive model evaluation that57

provides insight into relevant parameter-informed mechanisms that can distinguish ovulatory phenotypes.58

The approach taken in this work is useful because it allows us to examine dysfunction based on limited yet59

easily identifiable clinical information, such as an individual’s ‘time since last period.’ A typical approach to60

mathematically study female endocrine physiology often relies on analyzing hormone levels and long-term61

behavior in response to some stimulus, which is mathematically informative but often not clinically feasible62

due to cost and invasiveness of the data collection process. We aim to push the boundaries of what we can63

study in female reproductive endocrinology based on intentionally minimal information.64

In Section 2, we begin with an existing mathematical model of ovulation [15] that has been fit to data65

from the literature [27], and perform a semi-mechanistic model reduction. In Section 3, we construct a66

systematic methodology for model evaluation and use it to examine the new model’s ability to capture67

essential biology and represent data. We also examine emergent phenotypes [28] through analysis of the68

parameter space. In Section 4, we present simulation and evaluation results, followed by a discussion of69

their implications in Section 5.70

2



2. Methods71

We develop a new endocrine model to describe essential processes in ovulation. Following [8, 18, 19, 15],72

we use a compartmental framework to model the ovulatory system. This new model is a reduction of a model73

developed by Graham and Selgrade that uses ordinary differential equations to describe the ovulatory cycle74

under androgen, i.e. testosterone (T), influence [15]. In addition to explicitly incorporating T-mediated75

feedback, the model explores the effects of normal and premature luteinization on a T-dependent ovulatory76

cycle and provides mechanistic insight into the different PCOS phenotypes that might emerge in a high-77

androgen high-insulin state. Effectively, we show that we can exclude T–which is absent from many existing78

models that accurately describe the ovulatory cycle–from the model and still capture important features of79

physiological, but not necessarily pathological, hormone dynamics. Further, we choose to begin with the80

Graham-Selgrade model because unlike its predecessors, it (1) successfully captures the dynamics of clinical81

data without delay differential equations, and (2) describes ovarian follicle dynamics using only three distinct82

stages (described in Section 2.1), compared to the nine [18] or 12 stages used previously [19]. Thus, our83

starting point for model reduction is an already simplified framework. For comparison, the original model84

equations are listed in Appendix A.85

2.1. Model Development86

Here we describe our reduced model, which comprises three major subsystems and describes changes in87

the pituitary-ovarian axis without an explicit role for androgens. For each subsystem, we derive the model88

equations and highlight major modifications made to reduce the number of unknown model parameters used89

in [15].90

I. Pituitary regulation.91

LH and FSH are the primary hormones produced by the pituitary gland, and we assume their synthesis92

and release are regulated by the ovarian steroid hormones E2 and P4 (see Figure 1(a)). In subsystem (1)–(4),93

we track FSH and LH, which are split between releasable (denoted FSHρ and LHρ) and serum (denoted94

FSH and LH) compartments. The equations governing FSHρ and LHρ represent the balance between95

synthesis and release into serum, subject to both stimulatory and inhibitory feedback via estradiol (E2) and96

progesterone (P4). Serum hormones are assumed to undergo first-order decay. Equations (1)–(4) are almost97

identical to the ones presented in [15], except we eliminate the effects of testosterone in the basal rate of LH98

synthesis (v0L) and in LH inhibition via P4 (KiL,P ).99

Releasable FSH:
dFSHρ

dt
=

vF

1 + cF,I
SΛ

KiF,I+SΛ

− kF
1 + cF,PP4

1 + cF,EE2
2

FSHρ (1)

Serum FSH:
dFSH

dt
=

1

V
· kF

1 + cF,PP4

1 + cF,EE2
2

FSHρ − δFFSH (2)

Releasable LH:
dLHρ

dt
=

[
v0L +

v1LE
n
2

Kn
mL + En2

]
· 1

1 + P4/KiL,P
− kL

1 + cL,PP4

1 + cL,EE2
LHρ (3)

Serum LH:
dLH

dt
=

1

V
· kL

1 + cL,PP4

1 + cL,EE2
LHρ − δLLH (4)

II. Follicle dynamics.100

Follicle growth, maturation, and differentiation are assumed to occur in a series of three sequential stages:
(1) follicular (Φ), (2) ovulatory (Ω), and (3) luteal (Λ), as illustrated in Figure 1(b). The follicular phase
is characterized by recruitment and growth of stimulated follicles. The ovulatory phase is characterized by
ovum release from a designated follicle in response to a mid-cycle surge in LH. Finally, the luteal phase is
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Figure 1. Model schematic for three subsystems: (a) pituitary regulation, (b) ovarian follicle dynamics, and (c) ovarian steroid
production.

characterized by the formation and, in the absence of fertilization, regression of the corpus luteum. An LH
support variable, S, reflects the dependence of the corpus luteum growth and regression on LH.

Follicular phase:
dΦ

dt
=

(
f1FSH

2

h2
1 + FSH2

− f2LH
2

h2
2 + LH2

)
· Φ (5)

Ovulatory phase:
dΩ

dt
=

f2LH
2

h2
2 + LH2

· Φ− wSΩ (6)

Luteal phase:
dΛ

dt
= wSΩ− l(1− S)Λ (7)

LH support:
dS

dt
= ŝ

LH4

LH4 + h4
s

(1− S)− δSS (8)

Compared to the model in [15], we simplify two follicular processes in Equations (5)–(8). First, we eliminate101

the effects of testosterone on follicle sensitivity to FSH (h1). Second, we simplify LH sensitivity by omitting102

FSH-dependent upregulation of LH receptors (h2).103

III. Ovarian steroidogenesis.104

Throughout the ovulatory cycle, follicles may produce E2 and P4. Intracellular steroid production is
primarily FSH- and LH-dependent during a typical cycle and is subject to functional maturation of individual
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follicles, as illustrated in Figure 1(c). This subsystem exploits the two-cell two-gonadotropin theory of ovarian
steroid production, which describes the differential functionality of theca cells and granulosa cells within
ovarian follicles [4]. In Equations (9) and (10) we assume that intracellular E2 is immediately converted from
its testosterone precursor without explicit dependence on FSH. However, we do retain the LH dependence
required for precursor synthesis. Once released into the serum during the follicular and luteal stages only,
E2 dynamics are subject to peripheral production and first-order decay. P4 conversion within theca and
granulosa cells requires enzymes that are also regulated by LH. However, given the very low concentration
of LH required for this process, we assume P4 production occurs with rate constant p during the luteal stage
only.

Serum E2:
dE2

dt
= e0 − δEE2 + tg1

LH

LH + κ2
· (Φ + ηΛS) (9)

Serum P4:
dP4

dt
= − δPP4 + pΛS (10)

Compared to the Graham-Selgrade model, we have simplified the semi-mechanistic steroid production terms105

by eliminating both testosterone state variables (T and Tγ) altogether, assuming relatively constant dynam-106

ics, and by removing the role of basal LH in P4 production. The impacted parameters are tg1 and p.107

The new model is given by Equations (1)–(10), with 10 state variables, compared to 12 previously. With108

27 unknown parameters, compared to the original model’s 41, we have reduced the parameter space by more109

than a third.110

2.2. Data111

Complete data sets that track the pituitary hormones, LH and FSH, as well as ovarian steroids E2 and112

P4 during the course of an entire cycle are uncommon; for example, see [27] and [29]. What is missing113

is a complete hormone profile that also includes androgen levels through the course of a normal ovulatory114

cycle. Arguably, androgens may not have a substantial impact on regular ovulatory function. Still, in [15],115

averaged T data from [30] are used to inform T dynamics.116

To revert back to a lack of androgen data in the present work, we use two data sets, one synthetic117

and one real. The first data set is generated synthetically using the numerical solution of the Graham-118

Selgrade model. We use this to show that the reduced model can capture the qualitative dynamics of the119

original model. The second data set is the hormone data available in [27]. These data contain average daily120

measurements for 33 normally cycling women during the course of one complete ovulatory cycle for FSH,121

LH, E2, and P4. This second data set is used to demonstrate both the ability of the model to estimate data122

well and how to use the model to better understand physiology for given data.123

3. Comprehensive Model Evaluation124

Given the complex cross-talk in the reproductive endocrine system, analysis of hormone concentrations125

alone likely provides insufficient insight into the subtleties of ovulatory dysfunction. To address this issue,126

we develop and implement a five-step algorithm (summarized in Algorithm 1) that allows us to carry out a127

comprehensive evaluation of the reduced model, with a focus on primarily clinically relevant phenotypes and128

secondarily mathematically relevant phenotypes. Then we discuss the simulations and statistical methods129

used to analyze the results of Algorithm 1.130

3.1. Terminology: physiological vs. mathematical cycles131

To discuss model evaluation and results, we explicitly distinguish between physiological and mathematical132

notions of a ‘cycle’. For properties of mathematical ovulation, we explicitly refer to the inter-ovulatory133

interval (IOI), which denotes the length of time between consecutive simulated LH surges. Physiologically,134

the IOI is equivalent to the time between two ovulatory cycles; however, multiple IOIs may be required135

before the solution completes a single mathematical (limit) cycle. For clarity and consistency, we restrict136

our generalized use of ‘cycle’ to refer to physiological ovulation and IOI to the calculated times between137

these cycles.138
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3.2. Algorithm for comprehensive model evaluation139

Step 1: Synthetic data. We generate the synthetic data by numerically solving the system (A.11)–(A.22),140

using the parameters in [15], for a sufficiently long time to approach a stable limit cycle for normal141

ovulation. We then align the trajectories so that the LH surge occurs at the end of day 15 of the first142

cycle. Finally, we extract daily data between days 0 and 30 and then, to avoid propagated numerical143

inaccuracies, repeat these same data twice more for each variable. We also expand the set of data to144

include Φ, Ω, and Λ, under the assumption that follicular dynamics should follow a similar pattern to145

the original model. Note that we do not make this assumption for the releasable pools of pituitary146

hormones (FSHρ and LHρ). With the exclusion of testosterone from the model, we have a total of 7147

state variables (namely FSH, LH, E2, P4, Φ, Ω, and Λ) with n = 93 data points each.148

Step 2: Optimization. To determine how well the new model compares to the original model, we first149

estimate the 27 parameters of the reduced model by fitting output to the synthetic data. Then we150

verify the model behavior under the influence of testosterone-mediated feedback. Because this latter151

step is model-specific, we postpone a detailed discussion of setup and implementation to Section 4.152

To capture essential ovulatory behavior, we optimize parameters using a weighted least squares ap-153

proach, described as follows. For a given variable Xi(t), where i ∈ {FSH,LH,E2, P4,Φ,Ω,Λ}, we154

first assign default weights wi = 1/Var(Xi(t)) to each data point at tj = 0, 1, . . . , 92. Because we155

cannot guarantee the expected behavior of follicular dynamics, we do not incorporate additional time-156

dependent weights for i = Φ,Ω,Λ. However, for the hormones we increase weights by variable factors157

at important peaks, troughs, and plateaus within the data. These weights are adjusted to acquire the158

best qualitative fit to the data, with the understanding that local minimization of the cost function159

may be sensitive to variation in weights and may not produce a globally optimal solution.160

Let yi represent the vector of measurements corresponding to reduced model output variable xi(ϕ),
defined by parameters ϕ. We define the optimization problem that minimizes the sum of the squared
error as

min
ϕ

1

|V | · n
∑
i

wi||yi − xi(ϕ)||2, (11)

where V = {FSH,LH,E2, P4,Φ,Ω,Λ} and denote the optimal parameter vector satisfying Equation161

(11) by ϕ∗. We use Matlab’s fminsearch, which implements the Nelder-Mead simplex method, to162

determine the optimal ϕ. In most cases, initial parameter guesses are taken from the original model.163

In others, they are derived from the adjustments made in the reduction process.164

Step 3: Monte Carlo simulations. We determine the distributions of the 27 model parameters using a165

Monte Carlo approach to generate a collection of best-fit parameters using various initial guesses in the166

estimation scheme described in Step 2 and by comparing the output to data. We first assume that the167

values in ϕ∗ represent mean quantities and that initial guesses, ϕ(0), are uniformly distributed within168

Algorithm 1 Comprehensive model evaluation.

Step 1. Generate synthetic data set using Equations (A.11)–(A.22).

Step 2. Optimize reduced model parameters using weighted least squares and synthetic data.

Step 3. Run N Monte Carlo simulations, initialized with perturbed best-fit parameters from Step 2 and
refit to clinical data.

Step 4. Compute numerical solutions for each parameter profile generated in Step 3, and store resulting
hormone data over multiple cycles.

Step 5. Use results of Steps 3 and 4 to define distributions for each of the 27 reduced model parameters.

6



±10% of the mean. That is, ϕ
(0)
k ∼ U(0.9ϕ∗k, 1.1ϕ

∗
k) for k = 1, 2, . . . , 27. To ensure a representative169

sampling of N = 500 parameter combinations from each individual subinterval of length 1/N ranging170

from 0.9ϕ∗k to 1.1ϕ∗k, we use Latin hypercube sampling (LHS)–a type of Monte Carlo sampling–to171

randomly generate initial parameter guesses (see [31] for further discussion on LHS). We assume a172

uniform distribution when generating these parameter values because we have insufficient biological173

information to infer a more confined distribution and because each parameter spans few, if any, orders174

of magnitude, as discussed in [32]. For each initial parameterization we then minimize a cost function175

similar to Equation (11), fit to average daily clinical data yi, i ∈ {FSH,LH,E2, P4}, as reported in176

[27].177

Step 4: Range of simulated model output. We numerically solve the reduced model over 186 days178

using the estimated parameters and generate an ensemble of these solutions. We align each LH surge179

(assuming one exists) to day 15 and determine the length of each IOI. The LH surge is defined to be180

a peak LH concentration that is followed by an apparent luteal phase; any other local maxima in LH181

failing to meet this criterion are ignored. Because we have restricted our sampling scheme in Step 3,182

we guarantee that the model does not approach a stable equilibrium. Although this limitation does183

not capture complete ovarian failure (i.e., the absence of a cycle at all), it does allow for reasonable184

comparisons in the presence of oscillatory dynamics.185

Step 5: Parameter distributions.186

We calculate empirical parameter and cumulative distributions based on the optimized parameter sets187

obtained from Step 3.188

4. Computational Results189

In this section, we (1) describe the simulations carried out for the new endocrine model, and (2) examine190

additional emergent features arising from the model and its analysis. In particular, we are interested191

how clinical phenotypes present themselves in the new model, and how these results uncover important192

mechanisms associated with ovulatory function and dysfunction.193

4.1. Simulations194

Following Step 1 of the algorithm, we numerically solve the original model to obtain synthetic data,195

which include four hormones and three ovarian stages. In Step 2, we use the synthetic data to estimate the196

27 parameters of the reduced model (Section 4.2). With the set of best-fit reduced model parameters, we197

compare the model behavior under the influence of testosterone-via-insulin to that of the original model;198

in effect, we redefine relevant parameters (tg1, v0L,KiL,P , h1) in response to insulin influence parameter α199

(Section 4.2). In Step 3, we use a collection of perturbed parameter regimes (N = 500) to initialize re-fitting200

of the reduced model, this time to clinical data in [27]. In Step 4, we use the resulting sets of optimized201

parameters to generate numerical solutions, and compile model output for the hormones FSH, LH, E2, and202

P4 (Section 4.3). Finally, in Step 5, we compute the empirical frequency and cumulative distributions for203

each parameter (Section 4.4).204

4.2. Model calibration205

The best-fit parameters of the current model compared to original data from the model in [15] are206

presented in Table 1. In Figure 2 we numerically solve the reduced model using these parameters and207

compare the results to output from the original model. For frame of reference, we also include the clinical208

data from [27]. Notably, for all numerical solutions that display hormone trajectories, we solve the model209

for a sufficiently long time to overcome initial transient behavior in an effort to only capture the solution210

once it has approached a limit cycle. It is only then that we determine the location of the LH surge, which211

is always assumed to occur on day 15 of the displayed ovulatory cycles. All subsequent LH surges occur212

relative to this initial surge.213
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Table 1. Estimated pituitary and ovarian parameters generated from fitting the reduced model to original model output. Other
fixed parameters appearing in the model remain unchanged from [15].

Pituitary Parameters

Parameter Units Value

vF µg/d 3219.9
KiF,I µg 149.76
kF d−1 3.0212
cF,P (µg/L)−1 65.229
cF,E (ng/L)−2 0.0024047
cF,I # 3.0188
v0L µg/d 308.35
v1L µg/d 44700
KmL µg/L 226.37
KiL,P µg/L 3.2279
kL d−1 0.67146
cL,P (µg/L)−1 0.015844
cL,E (µg/L)−1 0.00068867

Ovarian Parameters

Parameter Units Value

f1 d−1 1.0958
f2 d−1 46.225
h1 µg/L 146.31
h2 µg/L 798.39
w d−1 0.23497
l d−1 0.64178
ŝ d−1 2.6338
δS d−1 0.38256
η # 0.81426
κ2 µg/L 8.276
hs µg/L 11.691
tg1 ng/(L·µg·d) 6.3594
e0 ng/L·d 9.6377
p 1/L·d 0.22851

Fixed Parameters

Parameter Units Value

δF d−1 8.21
V L 2.5
δL d−1 14
δE d−1 1.1
δP d−1 0.5

The qualitative dynamics are well captured, with two primary quantitative discrepancies. First, early214

follicular phase E2 (days 0 through 10 of the ovulatory cycle) undershoots both synthetic and clinical data.215

However, the biological impact of E2 during this stage of the ovulatory cycle is minimal, and E2—unlike LH216

and P4–is not used to determine whether ovulation has been successful. The second discrepancy is in the217

peak P4 concentration. This arises due to an overshoot of the data in the middle of luteal stage Λ. Since P4218

levels are known to peak clinically around this time, we consider this behavior to be within a physiologically219

relevant and normal range for the hormone. Further, because we assume that the ovarian stages are crude220

approximations to actual follicular dynamics, there may be substantial variability in the trajectories that221

may nevertheless yield normal ovulatory function, as illustrated in [30].222

Testosterone-mediated dysfunction223

A fundamental change in the reduced framework is the omission of testosterone, T. Although absent
from the model, we may still examine how T might influence pathological ovulation. This approach also
serves as proof of concept when using the reduced model in lieu of the original one. To re-incorporate T
into the present framework, we modify relevant parameters. Following [15], we let α denote the degree of
insulin influence, where α = 0 reflects a normal state with basal insulin (and hence T) levels. Assuming
testosterone remains constant over time, we define its concentration using a linear function in α, denoted
Tα:

Tα = T0 · [1 + (δT − 1) · (1 + α)]/δT , (12)

where T0 is the initial T concentration in the absence of hyperinsulinemia and δT is the first-order clearance
rate constant for T, as defined originally. The parameters to be altered by T in the reduced model are tg1,
v0L, KL,P , and h1. We only consider the case of normal luteinization (see [15] for details) because we have
omitted FSH-dependent upregulation of follicle LH receptors, which would impact parameter h2. We first
redefine tg1 → tg1(1 + α), based on the assumption made for precursor E2. To incorporate the remaining
modifications, we also redefine the parameters v0L → v0Lξ1, KL,P → KL,P ξ2, and h1 → h1ξ3 for α > 0,

8
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Figure 2. Fit of reduced model to Graham-Selgrade model [15] over 92 days. FSH and LH are displayed in standard international
units according to the 2nd international reference preparation, where 1 IU FSH = 45 µg and 1 IU LH = 15 µg [33]. Conversion
factors are based on the NIH preparation used in [27], which is also the source of the clinical data shown for FSH, LH, E2, and
P4. Ovarian stages reflect synthetic data from the original model only.

where

ξ1 =
(β1 + T0) · Tα
(β1 + Tα) · T0

, (13a)

ξ2 =
1 + β2Tα
1 + β2T0

, and (13b)

ξ3 =
1 + β3

1 + β3Tα/T0
. (13c)

The ξi in Equations (13) determine the scaling of the model parameters as insulin influence increases and224

are plotted in Figure 3a. The constants βi are defined according to the original model, with the caveat that225

bifurcation values of α may be shifted based on the values of these parameters. The derivation of the ξi are226

given in Appendix B.227

In Figure 3b, we plot the long-term local maximum and minimum values corresponding to the LH surge228

for various α. At first glance, the model displays considerable sensitivity to the magnitude of α, such229

that periodic behavior is sustained for roughly α < 0.6, followed by a Hopf bifurcation, characterized by230
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Figure 3. Insulin influence and testosterone in reduced model development and results. (a) Dimensionless functional forms
used to incorporate T into reduced model, as in Equations (12) and (13). Each ξi contributes a T-dependent change (percent
increase or decrease) in relevant parameters from the original model [15]. ξ1 increases LH synthesis parameter v0L, ξ2 increases
P4-mediated LH inhibition parameter KiL,P , and ξ3 decreases FSH sensitivity parameter h1. α: degree of insulin influence. (b)
Simulated bifurcation diagram depicting adjusted role for T and insulin influence (α). Maximal and minimal LH concentrations
are shown for various values of α > 0. For α < 0.2, LH oscillates between two values, suggesting a stable limit cycle. LH peaks
alternate between consecutive IOIs for α > 0.2, suggesting a period-doubling bifurcation (PD) with stable oscillations.

a loss of periodicity and a stable equilibrium. A stable limit cycle is roughly evident for α < 0.1, with an231

apparent period doubling bifurcation giving rise to alternating LH surge amplitudes. Minimal LH levels232

remain relatively constant. This suggests that the reduced framework responds to elevated T by altering the233

amplitudes and timing of LH surges. Although the dynamic mechanisms governing ultimate dysfunction may234

differ from the original model, we are able to capture disruptive behavior, which takes the form of sustained235

oscillations under normal luteinization, with slightly shorter limit cycle lengths, as seen in [15]. The primary236

discrepancy is that the original model, under normal luteinization, maintains limit-cycle behavior for a237

wider range of α, i.e. for 0 < α < 5. However, under premature luteinization, the Graham-Selgrade model238

does undergo a Hopf bifurcation near α = 4.5. Collectively, these results suggest that the reduced model239

with testosterone-mediated feedback illustrates a more severe level of dysfunction given the right trigger.240

Interestingly, should tg1 α-independent, the reduced model exhibits sustained limit cycle behavior for a much241

wider range of α (results not shown). This suggests that one mechanism of dysfunction might depend more242

on the presence of increased E2 rather than an androgen-driven response.243

4.3. Emergent behavior, phenotypes, and clinical relevance244

From Steps 3 and 4 of Algorithm 1, we obtain an ensemble of trajectories from numerical simulations.245

By observation of these results, we find that we can use the values of the IOIs to ensure that pathological246

trajectories are reflected by the presence of abnormally long or short IOIs at any time. Considering that247

IOI is often the first step in recognizing a problem in ovulation, we wish to study the characteristics of248

individuals–each with their own parameter regime in the new model–who might be considered ‘abnormal’249

from a clinical office visit. This approach is useful as it allows us to study mechanisms of dysfunction based250

on limited information, such as the time since the last period. Therefore, the criterion we use to categorize251

individuals is based solely on IOIs calculated throughout one’s ovulatory trajectory. Specifically, we assign252

each trajectory (representing one person) to one of two phenotypes. The regular phenotype describes253

simulations in which both minimal and maximal IOIs fall between 25 and 35 days, which is the textbook254

standard range for normal ovulatory cycles [4]. The irregular phenotype describes those simulations failing255

to satisfy this criterion, i.e. those containing at least one IOI outside of the standard range.256

Figure 4 shows hormone trajectories over 186 days for two representative solutions, one regular and one257

irregular. For reference, the timing of the LH surge for the regular phenotype is indicated with a vertical258

line. Stable limit cycle behavior is exhibited for the regular cycle with a characteristic length of 30.9 days.259

10



F
S

H
 (I

U
L)

0
5

10
15
20

LH
 (I

U
L)

0

10

20

30 LH surge
(regular)

E
2 (

pg
m

L)

0

100

200

300

P
4 (

ng
m

L)

0
5

10
15
20

0 30 60 90 120 150 180
Time (days)

regular irregular

Figure 4. Comparison of representative regular and irregular trajectories simulated by the reduced model. The regular cycle
displays a characteristic length of 30.9 days. The irregular cycle has a total length of 80.7 days, with IOIs of 19.5 and 61.2
days.

The irregular phenotype, however, consists of nonuniform behavior of the major hormones, indicating a260

certain degree of intra-individual variation. Specifically, the irregular limit cycle has a length of 80.7 days,261

with 19.5 and 61.2 days passing between consecutive LH surges. Although hormone levels are relatively262

normal through the course of the irregular cycle, there are marked differences in hormone patterns that263

could suggest ovulatory dysfunction.264

Phenotype refinement265

To examine how the important parameters and the accuracy of their accompanying numerical solutions266

when fit to clinical data vary, we calculate the mean squared error (MSE) between the model output267

(variables LH, FSH, E2, and P4) and the averaged data in [27]. We do observe a threshold MSE value—268

estimated from the MC output—above which all irregular phenotype results lie and below which roughly 85%269

of regular results lie. We use this threshold to assign an additional subcategory to simulations belonging to270

the regular phenotype. Specifically, regular solutions that yield MSE values below the computed threshold,271

and hence fit hormone data relatively well, are denoted regular+. Regular solutions that yield above-272

threshold MSE values, and hence fit hormone data less well, are denoted regular−. Qualitatively, we273

consider the regular+ phenotype to reflect ‘regular IOI-regular dynamics’ and regular− to reflect ‘regular274

IOI-irregular dynamics’. Notably that there does exist a subset of parameters for which the IOI varies by275

50%, where both regular and irregular IOIs are observed yet the limit cycle length is fixed. Because of this,276

regular+ implies both low intra-cycle hormone variability compared with data and also low IOI variability.277

In Figure 5, we compute 95% confidence intervals of simulated hormone concentrations over four months278

to examine how hormone profiles influence these refined phenotypes. Briefly, to compute the confidence279

intervals for each phenotype, we calculate the upper 95% and lower 5% quantiles of the simulated trajectory280

data over time and then shade region in between the two boundaries. The result is an aesthetically improved,281

yet still representative, illustration of the trends in individual trajectories. As before, the simulated LH surge282

of the first cycle is forced to occur on day 15. Regular+ simulations exhibit the least variation across all283
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cycles (green regions). Beyond the first LH surge, regular− phenotypes (left panel, teal regions) have more284

variation in the timing of characteristic ovulatory events (e.g. LH surge and luteal formation) than regular+,285

but considerably less variation than the irregular phenotypes (right panel, gray region). As a result, we have286

reduced predictability of ovulation when we refine phenotypes according to data fitting. In addition, no287

level of observed irregularity can produce a complete absence of ovulation, either through loss of oscillations288

or subthreshold hormone concentrations in LH or P4.289

In Figure 6, we examine the distribution of IOIs for each phenotype. Frequencies are determined by the290

collection of all IOIs, rather than a statistic describing generalized behavior. This is especially useful for the291

irregular case, which displays much wider variability than either of the regular phenotypes. Further, there292

appear to be multiple modes in the distribution of IOIs for irregular trajectories, observed at IOIs of 20, 30,293

and 40 days.294

4.4. Important parameters: Identification and distributions295

We use the results from Step 5 of Algorithm 1 to calculate empirical parameter distributions, which we296

can now examine in a phenotype-specific manner. In Figure 7 we illustrate resulting distributions for eight297

of the reduced model parameters: the complete distribution (white boxes), along with the distributions for298

the regular phenotype (slanted line boxes) and the irregular phenotype (solid gray boxes). In addition, we299

compute the empirical cumulative distribution functions for all parameters distinguished by phenotype (see300

Appendix C). These distribution results form the basis of our remaining model analysis and computational301

results.302

Statistical significance303

To assess whether each parameter distribution differs from its counterpart in the opposing phenotype,304

we use the Kolmogorov-Smirnov (KS) test, which determines whether two samples are drawn from the same305

distribution [34, 35]. The test uses the Kolmogorov-Smirnov statistic, which is defined as the L∞ norm306

of the distance between two cumulative probability distribution functions. For each parameter, we apply307

ks.test, the R implementation of the two-sampled KS test, to analyze the phenotype-specific empirical308

distributions generated from our simulations.309

KS test results for the parameter distributions are illustrated in Figure 8. Each box is shaded according310

to the minimal level of significance that allows us to accept the alternative hypothesis, i.e. that regular311

and irregular distributions are statistically different. Darker shaded squares correspond to higher levels of312

significance. Of the 27 parameters remaining in the reduced model, we identify eight that have significantly313

different distributions between regular and irregular phenotypes, with p < 0.01 (indicated by ∗). These314

parameters are given in Table 2, along with their associated p-values from the KS test. These are the same315

eight parameters shown in Figure 7. Our remaining analysis focuses on these eight important parameters.316

4.5. Dimensional reduction of phenotypes317

Beyond the structure manually imposed on the Monte Carlo dataset, we are interested in determining318

whether distinct phenotypes can be identified in another way. Patterns in the generated data may depend319

Table 2. Eight parameters identified as most important based on the Kolmogorov-Smirnov test. Parameters are ranked in
order from most (1) to least (8) significant, according to the p-value obtained.

Rank p-value Parameter Description

1 2.44× 10−15 η luteal E2 production;
2 5.31× 10−5 vF maximal FSH synthesis rate;
3 4.44× 10−4 h1 follicle sensitivity to FSH;
4 5.11× 10−4 ŝ LH support maximal growth rate;
5 5.12× 10−4 KmL half-maximal E2 stimulation level;
6 8.93× 10−4 δs LH support decay rate;
7 2.51× 10−3 l maximal luteolysis rate;
8 4.98× 10−3 f1 maximal follicle growth rate.
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Figure 9. t-Distributed Stochastic Neighbor Embedding of model results. Dimensional reduction of identified phenotypes based
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Figure 10. Significant parameter estimates for t-SNE clusters. Cluster-specific behavior is evident for parameter vF , which
corresponds to the maximal rate of FSH synthesis in the brain.

t-SNE Cluster
1 2 3 4 5

regular±(100) 0.86(28) 0.81(33) 0.70(13) 0.71(18) 0.48(8)

regular+ 0.76 0.72 0.61 0.62 0.42
regular− 0.10 0.09 0.09 0.09 0.06

irregular(100) 0.14(14) 0.19(22) 0.30(16) 0.29(22) 0.52(26)

mean vF 3008.0 3189.1 3321.8 3421.8 3530.7

Table 3. Proportion of t-SNE-clustered trajectories that belong to a particular phenotype. Subscripts in parentheses give
the percentage distribution of all phenotype-specific trajectories (regular or irregular) among the five t-SNE clusters. Note:
regular± values are the sum of regular+ and regular− proportions.
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on any of 93 data points for each of four hormones, or any of the 27 parameter estimates. Without a320

comprehensive understanding of the interplay between each of these elements, we seek a methodology that321

will answer the binary question of whether there are inherent differences (seen or unseen) between regular322

and irregular phenotypes. t-Distributed stochastic neighbor embedding (t-SNE) is a machine learning tool323

for reduction of high-dimensional data to lower dimensions [36]. We wish to determine whether phenotypes324

can be clearly clustered by a profile of selected model parameters.325

To examine refined phenotypes based on the eight important parameter estimates, we implement a t-SNE326

of the parameter profiles, with points distinguished according to the assigned primary (regular or irregular)327

and secondary (+ or -) phenotypes. We use the Rtsne package in R to apply the t-SNE. In a two-dimensional328

reduction of the eight-dimensional parameter space, we find no discernible differences between phenotypes.329

Instead, five clusters do emerge from the two-dimensional t-SNE, which have been arbitrarily numbered one330

through five in Figure 9. These results indicate that the set of significant parameters cannot alone isolate331

reproductive phenotypes. In other words, although we can use phenotypes to identify reproductive parameter332

regimes, we cannot use the regimes themselves to decode their respective phenotypes. This is perhaps333

unsurprising given what little information has gone into our phenotyping approach. The resulting clusters334

tell us which characteristics are more closely related when considering our eight-dimensional parameter335

space.336

Given these results, we can explore the characteristics of the five t-SNE clusters further by plotting the337

individual parameters according to cluster (see Figure 10). Of the eight important parameters we have338

identified, vF—representing the maximal rate of FSH synthesis—is the only one that exhibits clear cluster-339

specific behavior. The other parameters vary by group, but not in any clearly discernible way. In Table 3,340

we calculate the distribution of regular and irregular phenotypes present in each cluster, accompanied by the341

mean vF attained within each grouping. We also include the percentage of an overall phenotype belonging342

to each group. We find that vF is positively correlated with the frequency of irregular phenotypes, to the343

extent that lower values of vF occur in greater frequency with regular ovulatory cycles.344

In Figure 11, we provide a visual representation of the results in Table 3, while also exploiting our time-345

dependent information at our disposal. In particular, we provide a two-dimensional representation of the346

simulations for LH over a period of six months, separated by t-SNE cluster. Each individual row corresponds347

to a Monte Carlo trajectory, with all regular+ at the bottom, followed by regular−, and irregular phenotypes348

closest to the top of each panel. White lines are added to provide a visible boundary between phenotypes.349

In all groups regular+ individuals demonstrate predictable ovulatory function and relatively constant IOIs.350

However, regular − trajectories appear to become more regular -looking as we increase vF toward Group 5.351

That is, there appears to be more uniformity in the LH concentrations, to the extent that trajectories ‘line352

up’ better with each other as we examine the groups in order of increasing vF . Finally, and as expected,353

there is no immediately discernible pattern in the output for irregular trajectories. However, it does appear354

that even though LH trajectories are less uniform over time, there are nevertheless a relatively standard355

number of ovulatory cycles within the six-month timespan, as indicated by the LH surge concentrations356

in yellow. Collectively, these results suggest that the reduced model introduced herein displays ovulatory357

irregularity as a by-product of elevated FSH production.358

5. Discussion359

In this study we introduce a new, reduced endocrine model that inherently demonstrates both regular360

and irregular phenotypes, which we classify based on the timing of ovulation. The model produces distinct361

phenotypes as a result of altered time-independent parameter regimes and in the absence of disease-specific362

factors, e.g. testosterone-mediated dysfunction in PCOS. Through a comprehensive model evaluation al-363

gorithm, we identify a subset of model parameters that provide insight into physiological mechanisms of364

dysfunction. Further, the reduced framework provides a testable hypothesis of model prediction: consis-365

tently similar inter-ovulatory intervals (IOIs) between individuals likely reflect similar reproductive hormone366

dynamics. These results also imply that there is potentially a many-to-one relationship between endocrine367

states and observable endocrine dynamics and dysfunction, e.g., between physiological parameters and hor-368

mone dynamics. This fuzzy causation is not uncommon in physiologic systems or in biomedicine broadly; but369
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to develop better clinical treatment, it is critical to minimize the number of potential causes of an observable370

problem while maximizing the understanding of the physiologic mechanics driving endocrine dynamics.371

Based on the most significant parameters identified by the present work, the model highlights key mech-372

anisms associated with pituitary hormone synthesis (vF , KmL), follicle growth (h1, f1), luteal dynamics373

(ŝ, δs, l), and ovarian E2 production (η). However, the redundancy in the biological processes associated374

with these parameters allows us to more succinctly characterize sources of dysfunction based on two major375

processes: (1) altered follicular growth and (2) feedback associated with E2 concentrations. Both of these376

biological processes are relevant to our discussion of PCOS and EM [37, 3], to the extent that we can adapt377

the current model to circumstances specific to these disorders, especially where downstream signals–beyond378

the typical reproductive hormone profiles–are concerned.379

Altered follicular growth. In vitro experiments suggest that granulosa cells may be more sensitive to380

FSH in PCOS, affecting follicle growth [4]. Follicular growth is stimulated by FSH, and the model’s max-381

imal FSH synthesis rate parameter modulates pituitary stores of FSH. In the irregular phenotype, there382

is a tendency toward increased mid-cycle FSH levels, which are considered elevated for physiological FSH383

concentrations (roughly 20 IU/L). In addition, increased vF—identified as a distinguishing parameter in our384

t-SNE analysis—accompanies increased peak FSH levels, regardless of phenotype. This suggests that the385

reduced model accounts for ovulatory disruption through changes in FSH, which is also consistent with the386

current literature, wherein elevated FSH is a determining factor in premature ovarian insufficiency (POI)387

[37, 38]. Although the maximal FSH levels produced by the model are relatively lower than those expected388

from a confirmed POI individual, these levels also occur in the face of residual ovulatory function, albeit389

irregular.390

E2-mediated feedback. Variations in E2 are implicated in multiple manifestations of ovulatory dysfunc-391

tion. For example, decreased E2 is characteristic of menopausal women. Prolonged exposure to elevated392

E2 has been associated with ovulatory disruption in previous mathematical models [18, 39], and elevated393

E2 formation has been found in in vitro PCOS models [4]. Further, E2 acting via the estrogen receptor-β394

is a primary trigger for inflammation leading to severe pain in EM [4, 1]. As such, increased physiological,395

but not necessarily pathological, E2 levels can contribute to dysfunction downstream of the ovulatory pro-396

cesses discussed herein. In the current work, parameters associated with luteal stage dynamics are altered397

in the irregular phenotype, such that appearance and disappearance rates of LH support are increased and398

decreased, respectively. This supports greater ovarian mass during the luteal phase, which contributes to399

significantly elevated E2 during this period. Simulated irregular cycles are also associated with higher E2400

production rates from functional luteal cells and increased pituitary sensitivity to E2, which can prematurely401

trigger the LH surge. Elevated subthreshold E2 prolongs suppression of FSH and LH release into the serum,402

thereby inhibiting follicle growth. In extreme cases, this results in two ovulation events close together,403

followed by an increased period of ovulatory suppression. This is exhibited in Figure 4, with a two-month404

lapse between ovulation events in the representative irregular phenotype.405

The reduced framework is amenable to modifications allowing us to explore testosterone-mediated ovu-406

latory dysfunction, as in [15]. Clinically, it remains unclear how disruptions propagate in the face of hy-407

perandrogenism. We find that when we alter pituitary-specific processes—particularly with respect to LH408

production—and follicle growth processes with linearly increasing levels of T, cyclic behavior ceases. Fur-409

ther, the steady state approached for sufficiently large insulin influence includes a clinically low level of LH.410

In contrast, LH is often found to be elevated in PCOS populations, but with high interindividual variability.411

These results suggest that we may not associate the T-mediated disruptions within the reduced frame-412

work with specific PCOS symptoms, but rather as part of a more generalized manifestation of ovulatory413

dysfunction due to abnormal responses in the HPO axis.414

Without testosterone as an explicit driver of dysfunction, all phenotypes in the new endocrine model415

exhibit successful ovulatory events, with some variations in frequency. Hormone concentrations arising416

from irregular cycles lie within their respective physiological ranges, and interestingly, the range of IOI for417

irregular phenotypes is consistent with the ranges reported for individuals near menarche or approaching418

menopause [4]. The model cannot, nor is it designed to, produce an increase in small ovarian cysts that419

can accompany PCOS. Yet, it does capture observable information—such as cycle length and the absence420

of androgen excess—that could indicate a less severe phenotype of PCOS, which would be characterized421
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mathematically by oligo-ovulation. It also appears that our ability to identify defects via reproductive422

hormones depends on the sampling frequency of data.423

5.1. Limitations424

A number of limitations are evident in process of mathematically modeling female endocrine physiology,425

especially in the realm of reproductive hormone regulation. Although the model reduction introduced here426

allows us to further refine our study of parameter-mediated dysfunction, there are some challenges that427

require further analyses to overcome. We discuss a few of these here.428

Global sensitivity analysis and the parameter space429

The model evaluation algorithm, especially in Steps 1 and 2, provides a clear procedure to bridge the430

gap between the original and the reduced model. In particular, we use synthetic data fit the model initially.431

In doing so, we are able to use ovarian stage data—which is unavailable clinically—to aid in model fitting.432

Most of the parameters obtained from this approach are similar, with respect to orders of magnitude, to433

their counterparts in the original model. The primary differences in parameter values are due to the removal434

of testosterone. Because we deem the reduced model as a surrogate for the original model, the similarities435

between parameter sets is neither unanticipated nor undesirable. Further, a preliminary attempt to fit the436

reduced model to the averaged clinical data in [27] over a 3-month period rather than synthetic data yields437

equally similar parameters (results not shown). That is, either approach results in a parameter regime that438

remains close to that of the original model. This suggests a local minimum in the parameter space, which439

may be explored with an in depth global sensitivity analysis (GSA).440

A natural course of action in determining salient model behavior is global sensitivity analysis (GSA) of441

parameters. This allows us to determine the relative sensitivity of model output to changes in the parameters.442

There are multiple challenges associated with the Graham-Selgrade model that make GSA a suboptimal443

next step in model analysis. First, the model contains considerably more parameters than the data available444

for estimation. Second, coupling between state variables is highly nonlinear. Third, stable limit cycles445

are not guaranteed for all parameter combinations. Collectively, standard GSA approaches provide limited446

insight. In particular, a partial rank correlation coefficient (PRCC)-based approach would be inappropriate,447

as simulations do not yield monotonic hormone responses that can be interpreted in any meaningful way448

(preliminary work, not shown). Alternatives such as the extended Fourier amplitude sensitivity test (eFAST)449

[40] may also prove more useful, as discussed in [32]. GSA can only be as good as the signal being measured450

in response to variations in the parameters. The challenge with models of ovulation is the periodicity of451

model solutions, coupled with a reasonably stiff system of differential equations. As a result, appropriate452

selection of model output remains a challenge, but an alternative approach in future work could focus on453

the rates of change in numerical solutions, as in [24].454

Complexities of data and analytical challenges455

Data for primary reproductive hormone measurements are useful for delineating broadly defined clinical456

abnormalities and quantifying generalized ovulatory states. Two prototypical data sets reported in the457

literature include pituitary and ovarian hormones collected daily over the course of a typical cycle [27, 29];458

we use the data in [27] in this paper. However, these data provide only a partial view to more subtle459

abnormalities. For example, PCOS can result in the complete absence of, or sporadic, ovulation. But,460

distinguishing between mechanisms governing these two observable clinical manifestations is difficult because461

clinically feasible diagnostic tools rely on measurements taken either at a single time point or over the course462

of a few hours [4]. A similar challenge lies in the diagnosis of EM–in which a collection of symptoms and463

isolated hormone measurements rarely point to a single cause [41]. In the worst cases, diagnosis itself is a464

months- or years-long process that can reduce quality of life of those affected [42, 3]. In essence, we would465

require data spanning multiple months in order to build a comprehensive hormone profile with any hope of466

revealing important reproductive features, especially in the absence of clearly identifiable ovulatory states.467

In the present context, it is important to note that a high-fidelity, data-driven, robust and expansive468

definition of normal ovulatory function does not currently exist. This makes defining ‘normal’ and ‘dys-469

functional’ a complex task, as dysfunction is usually defined as a deviation from normal. Because of this,470
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we adopt a narrow definition of normal and consequently limit our ability to discover different-from-normal471

phenotypes. This limitation is due to the lack of data; with more data, the methodology here could provide472

more phenotypic fidelity. Ideally, we seek an alternative to patterns in hormone dynamics to distinguish be-473

tween ovulatory phenotypes, with the hope that identifying underlying mechanisms of dysfunction lies in our474

ability to connect clinical symptoms with mechanisms that may not be apparent in hormone measurements475

alone.476

The available data have three primary limitations that influence our work. First, recall that normal477

is generally poorly defined, where ‘normal’ means no known pathophysiologic cycle features. Second, it is478

known that there is substantial variation in IOIs even for an individual. For example, it is not uncommon479

for the same person to have IOIs that vary from 20 to 40 days; these data obscure such intraindividual480

variability by taking an average. And third, because the data are an average, they induce three potential481

issues whose presence we may not be able to detect: (i) an average can fail to represent anyone if the mean482

is not representative of the population; (ii) an average smooths individualized daily variability, which can be483

substantial, is not present in data, and will not be explicitly estimated by the models; and (iii) variability of484

cycle length and dynamics coupled to cycle length for both ‘normal’ and ‘abnormal’ cycle lengths is entirely485

missing.486

5.2. Conclusions487

The over-arching goal is to use models for predictive decision support and to deepen our understanding488

of physiology. We wish to not only understand mechanisms of function but also the factors that differentiate489

those mechanisms. Endometriosis and polycystic ovary syndrome are two high-impact disorders governed490

by physiology, both with incompletely understood etiologies. We wish to shed insight on these disorders491

to better inform intervention and treatment decisions. The current model and evaluation process allows492

us to delineate dysfunction based on physiology, which can then be applied to these disorders of interest493

in future work. As constructed, the model is flexible enough to allow us to (1) highlight important—494

generalizable or disorder-specific—mechanisms of dysfunction; (2) determine the clinical span of the model495

compared to other models and alternative data sets; (3) identify how and when clinical intervention is496

feasible, necessary, or effective; and (4) reverse-engineer parameter profiles to differentiate physiological497

from pathological outcomes.498
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Echavarŕıa, A phenomenological-based model of the endometrial growth and shedding during the menstrual cycle, Journal555

of Theoretical Biology 532 (2022) 110922.556

[27] R. I. McLachlan, N. L. Cohen, K. D. Dahl, W. J. Bremner, M. R. Soules, Serum inhibin levels during the periovulatory557

interval in normal women: relationships with sex steroid and gonadotrophin levels, Clinical endocrinology 32 (1) (1990)558

39–48.559

[28] G. Hripcsak, D. Albers, High-fidelity phenotyping: richness and freedom from bias, J Am Med Inform Assoc.560

[29] C. K. Welt, D. J. McNicholl, A. E. Taylor, J. E. Hall, Female reproductive aging is marked by decreased secretion of561

dimeric inhibin, The Journal of Clinical Endocrinology & Metabolism 84 (1) (1999) 105–111.562

[30] C. C. Keefe, M. M. Goldman, K. Zhang, N. Clarke, R. E. Reitz, C. K. Welt, Simultaneous measurement of thirteen563

steroid hormones in women with polycystic ovary syndrome and control women using liquid chromatography–tandem564

mass spectrometry, PloS one 9 (4) (2014) e93805.565

[31] S. M. Blower, H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV566

model, as an example, International Statistical Review/Revue Internationale de Statistique (1994) 229–243.567

[32] S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner, A methodology for performing global uncertainty and sensitivity568

analysis in systems biology, Journal of theoretical biology 254 (1) (2008) 178–196.569

[33] A. Labhart, Clinical endocrinology: theory and practice, Springer Science & Business Media, 2012.570

[34] V. Rohatgi, A. Saleh, Wiley series in probability and statistics, Hoboken: John Wiley & Sons, Inc.571
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Appendix A. Graham-Selgrade Model Description and Equations587

The Graham-Selgrade model [15] uses a compartmental framework to examine changes in ovulation due588

to increased androgens. The model follows the approaches of [8, 18, 19] and comprises three major sub-589

systems, which describe changes in the pituitary-ovarian axis with mechanisms of steroidogenesis: pituitary590

regulation, follicle dynamics, and ovarian steroidogenesis. Collectively, the model consists of 12 state vari-591

ables, tracking serum concentrations of five important reproductive hormones, follicle stimulating hormone592

(FSH), luteinizing hormone (LH), estradiol (E2), progesterone (P4), and testosterone (T), along with pre-593

cursors/intermediaries of LH, FSH, and T. It also describes the dynamics of three follicular stages and of594

the follicle response to LH, termed LH sensitivity. The final model contains 411 unknown parameters which595

are estimated—to a locally minimizing set—by fitting the model to data from the literature [27, 30].596

The complete list of equations for the original Graham-Selgrade model may be found in Appendix A.597

I. Pituitary regulation. LH and FSH are the primary hormones produced by the pituitary gland. Syn-598

thesis and release of these hormones are regulated by ovarian steroid hormones, including E2, P4,599

and T. The equations governing changes in FSH and LH are split between releasable (denoted FSHρ600

and LHρ) and serum (denoted FSH and LH) pools of the hormones and incorporate stimulatory601

and inhibitory feedback by ovarian steroids. Using this compartmental approach, we can differentiate602

feedback processes governing pituitary hormone synthesis versus release.603

Here we provide a generalized description of pituitary dynamics. Let H(t) denote the serum concen-
tration of a pituitary hormone (either FSH or LH) and Hρ(t) its releasable amount at time t. For
H = FSH, LH, the differential equations governing releasable and serum quantities have the form

dHρ

dt
= ksynthesis(·)− krelease(E2, P4)Hρ, (A.1)

dH

dt
= krelease(E2, P4)Hρ/V − δHH. (A.2)

Each k(·) term denotes a function of state variables and describes the change in hormone levels due604

to the process indicated. Synthesis of FSH and LH is determined by different processes—with precise605

arguments to ksynthesis omitted to reflect this—whereas their release is mediated solely by E2 and P4.606

Release into the serum is scaled by the blood volume, V , and clearance of the hormones is assumed607

to be a first-order process, with rate constant δH . Regardless of the highly nonlinear form of ovarian608

feedback, the subsystem remains linear in Hρ and H. Collectively, the pituitary subsystem comprises609

four differential equations, with Equations (A.1) and (A.2) defined explicitly for both FSH and LH.610

II. Follicle dynamics. Follicle growth, maturation, and differentiation are assumed to occur in a series of
three sequential stages: (1) follicular, (2) ovulatory, and (3) luteal. We denote these using variables
Φ(t), Ω(t), and Λ(t), respectively. The follicular phase is characterized by recruitment and growth of
stimulated follicles. The ovulatory phase is characterized by ovum release from a designated follicle in
response to a mid-cycle surge in LH. Finally, the luteal phase is characterized by the formation and,
in the absence of fertilization, regression of the corpus luteum. The three follicular stages are modeled
as follows:

dΦ

dt
= krecruitment(T ) + kgrowth(FSH, T )Φ− kovulation(FSH,LH)Φ, (A.3)

1The model presented in [15] contains a typographical error in one of the equations, which omits one parameter (cΦ,T ) from
the total parameter count cited.
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dΩ

dt
= kovulation(FSH,LH)Φ− kluteal(S)Ω, (A.4)

dΛ

dt
= kluteal(S)Ω− kregression(S)Λ. (A.5)

Transitions to subsequent stages are unidirectional and depend on pituitary hormone levels. The
model also incorporates a role for T in follicle recruitment and growth. Graham and Selgrade further
define a new LH support variable, S(t), to model the tonic LH-dependence of growth and premature
regression of the corpus luteum. Specifically, S decays exponentially (with rate δS) to 0 in the absence
of LH and approaches a maximal level of 1 for sufficiently large LH:

dS

dt
= kactivation(LH)(1− S)− δSS. (A.6)

III. Ovarian steroidogenesis. Throughout the ovulatory cycle, follicles may produce E2, P4, and T. In-
tracellular steroid production is primarily FSH- and LH-dependent during a typical cycle and is
subject to functional maturation of individual follicles. This subsystem exploits the two-cell two-
gonadotropin theory of ovarian steroid production, which describes the differential functionality of
theca cells and granulosa cells within ovarian follicles [4]. The Graham-Selgrade model also introduces
a semi-mechanistic description of testosterone production for examining a role for insulin in promoting
hyperandrogenism. For Tγ(t) denoting the ‘intermediate’ concentration of T destined to be converted
into E2, we write

dTγ
dt

= kentry(LH,α)− karomatization(FSH)Tγ . (A.7)

In a growing follicle, theca cells compose the outermost layers of cells surrounding the ovum and611

granulosa cells the innermost layers. Importantly, theca cells possess androgen (i.e. T) production612

machinery and are stimulated by LH alone, whereas only neighboring granulosa cells can convert these613

androgens into estrogens, in an FSH-dependent process called aromatization. Therefore, we consider614

Tγ to reflect the average concentration of T that enters granulosa cells from theca cells.615

Finally, we model the major ovarian outputs of the model: serum concentrations of E2, T, and P4:

dE2

dt
= kbasal,E − δEE2 + karomatization(FSH)Tγ · fE(Φ,Ω,Λ), (A.8)

dT

dt
= kbasal,T − δTT +

[
kovarian

production
(LH,α) + kperipheral

production
(LH,α)

]
· fT (Φ,Ω,Λ), (A.9)

dP4

dt
= kbasal,P − δPP4 + ksecretion(LH) · fP (Φ,Ω,Λ). (A.10)

The first two terms in Equations (A.8)–(A.10) represent basal secretion by the adrenal gland and first-616

order clearance of individual steroids, defined by rate constants kbasal,I and δI , respectively, where617

I = E, T, P . The last term in each equation defines secretion of steroid hormones into the circulation,618

which is assumed to occur immediately upon production. The average production rate per follicle619

is multiplied by a function fI(Φ,Ω,Λ), I = E, T, P , that describes the relative contribution of each620

follicular stage to the production of a given steroid.621

Importantly, steroidogenesis is altered through feedback from FSH and LH, according to the two622

cell-two gonadotropin theory. Whereas LH is required almost exclusively for T (theca only) and623

P4 (theca and granulosa) production, FSH is entirely responsible for E2 (granulosa only). Because624

P4 is an androgen precursor in the theca, it is assumed that circulating P4 is produced primarily625

by granulosa cells for modeling purposes. To address insulin’s influence in ovulatory dysfunction,626

the Graham-Selgrade model contains a detailed formulation of T production, wherein ovarian and627

peripheral conversion of T from its precursors are treated as two distinct processes. In Equations628
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(A.7) and (A.9), the parameter α represents the relative degree to which insulin may increase T629

production.630

Releasable FSH:
dFSHρ
dt

=
vF

1 + cF,I
SΛ

KiF,I+SΛ

− kF
1 + cF,PP4

1 + cF,EE2
2

FSHρ (A.11)

Serum FSH:
dFSH

dt
=

1

V
· kF

1 + cF,PP4

1 + cF,EE2
2

FSHρ − δFFSH (A.12)

Releasable LH:
dLHρ
dt

=

[
v0LT

KL,T + T
+

v1LE
n
2

Kn
mL + En2

]
· 1

1 + P4

KiL,P (1+cL,T T)

− kL
1 + cL,PP4

1 + cL,EE2
LHρ (A.13)

Serum LH:
dLH

dt
=

1

V
· kL

1 + cL,PP4

1 + cL,EE2
LHρ − δLLH (A.14)

Follicular phase:
dΦ

dt
= f0 ·

T

T0
+

 f1FSH
2(

h1
1+cΦ,T T/T0

)2

+ FSH2

− f2LH
2(

h2
1+cΦ,FFSH

)2

+ LH2

 · Φ (A.15)

Ovulatory phase:
dΩ

dt
=

f2LH
2(

h2
1+cΦ,FFSH

)2

+ LH2

· Φ− wSΩ (A.16)

Luteal phase:
dΛ

dt
= wSΩ− l(1− S)Λ (A.17)

LH Support:
dS

dt
=

ŝLHm

hms + LHm
· (1− S)− δsS (A.18)

Serum T:
dT

dt
= t0 − δTT + [t1G1 (F1 + cT,F2F2) + t2G1G2F1] · (A.19)

·
[
Φ + τ1Ω + τ2SΛ + τ3

(
1− Φ + Ω + Λ

Ψ

)]
Intermediate T:

dTγ
dt

= tg1G1G2F1 −
tg2FSH

h3 + FSH
Tγ (A.20)

Serum E2:
dE2

dt
= e0 − δEE2 +

tg2FSH

h3 + FSH
Tγ · [Φ + ηΛS] (A.21)

Serum P4:
dP4

dt
= −δPP4 +

pLH

LH + hp
· ΛS (A.22)

631

Functional Forms.632

• Insulin-stimulated conditions (α > 0)
G1 = G1(α)

G2 = G2(α)

D(α) = LH2 [G2 +A] + LH [G2B +A · (B + C)] +A ·B · C
F1(LH,α) = LH2/D(α)

F2(LH,α) = LH/D(α)

• Basal conditions (α = 0)
G1 = G2 = 1

κ1 = 1 +A

κ2 = B +A(B + C)

κ3 = ABC

D = κ1LH
2 + κ2LH + κ3

F1(LH) = LH2/D
F2(LH) = LH/D

633

Appendix B. Derivation of Testosterone-Dependent Terms634

To incorporate testosterone implicitly in the reduced model, we need to modify parameters v0L, KiL,P ,635

and h1. We will use p̃ to denote parameters used in the original Graham-Selgrade model, which we will then636

redefine to incorporate into the reduced framework.637
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Derivation of ξ1. In the original model, basal LH synthesis occurs at rate ṽ0LT/(T + β1), where β1 =
KL,T = 420. We assume for the reduced model that

v0Lξ1 = ṽ0L
Tα

Tα + β1
,

where ṽ0L is redefined so that ξ1 = 1 when Tα = T0. That is, we define ṽ0L = v0L(T0 + β1)/T0. It follows
that

v0Lξ1 = v0L
T0 + β1

T0

Tα
Tα + β1

= v0L
(β1 + T0) · Tα
(β1 + Tα) · T0

.

Derivation of ξ2. In the original model, P4 inhibition of LH synthesis is scaled by the factor K̃iL,P (1+β2T ),
where β2 = cL,T = 0.00959. Similar to the derivation of ξ1, we assume

KiL,P ξ2 = K̃iL,P (1 + β2Tα),

so that

K̃iL,P =
KiL,P

1 + β2T0
and KiL,P ξ2 = KiL,P

1 + β2Tα
1 + β2T0

.

Derivation of ξ3. In the original model, follicle sensitivity to FSH has the form h1/[1 + β3T/T0], where
β3 = cΦ,T = 0.19878. We assume

h1ξ3 =
h̃1

1 + β3Tα/T0
,

so that
h̃1 = h1(1 + β3),

which implies

h1ξ3 = h1
1 + β3

1 + β3Tα/T0
.
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Appendix C. Empirical Distributions by Phenotype638
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Figure Appendix C.1. Empirical cumulative distribution functions for reduced model parameters, separated by regular (black)
and irregular (gray) phenotypes. Parameters are listed, beginning from the top row, in order of decreasing significance.
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