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Quadrilateral Meshes with Bounded Minimum Angle
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1 St. Joseph’s University, Philadelphia, PA. fatalay@sju.edu
2 Rutgers University, Camden, NJ. rsuneeta@camden.rutgers.edu
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Summary. This paper presents an algorithm that utilizes a quadtree to construct a strictly
convex quadrilateral mesh for a simple polygonal region in which no newly created angle is
smaller than 18.43◦(= arctan( 1

3
)). This is the first known result, to the best of our knowl-

edge, on quadrilateral mesh generation with a provable guarantee on the minimum angle.

1 Introduction

The generation of quadrilateral meshes with provable guarantees on mesh qual-
ity poses several interesting open questions. While theoretical properties of trian-
gle meshes are well understood [4, 8, 9, 7, 11, 12, 15, 14], much less is known
about algorithms for provably good quadrilateral meshes. Analysts, however, prefer
quadrilateral and hexahedral meshes for better solution quality in numerous applica-
tions [1, 2, 6, 10, 16]. This is because they have better convergence properties, and
hence lower approximation errors, in finite element methods for solutions to systems
of partial differential equations. Quadrilateral meshes also offer lower mesh com-
plexity, and better directionality control for anisotropic meshing. For stable analyti-
cal results, however, it is critical to construct meshes with certain quality guarantees.
Specifically, algorithms that construct well-shaped elements by providing bounds
on minimum and maximum angles have much practical value. Techniques such as
paving [5] work well in practice, but do not give provable angle guarantees. Circle-
packing techniques have been used to construct quadrangulations with no angles
larger than 120◦ for polygon interiors [3], but with no bound on smallest angle. An
algorithm to construct linear-sized strictly convex quadrilateral meshes for arbitrary
planar straight line graphs is given in [13].

Our contribution. In this paper, we present a new algorithm to generate quadri-
lateral meshes for simple polygonal regions, possibly with holes, with a provable
guarantee on the minimum angle. We use quadtrees to show that no newly created
angle in the quadrilateral mesh is smaller than 18.43◦. The quadrilaterals are strictly

∗Research partially supported by NSF Grant 0204293.
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convex, i.e., the maximum angle is strictly less than 180◦. This is the first known
quadrilateral mesh generation algorithm with a provable bound on the minimum an-
gle. (Quadtrees have been used to give triangular meshes without small angles for
point sets and polygons in 2D [4], and octrees have been utilized to construct tetra-
hedral meshes with bounded aspect-ratio elements for polyhedra [12].)

In Section 2, we use quadtrees to construct a quadrilateral mesh for a point set
in which the minimum angle is bounded below by 45◦ − arctan(1

3 ) = 26.57◦. We
then describe in Section 3 an algorithm that adapts the guaranteed-quality mesh of
polygon vertices to polygon edges to construct a quadrilateral mesh for the interior
of a simple polygon (possibly with holes) in which new angles (angles other than
those determined by the input) are bounded below by arctan(1

3 ) = 18.43◦.
Throughout this paper, we use the shorter terms “quadrangulate” and “quadran-

gulation” instead of “quadrilateralize” and “quadrilateralization”. We also sometimes
use the word “quad” for quadrilateral. Steiner points are additional points, other than
those provided by the input, inserted during the mesh generation process.

2 Point Set Mesh with Bounded Minimum Angle

We first describe an algorithm to construct a quadrilateral mesh with a minimum
angle bound of 26.57◦ for a given point set X .

2.1 Construction of the quadtree

Given a point set X , we construct a quadtree for X with the following separation
and balancing conditions. These conditions are similar to those in [4], but adapted to
particular requirements for quadrilateral (rather than triangle) meshing.

A. Split a cell C (with side length l) containing at least one point if it is crowded. A
cell is crowded if one or more of the following conditions hold:
1. it contains more than one point from X .
2. one of the extended neighbors is split (an extended neighbor is a cell of same

size sharing either a side or corner of C).
3. it contains a point with a nearest neighbor less than 2

√
2l units away.

B. When a crowded cell C is split, split those extended neighbors of C that share an
edge or corner with a child of C containing an original point in X .

C. The final quadtree is balanced so that the edge lengths of two adjacent cells differ
at most by a factor of 2 (neighbors of C with side length l have length l/2 or 2l).

Observe that in a quadtree with the above separation and bal-
ancing conditions, a cell containing a point from X is guaranteed
to be surrounded by 8 empty cells of the same size. We refine the
quadtree decomposition further to do the following: Split each of
these eight empty quadtree cells into 2×2 cells and rebalance the
quadtree. This converts the original 3× 3 grid around every point p ∈ X into a 6× 6
grid. Furthermore, now p lies at the center of a 5 × 5 equal-sized grid (outlined in
bold in figure), and is surrounded by twenty-four empty quadtree cells of the same
size. There are two reasons for this refinement step:
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1. The final step of our algorithm to construct a quadrilateral mesh for X consists
of warping a Steiner point in the mesh to an original point p ∈ X (Section 2.4).
This step is simplified considerably due to the refinement.

2. The algorithm to construct a quadrilateral mesh for non-acute polygons (Sec-
tion 3.1) uses the 5× 5 grid to mesh the region around polygon vertices.

We construct a quadrilateral mesh with bounded minimum angle for X by plac-
ing Steiner points in the interior of the quadtree cells. The placement of the Steiner
points is determined by identifying and applying templates to the quadtree decom-
position. A leaf of the quadtree is an unsplit cell and we refer to these as 1-cells in
our discussion. A template is applied to each internal node of the quadtree.

2.2 The templates

A template is labeled by the number of children of a quadtree node that are 1-cells.
Hence we have 6 template configurations, for nodes with zero (T (0)), one (T (1)),
two, three (T (3)) or four (T (4)) 1-cell children. Nodes with two 1-cell children have
two layouts, T (2a) and T (2b).

Templates at the deepest level of subdivision. The templates at the deepest level
of subdivision are shown in Fig. 1. Note that, all other possible configurations are
symmetric to the depicted ones. In order to quadrangulate a template, first, a Steiner
point is placed at the center of each quadtree cell. These points are denoted with full
circles. We then place extra Steiner points, which are denoted by empty circles in the
figure, for one of two reasons: (i) In T (1), the top-left extra point and in T (2b) the
middle extra point are added to be able to quadrangulate properly within the template.
(ii) The remaining extra points are added in the 1-cells, halfway on the diagonal
between the center Steiner point and the outer cell corner. The reason for adding
the second type of Steiner points is that after an internal node is quadrangulated, it
will provide a polygonal chain with an even number of points (we will call them
even-connector chains) to which its neighbors can connect.
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Fig. 1: Templates at the deepest level of the subdivision.

General Templates. Our recursive algorithm applies templates to all internal nodes
starting with the deepest ones. We generalize the templates to apply to an arbitrar-
ily deep internal node as shown in Fig. 2. In general, when a template is applied to
an internal node, its children which are not 1-cells have already had templates ap-
plied to them. Each such child has been quadrangulated internally and provides even-
connector chains on all four sides. The corresponding endpoints of two neighboring
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chains are then connected to construct a polygon with guaranteed even number of
vertices which can therefore be quadrangulated. We name this process “stitching”,
illustrated by the cross-hatched regions in Fig. 2. The processed internal nodes are
depicted as blackboxes with even-connector chains at each side. Note that the place-
ment of a chain’s endpoint does not necessarily correspond to the exact location of
the endpoint within the actual cell, due to the existence of type (ii) Steiner points.
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Fig. 2: General templates at arbitrary level of subdivision
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Labeling the chains. Children quadrants of a cell are labeled
C0, C1, C2, and C3 in counterclockwise order starting from
the northeast quadrant. The four chains surrounding a processed
quadrant Ci are labeled li, ri, ti and bi (see figure).

2.3 The algorithm

The recursive procedure applyTemplate that applies a template to an internal node is
presented in the code block given in Fig. 3. It is initially called with the root node of
the quadtree. Note that the algorithm is presented only with respect to the depicted
configurations of the templates. Symmetric configurations are handled similarly.

Stitching Chains. Procedure stitchChains connects the four endpoints of two neigh-
boring even-connector chains and quadrangulates the resulting polygon. Note that
such a polygon is guaranteed to have an even number of vertices on the boundary.
The algorithm is illustrated in Fig 4. Procedure stitchChains is only called if the cur-
rent template is of type T (0), T (1) or T (2a). The action of this procedure is also
illustrated by the crosshatched areas in Fig. 2(a), (b) and (c).

The quadrangulation process divides the chains into half chains, each of which
spans the corresponding edge of a child quadrant. These half chains are then recur-
sively stitched. Although the even-connector chains can be arbitrarily long, at the
base case there are only four types of chains: chains with 2, 4, 6 or 8 connectors.
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applyTemplate(QuadtreeNode N)
templateType← whichTemplate(N)
for Ci ∈ children(N)

if Ci is not a 1-cell
(li, ri, ti, bi)← applyTemplate(Ci)

else
construct (li, ri, ti, bi) for Ci.

switch (templateType)
case T (0):

stitchChains(l0, r1), stitchChains(b1, t2)
stitchChains(r2, l3), stitchChains(t3, b0)

case T (1):
stitchChains(l0, r1), stitchChains(b1, t2)
Place Steiner points and quadrangulate per Fig. 2(b).

case T (2a):
stitchChains(r2, l3)
Place Steiner points and quadrangulate per Fig. 2(c).

case T (2b):
Place Steiner points and quadrangulate per Fig. 2(d).

case T (3):
Place Steiner points and quadrangulate per Fig. 2(e).

case T (4):
Place Steiner points and quadrangulate per Fig. 2(f).

return (l1 + l2, r0 + r3, t1 + t0, b2 + b3)

Fig. 3: applyTemplate quadrangulates node N .

stitchChains(Chain ch1, Chain ch2)
switch (length(ch1), length(ch2))

case (2− 2), (2− 4), (4− 2):
Apply appropriate base case from Fig. 5.
case (2− 6), (2− 8)):
Apply appropriate base case from Fig. 6.
default:

(f1, s1)← getHalfChains(ch1)
(f2, s2)← getHalfChains(ch2)
stitchChains(f1, f2)
stitchChains(s1, s2)

Fig. 4: stitchChains stitches two even-
connector chains, one from each
of the two neighbor cells sharing
an edge.

Figs. 5-6 illustrate how the base-case chains are stitched (the stitching edges are dot-
ted). Symmetric cases are not listed in the illustrations.
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Fig. 5: Stitching 2-2 and 2-4 or 4-2 connector chains.
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Fig. 6: Stitching 2-6 and 2-8 connector chains.

2.4 Angle Bounds

Minimum Angle. We analyze the minimum angle bound in each of applyTemplate,
the base case of stitchChains, and the recursive step of stitchChains.

General templates: By construction, the minimum angle appears in templates T (1)

and T (2b) and equals 45◦ − arctan(1
3 ) = 26.57◦ (illustrated in Fig. 7).

Stitching base case: The base cases of stitching generate the same minimum angle
of 45◦ − arctan(1

3 ) = 26.57◦ which can be found in in Fig. 5-(5).
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3) = 26.57◦

arctan(1
3) = 18.43◦

arctan(1
4) = 14.036◦

28.072◦

Fig. 7: Minimum angle bounds

Stitching merging step: After the correspond-
ing half-chains are stitched in the recursive step
of stitchChains, a middle quad is formed by
the four end points of the stitched half-chains.
This middle quad gives a minimum angle of
2 × arctan(1

4 ) = 28.07◦. See Fig. 7. Recall
that these four points are by construction on the
two diagonals that cross at the center of four
quadtree quadrants. Furthermore, they are either
at the center of the quadtree quadrant, or halfway down the diagonal from the center.
The worst-case configuration is illustrated in Fig. 7. This results from connecting any
Fig. 5-(5) connector chain with an inverted version of itself.

Degenerate quads. In the stitching cases illustrated by Fig. 5-(7), Fig. 6-(1), Fig. 6-
(2) as well as template T (2a) (Fig. 1), there are degenerate quads with two edges on
a straight line. In all cases, the 180◦ vertex is connected to a third vertex on the
other side of the degenerate quad, by construction. This allows perturbation of the
degenerate vertex along the third edge, which reduces the 180◦ angle and increases
the other two, thus eliminating the degenerate quad.

Maximum Angle. The quadrilaterals generated by our algorithms (including the
one in Section 3) are strictly convex; i.e., the maximum angle is bounded away from
180◦. The perturbation used to handle degenerate quads (above) implies the maxi-
mum angle is less than (180 − ε) for some ε > 0. We conjecture the value of ε can
be bounded from below, but do not explicitly address that question in this paper.
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Warp

p

≥ 53.14◦

Warping to Original Points. After the
construction of the quadrilateral mesh using
quadtree cell centers and extra points as Steiner
points, we warp certain mesh vertices to the
original points from the input point set X . Re-
call that the quadtree splitting rules of Section 2.1 ensure that the quadtree cell
containing an original point p ∈ X is surrounded by twenty-four empty quadtree
cells of the same size. Moreover, the eight empty cells immediately surrounding
p do not contain any extra points. Therefore, the warping step simply consists of
translating the Steiner point in p’s cell to p, along with all the incident edges. The
worst-case minimum angle arising from these nine cells after the warping step is
2× 26.57 = 53.14◦. In summary, we have shown the following result:

Theorem 1. Given a quadtree decomposition with N quadtree cells satisfying the
point set separation conditions for a point set X , applyTemplate constructs a mesh
for X with at most 3N quadrilaterals in which every angle is at least 26.57 degrees.

Observe that the value of N in the above theorem depends on the geometry of
the point set as well as the size of the point set. Due to the point set separation con-
ditions, which are derived from [4] and as was shown there, the size of the quadtree
decomposition increases as the distance between the closest pair of points decreases.
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3 Polygon Mesh with Bounded Minimum Angle

Given a simple polygon P , possibly with holes, with vertex set X , we give an al-
gorithm to construct a quadrilateral mesh for P and its interior in which no new
angle is larger than 18.43◦. The basic idea behind the algorithm is to first construct a
guaranteed-quality mesh for X as described in the previous section, and then adapt
this mesh to incorporate the edges of P . We use δP to refer to the polygon boundary,
and P to refer to the union of the boundary as well as interior.

We describe in Section 3.1 a provably good algorithm to construct a quadrilateral
mesh with bounded minimum angle for a simple polygon P in which all interior
angles are non-acute (i.e., greater than or equal to 90◦). In Section 3.2, we describe
how to handle acute angles.

3.1 Non-acute Simple Polygons

Let P be a non-acute polygon with vertex set X and edges oriented counter-
clockwise about the boundary. Let QT be a quadtree decomposition of X satisfying
the point set separation conditions of Section 2.1. Let Q be a quadrilateral mesh for
X with minimum angle 26.57◦, as guaranteed by Theorem 1. In this section, we de-
scribe a method to adapt Q to δP to create a constrained quadrilateral mesh for P .
In a constrained quadrilateral mesh, we allow Steiner points to be inserted on δP as
well, so that the union of the finite elements of the mesh is equal to P .

We start by describing an algorithm to adapt Q to include a single edge of P .
In order to use this algorithm on all edges of P , QT must satisfy certain polygon
edge separation conditions, which are discussed towards the end of the section. We
conclude the section by describing how to construct the final constrained mesh for P
by adapting to the regions around the vertices.

Inserting an edge into Q

Consider an edge ~e = (a, b) of P oriented from a to b, where a, b ∈ X . Assume that
~e makes an angle between −45◦ and 45◦ with the positive x axis (if not, orient the
x axis so that this is the case). We say that a point lies “above” ~e if it lies in the open
halfspace to the left of the oriented line through ~e . We use ~e to define two chains of
edges from Q and QT , as described below:

(i) ~e intersects quadrilaterals of Q. Edges of these quadrilaterals are used to define
a chain of edges called the quadrangulation chain α associated with ~e .

(ii) ~e intersects quadtree cells of QT . The centers of these cells are used to define a
chain of edges called the quadtree chain β associated with ~e .

Quadrangulation Chain. Let q1, q2, . . . , qk be the quadrilaterals of Q intersected
by ~e in left to right order as traversed from a to b (since the quadrilaterals are con-
vex, each qi is unique). Let Ei be the edges of qi that lie entirely above ~e . Ei may
have 0, 1, or 2 edges. If Ei has two edges, they are listed in clockwise order about qi.
Then the quadrangulation chain α is defined as α = E1 · E2 . . . · Ek, where · rep-
resents edge concatenation. See Fig. 8 for an example of a quadrangulation chain, in
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a
q1

q2

q3

q4
q5

q6

α q8

q7

q9 q11

q10

b

Fig. 8: Quadrangulation chain α.

which E1 has 1 edge, E2 has 2 edges, and E3

has 0 edges. Note that the same edge may repeat
twice in α (the repetitions always appear con-
secutively) and such an edge is incident to qi that
has |Ei| = 0. For example, the quadrangulation
chain in Fig. 8 has three repeating edges, which
are incident to the quadrilaterals q3, q5 and q10.
If we drop the repetitions from α, then α is a weakly simple polygonal chain.

A vertex belongs to an edge if it is one of the endpoints of the edge. We say that
v ∈ α if v is a vertex of Q and belongs to one of the edges of α. If we quadrangulate
the region bounded by α and ~e by adding Steiner points either in the interior of the
region or on ~e itself, the resulting quadrangulation is compatible withQ (since edges
of α are edges in Q). However, in order to quadrangulate the region with the desired
angle bounds, we need to know more about the geometry of α. The quadtree chain,
described below, allows us to establish the required geometric properties for α.

Quadtree Chain. In the remainder of the paper, we use the same symbol to refer to
a quadtree cell as well as its center whenever the meaning is clear from the context.
Given a cell c, N(c),W (c), and E(c) denote, respectively, the set of north, west, and
east neighbor cells of c (note that each set has at most two elements in it because of
the balancing conditions for QT ).

Let C be the set of cell centers of quadtree cells in QT that are intersected by
~e . C does not include the starting or ending cells (i.e., the cells containing a and b,
respectively). Let θ be the angle (in degrees) that ~e makes with the positive x axis.
The quadtree chain β is defined as follows:

1. If c ∈ C and c lies above ~e , then c belongs to β.
2. If c ∈ C and c lies below ~e , then N(c) ⊂ β. Note that the centers of cells in

N(c) must lie above ~e under our assumption that −45 ≤ θ ≤ 45.
3. If c ∈ C, c lies below ~e , and 0 ≤ θ ≤ 45 (resp., −45 ≤ θ < 0), then a cell

center in W (c) (resp., E(c)) belongs to β if it lies above ~e .

Let {c1, c2, . . . , cm} be the cell centers in β in lexicographically sorted (by x,
then y) order. Recall that Q is constructed from the quadtree decomposition QT of
X . The overall approach to incorporating edge ~e into Q is summarized below:

(A) We first show that quadtree chain β is a subset of quadrangulation chain α.
(B) This fact allows us, in turn, to exploit the structure provided by QT and our

algorithm from Section 2 to identify a small number of possible ways in which
two consecutive points ci and ci+1 of β can be connected along the chain α. We
use αi, 1 ≤ i ≤ m− 1, to refer to the subchain of α starting at ci and ending at
ci+1. αi may lie under −−−→cici+1. In this case, we choose instead a chain of edges in
Q lying above −−−→cici+1 in order to simplify the final quadrangulation step in part
(C) below.

(C) Finally, we quadrangulate the region bounded by ~e and α by breaking it into
smaller sub-regions defined by perpendicular projections from ci and ci+1 onto
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~e . The case analysis form part (B) is then used to prove a minimum angle guar-
antee of 18.43◦ for the quadrangulation of each subregion.

Lemmas 1-3 are required for steps (A)-(C) and stated here without proof.

Lemma 1. For 1 ≤ i ≤ m, ci ∈ α. That is, every cell center in the quadtree chain
belongs to the quadrangulation chain.

Lemma 2. For 1 ≤ i ≤ m− 1, ci and ci+1 are edge or corner neighbors in QT .

Lemma 3. Let vi be the vertical projection of ci on ~e . For 1 ≤ i ≤ m, the segment
civi does not intersect α.

Lemmas 1 and 3 imply that the edge sequence (vi, ci)·αi ·(ci+1, vi+1)·(vi+1, vi)
defines a simple polygon for all 1 ≤ i ≤ m − 1. Call this polygon Ai. We now use
Lemma 2 to prove that αi is composed of at most four edges. This is done via a case
analysis on the ways in which ci and ci+1 are connected in Q.

Lemma 4. The number of edges in αi is at most four.

Proof: We know from Lemma 2 that ci and ci+1 are either edge or corner neighbors
in QT . We consider each case separately. Our case analysis only depicts αi with two
or more edges (i.e., when ci and ci+1 are not directly connected). Let si, 1 ≤ i ≤ m
refer to the size of ci’s cell (by “size”, we mean “side length”).

Case 1: ci and ci+1 are edge neighbors. In this case, the connectivity between ci

and ci+1 inQmay come from either the application of a template (applyTemplate) at
some level of recursion, or the application of the stitching step (stitchChains) at some
level of recursion. We consider different possibilities based on the ratio si : si+1,
which may be 1 : 1, 1 : 2, or 2 : 1. Configurations for these cases are shown in
Figs. 9, 10, and 11, respectively. Each of these figures indicates the minimum internal
angle in Ai along αi. Note that each of them is well above 18.43◦. We depict only
distinct αi that differ in either the number of edges, or the angles at the vertices (that
is, we do not show other, symmetric configurations that lead to the same αi).

(i)

ci ci+1

75.96◦

ci ci+1

(ii)

ci

(iii)

ci+1

Fig. 9: Configurations for αi when si : si+1 is
1 : 1. (i) and (ii) come from stitching base
cases, and (iii) from stitching merge steps.

ci

(i)

ci+1 ci+1

ci

(ii) (iii)

ci

ci+1

45◦

Fig. 10: Configs. for αi when si : si+1 is
1 : 2. (i) and (ii) from applyTem-
plate and stitching base cases.
(iii) from stitching merge steps.

Case 2: ci and ci+1 are corner neighbors. In this case, the connectivity between ci

and ci+1 in Q may come from the application of applyTemplate, the application of
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(iv)(iii)

(ii)

ci

ci+1ci+1

ci

(i)

63.43◦

Fig. 11: Configurations for αi when si : si+1 is 2 : 1. (i) and (ii) come from applyTemplate
and stitching base cases. (iii) and (iv) occur only in the stitching base cases.

stitchChains, or through a center quad. The center quad is the quadrilateral formed at
the center, i.e. the meeting point of the four quadrants, after a general template (ref.
Fig. 3) is applied during the recursive step. Since ci and ci+1 are corner neighbors,
the ratio si : si+1 can be 1 : 1, 1 : 2, 2 : 1, 1 : 4, or 4 : 1. We consider the case of
center quads first, and then consider templates and stitchings.

Case 2.1: αi contains center quad edges. Let s be the size of the cell adjacent to
ci as well as ci+1 and lying above −−−→cici+1. Possible configurations for αi when
si : s : si+1 ≡ 1 : 1 : 1 are shown in Fig. 12. In 12(i), 12(iv), and 12(vi), the
point in the cell adjacent to ci and ci+1 may be either a cell center or an extra
point of a larger cell. When si : s : si+1 ≡ 1 : 2 : 1 or si : s : si+1 ≡ 1 : 1

2 : 1,
possible configurations of αi are shown in Figs. 13 and 14, respectively.

(i)

ci

ci+1

ci

(ii)

ci+1

ci

(iv)

ci

(iii)

ci+1ci+1

(vi)

ci

ci+1ci+1

(v)

ci 53.14◦

Fig. 12: si : s : si+1 ≡ 1 : 1 : 1

ci

ci+1 ci+1

ci

ci+1

ci
28.08◦

Fig. 13: si : s : si+1 ≡ 1 : 2 : 1

ci

ci+1 ci+1

ci ci

ci+1

126.86◦

Fig. 14: si : s : si+1 ≡ 1 : 1
2

: 1

When si : s : si+1 ≡ 1 : 1 : 2, possible configurations of αi are shown in
Fig. 15. For the case when si : s : si+1 ≡ 2 : 1 : 1, the αi are obtained by
reflections about the line y = x of those in Case 2.1.4. Hence the minimum
internal angle shown in Fig. 15 holds here as well. Similarly, Fig. 16 depicts αi

when si : s : si+1 ≡ 1 : 2 : 2 and the chains in this figure are reflections about
the line y = x of possible αi when si : s : si+1 ≡ 2 : 2 : 1
Finally, Fig. 17 shows possible configurations of αi when si : s : si+1 ≡ 1 :
2 : 4. For the case when si : s : si+1 ≡ 4 : 2 : 1, the αi are obtained by 180◦

rotations of those in Fig. 17.
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ci

ci+1 ci+1

ci ci

ci+1 ci+1

ci

ci+1

ci ci

ci+1

ci

ci+1

ci

ci+1

71.57◦

Fig. 15: si : s : si+1 ≡ 1 : 1 : 2

ci

ci+1 ci+1

ci

ci+1

ci

ci+1

ci
40.61◦

Fig. 16: si : s : si+1 ≡ 1 : 2 : 2

ci

ci+1 ci+1

ci

ci+1

ci

ci+1

ci

ci+1

ci ci

ci+1

ci

ci+1

ci

ci+1

59.04◦

Fig. 17: si : s : si+1 ≡ 1 : 2 : 4

Case 2.2: αi constructed by application of applyTemplate or stitchChains. All new
configurations of αi that occur by a template application, or a stitching step at
some level of recursion are listed. By “new”, we mean configurations that do not
appear in Figs. 12-17. Note that when ci and ci+1 are connected via templates or
stitchings, si : si+1 is 1 : 1 (see Fig. 18), 1 : 2, (see Fig. 19) or 2 : 1 (reflections
about the line of y = x of the αi in Fig. 19), but not 1 : 4 or 4 : 1.

(i) (ii) (iii) (iv) (vi)

ci+1 ci+1 ci+1 ci+1 ci+1

ci+1

cicicici ci ci

(v)

63.43◦

Fig. 18: si : si+1 ≡ 1 : 1

(i)

ci+1

ci

(ii)

ci+1

ci

(iii)

ci+1

ci

(v)

ci+1

ci

(vi)

ci+1

ci

(vii)

ci+1

ci

(iv)

ci+1

ci 63.43◦

Fig. 19: si : si+1 ≡ 1 : 2

While Figs. 12-19 all depict ci and ci+1 in the southwest and northeast quadrants
respectively, note that each of the αi in these figures has a 90◦ rotational symmetry
corresponding to ci and ci+1 in the northwest and southeast quadrants, which does
not change the minimum internal angles indicated in those figures.

It follows from the above case analysis that αi has at most four edges.

We now describe how to quadrangulate each polygonal region Ai = (vi, ci) ·αi ·
(ci+1, vi+1) · (vi+1, vi) independently for 1 ≤ i ≤ m. Before doing this, we first
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show that rather than using the vertical projections vi and vi+1, we may instead use
perpendicular projections of ci and ci+1 onto edge ~e (Lemma 6). This allows us to
prove angle bounds for quadrangulating Ai that are independent of the angle that ~e
makes with the horizontal (recall that this is between −45◦ and 45◦).

Lemma 5. Let δi be the signed angle (in degrees) between −−−→cici+1 and the positive
x-axis. Then abs(δi) ∈ {0, 18.43, 45, 71.57, 90}.

Proof: Since ci and ci+1 are both cell centers in QT , and we know from Lemma 2
that they are edge or corner neighbors, it follows that there are a constant number of
possibilities for δi: If ci and ci+1 are edge neighbors with si = si+1, then δi is either
0 or 90◦. If ci and ci+1 are edge neighbors with si 6= si+1, then tan(δi) = 1

3 , i.e.,
abs(δi) = 18.43◦, or tan(δi) = 3, i.e., abs(δi) = 71.57◦. If ci and ci+1 are corner
neighbors, then abs(δi) = 45◦.

Let θ be the signed angle made by ~e with the positive x-axis. The value of θ
determines the range of possibilities for δi. This is because of our definition of the
quadtree chain, which specifies that either cell ci (resp. ci+1) has center above ~e and
is intersected by ~e , or it is the north/west neighbor of a cell intersected by ~e whose
center lies below ~e . Table 1 summarizes the possible values of δi for given ranges of
θ. This relationship also allows us to prove Lemma 6, stated here without proof.

Range of θ Values of δi

18.43◦ ≤ θ < 45◦ −18.43◦ ≤ δi ≤ 90◦

0 < θ < 18.43◦ −45◦ ≤ δi < 90◦

−18.43◦ < θ ≤ 0 −71.57◦ ≤ δi ≤ 45◦

−45◦ < θ ≤ −18.43◦ −71.57◦ ≤ δi ≤ 18.43◦

Table 1: Range of values for θ and δi.

Lemma 6. Let pi be the perpendicular projection of ci on ~e , and vi the vertical
projection of ci on ~e . Assume ~e makes an angle between −45◦ and 45◦ with the
positive x axis. Then for all 1 ≤ i < m, ci+1 lies outside the triangle ∆(picivi).

We know from Lemma 3 that for all 1 ≤ i ≤ m, αi does not intersect civi

or ci+1vi+1. Furthermore, we know from the proof of Lemma 4 that αi lies above
−−−→cici+1 (that is, it does not intersect the region bounded by civivi+1ci+1). Therefore,
Lemma 6 implies that αi does not intersect cipi or ci+1pi+1 either. We redefine
polygon Ai to be (pi, ci) · αi · (ci+1, pi+1) · (pi+1, pi) (that is, it is defined by the
perpendicular projections rather than the vertical ones). Lemmas 7 and 8 establish
bounds on some angles in Ai when αi has one and two edges, respectively.

Lemma 7. Let φ1 = ∠picici+1 and κ1 = ∠cici+1pi+1. Then min{φ1, κ1} ≥
18.43◦.

Proof: Refer to Fig. 20(a). Since φ1 = 90−θ+δi and κ1 = 90+θ−δi (recall θ and
δi are signed angles), and the fact −71.57◦ ≤ (θ − δi) ≤ 71.57◦ (refer to Table 1),
it follows that φ1 ≥ 18.43◦ and κ1 ≥ 18.43◦.
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(c) (d) (e)

ci+1

ci

~e

φ1

φ2

κ1

pi

pi+1

v

κ2

(b)

ci

ci+1
ci+1

ci

φ1

κ1

θ

θ
pi

pi+1

~e

(a)

δi

ci

ci+1

ci

ci+1

Fig. 20: (a) min{φ1, κ1} ≥ 18.43◦. (b) min{φ1 + φ2, κ1 + κ2} ≥ 2 × 18.43◦. (c) Shaded
angle is 12.54◦. (d)-(e) Shaded angle is 14.04◦.

Lemma 8. Suppose αi has two edges, civ and vci+1. Let φ1 = ∠picici+1, κ1 =
∠cici+1pi+1, φ2 = ∠ci+1civ, and κ2 = ∠cici+1v. Then (i) min{φ1, κ1} > 18.43◦

and (ii) min{φ1 + φ2, κ1 + κ2} ≥ 2× 18.43◦.

Proof: (i) From Lemma 7 we know that min{φ1, κ1} ≥ 18.43◦. To see that it must
be strictly greater, note that if min{φ1, κ1} = 18.43◦ then abs(θ − δi) = 71.57◦.
From Lemma 5 and Table 1, it can be seen that abs(θ − δi) = 71.57◦ when (a) θ =
18.43◦ and δi = 90◦, which is impossible because ci and ci+1 are directly connected
whenever δi = 90◦, or (b) θ = 0 and δi = 71.57◦, which is also impossible because
θ must be strictly greater than 0 whenever δi = 71.57◦.

(ii) Refer to Fig. 20. First observe that if min{φ2, κ2} ≥ 18.43◦, then part (i) implies
the claim. Hence assume that min{φ2, κ2} < 18.43◦. The only configurations of αi

for which min{φ2, κ2} < 18.43◦ are shown in Fig. 20(c)-(e). We use the angle
dependency in Table 1 to prove that these configurations imply min{φ1 + φ2, κ1 +
κ2} ≥ 2× 18.43◦. Further details are omitted here.

Lemma 9. For 1 ≤ i ≤ m− 1, the simple polygon Ai = (pi, ci) · αi · (ci+1, pi+1) ·
(pi+1, pi) can be quadrangulated with at most five quadrilaterals with a minimum
angle of 18.43◦.

Proof: Since αi has at most four edges (Lemma 4), we have four cases.

Case 1: αi has one edge. In this case, Ai is already a quadrilateral. The fact that all
angles of Ai are at least 18.43◦ follows from Lemma 7.

Case 2: αi has two edges. Let civ and vci+1 be the two edges of αi. Let φ1, κ1, φ2,
and κ2 be as in Fig. 20(b). Let γ = ∠civci+1. Observe that γ ≥ 26.57◦ because
the edges of αi come from Q. We quadrangulate Ai according to the angles φ2

and κ2.

~epi+1

ci+1
pi

(c)

v

κ2

p

ci

~epi+1

v
ci+1

κ2

p
(b)

pi
s

s

ci

~epi+1

ci+1
pi

(d) s

κ2

ci

κ2

ci+1

~epi+1

pi p
(a)

v

ci

s
v

φ2 φ2 φ2
φ2

Fig. 21: αi has two edges. (a) min{φ2, κ2} ≥ 18.43◦. (b) φ2 < 18.43◦ and κ2 ≥
18.43◦. (c) φ2 ≥ 18.43◦ and κ2 < 18.43◦. (d) φ2 < 18.43◦ and κ2 < 18.43◦.
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• If min{φ2, κ2} ≥ 18.43◦, place a Steiner point s on cici+1 and at the per-
pendicular projection p of s onto ~e . Connect s to ci, ci+1, and p to obtain a
quadrangulation of Ai. Perturb s towards p to obtain strictly convex quadri-
laterals. We know from Lemma 8(i) that there is always a small perturbation
of s that maintains all angles in the resulting quadrangulation at or above
18.43◦. See Fig. 21(a).

• If min{φ2, κ2} < 18.43◦, the placement of Steiner points depends on which
of φ2 and κ2 are smaller than 18.43◦ (assume wlog that φ1 +φ2 ≤ κ1 +κ2).
If exactly one of φ2 or κ2 is less than 18.43◦, then Lemma 8 guarantees
a quadrangulation of Ai with the required angle bounds. We omit details
and refer to Fig. 21(b)-(c). If both φ2 and κ2 are less than 18.43◦, the only
possible configuration for αi is shown in Fig. 20(e). Observe that in this
case, v can see ~e . Let s be the perpendicular projection of v onto ~e , unless
0 < θ < −18.43◦, in which case let s be the vertical projection of v onto ~e .
Connect v to s to obtain a quadrangulation of Ai in which all angles satisfy
the lower bound .

Case 3: αi has three edges. The method used to quadrangulate Ai depends on the
number of reflex internal vertices of αi, which is zero or one (note that since αi

lies above −−−→cici+1, it is not possible for both internal angles to be reflex):
• If the two internal angles along αi are both convex, draw an edge between ci

and ci+1, which quadrangulates Ai with two quadrilaterals. Some examples
of such αi can be seen in Fig. 10(iii) and 19(ii). In all such cases, Lemma 7
guarantees that all angles in the quad below −−−→cici+1 is at least 18.43◦. The
quad above −−−→cici+1 has a minimum angle of 26.57◦. See Fig. 22(a).

• If one of the internal angles along αi is reflex, ci and ci+1 must be corner
neighbors. Let r be the reflex vertex. r either lies on the segment cici+1

(Fig. 22(b)), or belongs to the quadtree cell N(ci) adjacent to ci and ci+1

and lying above−−−→cici+1 (Fig. 22(c)). Several examples of the former appear in
Figs. 12-17. For the latter, see Fig. 18(v)-(vi) and Fig. 19(iv). We can show
that in both cases, Ai can be decomposed into a quadrilateral and a pentagon
that is further decomposed into three quads with the required minimum angle
bounds. Details are omitted here.

ci

ci+1

~e
(a)

ci

ci+1

~e
(b)

r

ci

ci+1

~e

(c)

r

Fig. 22: αi has three edges.

ci

ci+1

~e
(a)

ci+1

~e
(b)

ci

Fig. 23: αi has four edges.

Case 4: αi has four edges. αi is classified according to the three internal vertices:
• If the three internal vertices consist of two reflex vertices separated by a

convex vertex (e.g., Fig. 18(i)), the reflex vertices always lie on cici+1. Insert
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edges from each reflex vertex to its perpendicular projection onto ~e . This
decomposes Ai into two quads and a pentagon. Lemmas 7 and 8 provide the
required minimum angle bounds. See Fig. 23(a).

• If the three internal vertices consist of two convex vertices separated by
a reflex vertex (Fig. 18(ii)), decompose Ai into four quads as shown in
Fig. 23(b). Note that this decomposition has the required minimum angle
bounds regardless of the value of θ.

This completes the proof that Ai can be quadrangulated with at most five quadrilat-
erals with a minimum angle of 18.43◦.

Edge separation conditions for quadtree

Every edge ~e of the polygon P defines a chain of edges given by ∪1≤i≤mαi. From
this chain, we obtain the polygons Ai, each of which is then quadrangulated as de-
scribed above. In order to conduct this process independently for every edge of the
polygon, we impose an edge separation condition on QT . The edge separation con-
dition requires that all quadrangulation chains ∪1≤i≤mαi defined by the edges of the
polygon be disjoint from each other. Recall that these chains do not start in the cell
containing the segment endpoint, but rather in one adjacent to it. This allows quad-
rangulation chains to be separated completely, except in the 5×5 grid of cells around
each polygon vertex. In the worst case, the edge separation condition requires that
every cell intersected by a polygon edge be surrounded by a 3×3 grid of empty cells,
but in practice, this requirement does not apply uniformly across the entire segment.

Connecting quadtree chains around polygon vertices

For every edge of the polygon P , the quadtree chain starts and ends at a cell center
within the 3 × 3 grid of quadtree cells that is guaranteed to exist around each of its
endpoints. Let v be a vertex of P and let e and f be the two oriented edges incident on
v (the interior of P lies to their left). Let u be the last quadtree chain vertex for edge e
and let w be the first quadtree chain vertex for edge f . Note that u and w are both cell
centers in the 3× 3 grid around v. Let ū and w̄ be the perpendicular projections of u
and w onto e and f , respectively. Let E be a sequence of edges connecting u to w in
the 3×3 grid. The region around vertex v is meshed by quadrangulating the polygon
Pv defined by the edges vū, ūu, E, ww̄, w̄v. The method used to quadrangulate Pv

depends on the number of edges in E, which is between one and seven (inclusive).
Refer to Fig. 24 for an illustration of some cases. The underlying 3 × 3 grid is used
to prove the following lemma, stated here without proof.

Lemma 10. Pv can be decomposed into at most seven quadrilaterals with a mini-
mum angle of 18.43◦.

Figure 25 shows quadrangulation chains ∪1≤i≤mαi for some edges of a polygon
(the entire polygon is shown in Fig. 28). Quadtree chain vertices are highlighted.

Summary of algorithm. We summarize in Figure 26 the algorithm to quadran-
gulate the interior of a non-acute simple polygon P of n edges e1, e2, . . . , en and
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v

(a)

wu

f
e

26.56◦

f

f
u

v

w

u

w

v

(b) (c)

u

w

v

x x

u v

(d)

u

v

w
e

e

f

f

e

e

Fig. 24: Connecting at corners. Number of edges in E is (a) one, (b) two, (c)-(d) three or more.

Fig. 25: Quadrangulation chains.

Quadrangulate(P, n):
QT ← Quadtree decomposition satisfying edge separation conditions

for vertices of P
Q ← Quadrangulation resulting from applyTemplate onQT .
for ei ∈ {e1, e2, . . . , en}

α(ei)← Quadrangulation chain for ei

Q(ei)← Quadrangulation of region bounded by ei and α(ei),
as given by Lemma 9.

Q(vi)← Quadrangulation of corner polygon Pvi ,
as given by Lemma 10.

Q′ ←
S

1≤i≤nQ(ei) ∪
S

1≤i≤nQ(vi)

returnQ′ ∪ (Q ∩(P−Q′))

Fig. 26: Summary of algorithm.

vertices v0, v1, . . . , vn−1, where ei = (vi−1, vi) (where vn = v0). The resulting
quadrilaterals have a minimum angle bound of 18.43◦.

Theorem 2. Given a quadtree decomposition with N quadtree cells satisfying the
edge separation condition for a simple polygon P , Quadrangulate(P, n) constructs
a mesh for P with at most 5N quadrilaterals in which every angle is at least 18.43◦.

3.2 General Simple Polygons

v

a θ
q

v1
p′ p1

v′

q′

p2
p3

p
v3
v2

γ
γ
2

Fig. 27: Handling acute angles in P .

Let P be a general simple polygon containing
acute angles. We first convert P into a polygon
that contains only obtuse angles by “cutting off”
the acute angle vertices. Let a be an acute angle
vertex of P . Let θ, 0 ≤ θ < 90, be the angle
at that vertex. Let v be a point on the angle bi-
sector of a, and let p and q be the perpendicular
projections of v onto the two edges incident at
a. v is chosen so that the quadrangular region apvq does not contain any other ver-
tices of the polygon P . Cut all such regions apvq from P . Let B be the polygon
resulting from this procedure. Construct a quadrilateral mesh for B using the algo-
rithm in Section 3.1. Observe that now there might be Steiner points on pv (e.g.,
v1, v2, v3 in Fig. 27) and vq. These are used to quadrangulate the region apvq with
the required angle bounds. We omit details and refer to Fig. 27 for an illustration of
the quadrangulation.
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4 Conclusion
Sample meshes generated by our algorithm are shown in Figures 28 and 29. Observe
that in these examples the ratio of the number of quadrilaterals to the number of
quadtree cells is less than one. The image on the right shows a zoomed-in portion of
the mesh on the left.

Fig. 28: Number of polygon edges: 19. Minimum mesh angle: 24.26◦. Number of quadtree
cells: 1399. Number of mesh vertices: 989. Number of mesh faces (quads): 841

Fig. 29: Number of polygon edges: 33. Minimum mesh angle: 20.67◦. Number of quadtree
cells: 2623. Number of mesh vertices: 2213. Number of mesh faces (quads): 1859

This paper presents the first known result on the generation of a quadrilateral
mesh for the interior of a simple polygon (possibly with holes) in which every new



18 F. Betul Atalay, Suneeta Ramaswami, and Dianna Xu

angle in the mesh is bounded from below. The main open question resulting from this
work is its extension to polygon interior as well as exterior. While our algorithm itself
is applicable to the interior or the exterior of the polygon, the difficulty of adapting it
to both lies in resolving mesh compatibility at the boundary without propagating the
changes throughout the mesh. We are currently investigating alternative strategies to
mesh the region bounded by quadtree chains on both sides of each polygon edge.
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