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A VAN DER CORPUT TYPE LEMMA FOR

OSCILLATORY INTEGRALS WITH HÖLDER AMPLITUDES

AND ITS APPLICATIONS

Hussain Al-Qassem, Leslie Cheng, and Yibiao Pan

Abstract. We prove a decay estimate for oscillatory integrals with
Hölder amplitudes and polynomial phases. The estimate allows us to

answer certain questions concerning the uniform boundedness of oscilla-

tory singular integrals on various spaces.

1. Introduction

In the study of oscillatory integrals, a well-known result which is of funda-
mental importance is the van der Corput’s lemma. It has found applications
throughout many branches of mathematics such as harmonic analysis, func-
tional analysis, number theory, differential equations, probability theory, to
name just a few ([3,6,7,9,11–14,16,18,20,24,25]). The result can be stated as
follows:

Theorem 1.1. (i) Let φ be a real-valued Ck function on [a, b] satisfying |φ(k)(x)|
≥ 1 for every x ∈ [a, b]. Suppose that k ≥ 2, or that k = 1 and φ′ is monotone
on [a, b]. Then there exists a positive constant ck such that

(1)

∣∣∣∣ ∫ b

a

eiλφ(x)dx

∣∣∣∣ ≤ ck|λ|−1/k

for all λ ∈ R. The constant ck is independent of λ, a, b and φ.
(ii) Let φ and ck be the same as in (i). If ψ ∈ C1([a, b]), then

(2)

∣∣∣∣ ∫ b

a

eiλφ(x)ψ(x)dx

∣∣∣∣ ≤ ck|λ|−1/k(‖ψ‖L∞([a,b]) + ‖ψ′‖L1([a,b]))

holds for all λ ∈ R.
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Part (i) of the above theorem is what is classically called van der Corput’s
lemma. Part (ii) (which follows from (i) by integration by parts) is the version
one usually finds convenient to use in many applications.

On the other hand, there are problems in which one encounters oscillatory
integrals whose amplitudes are not C1 (or nearly C1). The main purpose of
this paper is to establish a version of (2) when the amplitude ψ is in C0,α, the
Hölder classes.

Recall that, for any 0 < α ≤ 1 and f : [a, b]→ C,

‖f‖C0,α([a,b]) = sup

{
|f(x)− f(y)|
|x− y|α

: x, y ∈ [a, b] and x 6= y

}
and

C0,α([a, b]) =
{
f : ‖f‖C0,α([a,b]) <∞

}
.

When the phase function φ is linear, the corresponding oscillatory integral
with amplitude ψ can be treated essentially as a Fourier coefficient of ψ. It is
known classically to behave as O(|λ|−α) when |λ| → ∞, if ψ ∈ C0,α (see page
36 of [8]).

We have the following:

Theorem 1.2. Let p(x) denote a real-valued monic polynomial of degree k and
I = [a, b]. Suppose that ψ ∈ C0,α(I) where α ∈ (0, 1/(k − 1)) when k ≥ 2, or
α ∈ (0, 1] when k = 1. Then there exists a dk,α > 0 such that

(3)

∣∣∣∣ ∫
I

eiλp(x)ψ(x)dx

∣∣∣∣ ≤ dk,α(|λ|−1/k‖ψ‖L∞(I) + |λ|−α|I|1−(k−1)α‖ψ‖C0,α(I))

for all λ ∈ R. The constant dk,α is independent of λ, a, b, p(x) and ψ(x).

For 1/k ≤ α < 1/(k − 1), (3) provides the decay rate of |λ|−1/k which is
known to be optimal. But for α < 1/k, it is unclear whether (3) still provides
us with the optimal decay rate as |λ| → ∞. Another interesting question for
future investigation is whether (3) continues to hold for more general phase
functions whose k-th derivative is bounded away from 0.

It should be pointed out that the case α = 1 is not of primary concern here,
because it falls under a trivial extension of (2) to oscillatory integrals with
amplitudes having bounded variations.

We shall present the proof of Theorem 1.2 in Section 2. Applications will
be discussed in Section 3. There we will consider oscillatory singular integral
operators with polynomial phases and Calderón–Zygmund kernels in the Hölder
classes and explore their boundedness on various classical spaces. For Lp spaces,
our work extends the well-known results of Ricci and Stein in [19] for the family
of C1 Calderón–Zygmund kernels to the family of C0,α Calderón–Zygmund
kernels. This particular theme of research began in [1] and [2]. As one will see
in Section 3, the questions raised in [2] are now answered in the affirmative.
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2. Proof of Theorem 1.2

By a change of variable if necessary, it suffices to show that there exists a
constant ck,α, which depends on k and α only, such that

(4)

∣∣∣∣ ∫ 1

0

eiλp(x)ψ(x)dx

∣∣∣∣ ≤ ck,α(λ−1/k‖ψ‖L∞([0,1]) + λ−α‖ψ‖C0,α([0,1]))

holds for all λ > 2. Also, we will assume that k ≥ 2 and leave out the easier
case of k = 1. Below we shall use A . B to mean that A ≤ cB for a certain
constant c which depends on some essential parameters only (those being k
and α in this instance).

Let Q(x) = p′(x). There exist ζ1, . . . , ζk−1 ∈ C (not necessarily distinct)
such that

Q(x) = k

k−1∏
j=1

(x− ζj).

Let

Ω = [0, 1] ∩
( k−1⋃
j=1

[|ζj | − 2λ−1/k, |ζj |+ 2λ−1/k]

)
.

Trivially we have

(5)

∣∣∣∣ ∫
Ω

eiλp(x)ψ(x)dx

∣∣∣∣ . λ−1/k‖ψ‖L∞([0,1]).

The set [0, 1]\Ω is the union of at most k intervals. Let J = [u, v] be one such
interval. For x ∈ J ⊆ [0, 1]\Ω and 1 ≤ j ≤ k − 1,

|x− ζj | ≥ ||x| − |ζj || = |x− |ζj || > 2λ−1/k.

Thus we have

|Q(x)| = k

k−1∏
j=1

|x− ζj | ≥ 2k−1kλ−1+1/k

for x ∈ J . Without loss of generality, we may assume that Q(x) > 0 for all
x ∈ J . It follows that p|J has a strictly increasing inverse function which we
shall denote by h(·).

If p(v)− p(u) ≤ 2πλ−1, then∣∣∣∣ ∫
J

eiλp(x)ψ(x)dx

∣∣∣∣ ≤ (v − u)‖ψ‖L∞([0,1])

≤ (sup
x∈J
|Q(x)|−1)(p(v)− p(u))‖ψ‖L∞([0,1])

. λ−1/k‖ψ‖L∞([0,1]).

We may now assume that p(v)− p(u) > 2πλ−1. By letting γ = h(p(u) +πλ−1)
and η = h(p(v)− πλ−1), we have p(γ)− p(u) = πλ−1 and p(v)− p(η) = πλ−1.
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It follows from the preceding argument that

(6)

∣∣∣∣ ∫ γ

u

eiλp(x)ψ(x)dx

∣∣∣∣ . λ−1/k‖ψ‖L∞([0,1]);

(7)

∣∣∣∣ ∫ v

η

eiλp(x)ψ(x)dx

∣∣∣∣ . λ−1/k‖ψ‖L∞([0,1]).

Let Φ(t) = ψ(h(t))h′(t). Then we have∫
J

eiλp(x)ψ(x)dx

=

∫ v

u

eiλp(x)ψ(x)dx

=

(
1

2

)[∫ γ

u

eiλp(x)ψ(x)dx+

∫ v

η

eiλp(x)ψ(x)dx

]
+

(
1

2

)[∫ η

u

eiλp(x)ψ(x)dx+

∫ v

γ

eiλp(x)ψ(x)dx

]
=

(
1

2

)[∫ γ

u

eiλp(x)ψ(x)dx+

∫ v

η

eiλp(x)ψ(x)dx

]
+

(
1

2

)[∫ p(η)

p(u)

eiλtΦ(t)dt+

∫ p(v)

p(γ)

eiλtΦ(t)dt

]
=

(
1

2

)[∫ γ

u

eiλp(x)ψ(x)dx+

∫ v

η

eiλp(x)ψ(x)dx

]
+

(
1

2

)[∫ p(η)

p(u)

eiλtΦ(t)dt+

∫ p(v)−πλ−1

p(γ)−πλ−1

eiλ(t+πλ−1)Φ(t+ πλ−1)dt

]
=

(
1

2

){∫
[u,γ]∪[η,v]

eiλp(x)ψ(x)dx+

∫ p(η)

p(u)

eiλt[Φ(t)− Φ(t+ πλ−1)]dt

}
.

In light of (6)-(7) and the following inequality:

|Φ(t)− Φ(t+ πλ−1)|
≤ |ψ(h(t))− ψ(h(t+ πλ−1))|h′(t) + |ψ(h(t+ πλ−1))||h′(t)− h′(t+ πλ−1)|
≤ ‖ψ‖C0,α |h(t)− h(t+ πλ−1)|αh′(t) + ‖ψ‖∞|h′(t)− h′(t+ πλ−1)|,

it suffices to prove that

(8)

∫ p(η)

p(u)

|h(t)− h(t+ πλ−1)|αh′(t)dt . λ−α

and

(9)

∫ p(η)

p(u)

|h′(t)− h′(t+ πλ−1)|dt . λ−1/k.
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For any t ∈ [p(u), p(η)] and t ≤ s ≤ t+ πλ−1, we have

|h(s)− h(t)| ≤
(

sup
x∈J
|Q(x)|−1

)
|s− t|

≤ 21−kk−1λ1−1/k(πλ−1) ≤ (π/4)λ−1/k < λ−1/k,

and, for 1 ≤ j ≤ k − 1,

|h(s)− ζj | ≥ |h(t)− ζj | − |h(s)− h(t)| ≥ |h(t)− ζj | − λ−1/k.

Since h(t) ∈ [u, η] ⊂ J ,

|h(t)− ζj | ≥ |h(t)− |ζj || ≥ 2λ−1/k,

which implies that

(10) |h(s)− ζj | ≥ (1/2)|h(t)− ζj |.

Thus, for each t ∈ [p(u), p(η)], there exists a τ ∈ [t, t+ πλ−1] such that

|h(t)− h(t+ πλ−1)| = πλ−1|Q(h(τ))|−1

= πλ−1k−1

( k−1∏
j=1

|h(τ)− ζj |
)−1

≤ 2k−1k−1πλ−1

( k−1∏
j=1

|h(t)− ζj |
)−1

≤ 2k−1k−1πλ−1

( k−1∏
j=1

|h(t)− |ζj ||
)−1

.

It follows that∫ p(η)

p(u)

|h(t)− h(t+ πλ−1)|αh′(t)dt . λ−α
∫ η

u

( k−1∏
j=1

|x− |ζj ||
)−α

dx.

For each j ∈ {1, . . . , k − 1}, let ξj = min{|ζj |, 1}. Then, ∀x ∈ [u, η] ⊆ [0, 1], we
have |x− ξj | ∈ [0, 1], |x− |ζj || ≥ |x− ξj | and( k−1∏

j=1

|x− |ζj ||
)−α

≤
(

min
1≤j≤k−1

|x− |ζj ||
)−α(k−1)

≤
k−1∑
j=1

|x− |ζj ||−α(k−1) ≤
k−1∑
j=1

|x− ξj |−α(k−1).

Since α < 1/(k − 1), we thus have∫ p(η)

p(u)

|h(t)− h(t+ πλ−1)|αh′(t)dt . λ−α
( k−1∑
j=1

∫ 1

0

|x− ξj |−α(k−1)dx

)
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. λ−α
∫ 1

0

ω−α(k−1)dω . λ−α,

which proves (8).
Also, for each t ∈ [p(u), p(η)], there exists a τ̃ ∈ [t, t+ πλ−1] such that

|h′(t)− h′(t+ πλ−1)| =
(
π

λ

)
|Q′(h(τ̃))|
|Q(h(τ̃))|3

.

By letting s = τ̃ in (10), we get

|h(τ̃)− ζj |−1 ≤ 2|h(t)− ζj |−1

for 1 ≤ j ≤ k − 1. Thus,

|h′(t)− h′(t+ πλ−1)| . λ−1

( k−1∑
j=1

1

|h(τ̃)− ζj |

)(
1

|Q(h(τ̃))|2

)

= λ−1

( k−1∑
j=1

1

|h(τ̃)− ζj |

)(
k−1

k−1∏
j=1

|h(τ̃)− ζj |−1

)2

. λ−1

( k−1∑
j=1

1

|h(t)− ζj |

)(
k−1

k−1∏
j=1

|h(t)− ζj |−1

)2

= λ−1

( k−1∑
j=1

1

|h(t)− ζj |

)(
1

|Q(h(t))|2

)

= λ−1h′(t)

( k−1∑
j=1

1

|h(t)− ζj |

)(
1

|Q(h(t))|

)
.

Thus∫ p(η)

p(u)

|h′(t)− h′(t+ πλ−1)|dt . λ−1

∫ η

u

( k−1∑
j=1

1

|x− ζj |

)(
1

|Q(x)|

)
dx.

For x ∈ [u, η] and 1 ≤ j ≤ k − 1, by combining |x − ζj | ≥ |x − |ζj || ≥ |x − ξj |
and |x− |ζj || ≥ 2λ−1, we have

|x− ζj | ≥ (1/2)|x− ξj |+ λ−1,

which implies that( k−1∑
j=1

1

|x− ζj |

)(
1

|Q(x)|

)
≤ (k − 1)

(
min

1≤j≤k−1
|x− ζj |

)−1

|Q(x)|−1

≤
(
k − 1

k

)(
min

1≤j≤k−1
|x− ζj |

)−k
≤
(
k − 1

k

) k−1∑
j=1

1

|x− ζj |k
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≤
(
k − 1

k

) k−1∑
j=1

1

[(1/2)|x− ξj |+ λ−1]k
.

Since x, ξj ∈ [0, 1] and 0 < λ−1 < 1/2, we also have (1/2)|x−ξj |+λ−1 ∈ [λ−1, 1].
Thus,∫ p(η)

p(u)

|h′(t)− h′(t+ πλ−1)|dt . λ−1

( k−1∑
j=1

∫ η

u

dx

[(1/2)|x− ξj |+ λ−1]k

)

. λ−1

∫ 1

λ−1/k

dω

ωk
. λ−1/k,

which proves (9). The proof of Theorem 1.2 is now complete.

3. Oscillatory singular integrals

Let n ∈ N, P (x, y) be a real-valued polynomial in x, y ∈ Rn and K(x, y) be
a singular kernel. Consider the following oscillatory singular integral operator:

(11) TP,K : f → p.v.

∫
Rn
eiP (x,y)K(x, y)f(y)dy.

The standard conditions used to define Calderón–Zygmund kernels which have
C1 smoothness away from their singularities are as follows:

There exists a B > 0 such that
(i) For all (x, y) ∈ (Rn × Rn)\∆ where ∆ = {(x, x) : x ∈ Rn},

(12) |K(x, y)| ≤ B

|x− y|n
;

(ii) K(x, y) ∈ C1((Rn × Rn)\∆), and for (x, y) ∈ (Rn × Rn)\∆

(13) |∇xK(x, y)|+ |∇yK(x, y)| ≤ B

|x− y|n+1
;

(iii)

(14) ‖To‖L2(Rn)→L2(Rn) ≤ B,
where

(15) Tof(x) = p.v.

∫
Rn
K(x, y)f(y)dy.

Let’s begin with the following result of F. Ricci and E. M. Stein concerning
Lp boundedness.

Theorem 3.1 ([19]). Suppose that conditions (i), (ii), (iii) are satisfied. Then,
for 1 < p <∞, there exists a Cp > 0 such that

(16) ‖TP,Kf‖Lp(Rn) ≤ Cp‖f‖Lp(Rn)

for all f ∈ Lp(Rn). The constant Cp may depend on p, n,B and deg(P ) but is
independent of the coefficients of P .
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The above theorem is a strengthened form of Theorem 1 in [19], as described
in Section 5 of [19]. For earlier results on operators with bilinear phases, see
[17].

It is well-known that Calderón–Zygmund singular integrals are bounded on
Lp spaces even when the C1 condition (ii) is replaced by various weaker con-
ditions ([10, 23]). One such family of Calderón–Zygmund kernels are those
K(x, y) which satisfy conditions (i), (ii)

′
, (iii), where (i) and (iii) are given as

above while (ii)
′

is the following Hölder type condition:

(ii)
′

There exists a δ > 0 such that

(17) |K(x, y)−K(x′, y)| ≤ B|x− x′|δ

(|x− y|+ |x′ − y|)n+δ

whenever |x− x′| < (1/2) max{|x− y|, |x′ − y|} and

(18) |K(x, y)−K(x, y′)| ≤ B|y − y′|δ

(|x− y|+ |x− y′|)n+δ

whenever |y − y′| < (1/2) max{|x− y|, |x− y′|}.
A natural question is whether the corresponding oscillatory singular integrals

with polynomial phases remain bounded on Lp spaces. As an application of
Theorem 1.2, we obtain the following extension of Theorem 3.1 in which the
Calderón–Zygmund kernels K(x, y) are allowed to be in any Hölder class while
the Lp spaces can be the usual Lp spaces with Lebesgue measures or weighted
Lp spaces with any Muckenhoupt Ap weights.

Theorem 3.2. Let B, δ > 0 and TP,K be given as in (11). Suppose that

1 < p < ∞, w ∈ Ap(Rn) and K(x, y) satisfies (i), (ii)
′

and (iii). Then there
exists a positive Cp which may depend on p, n, δ, B, deg(P ) and the Ap
constant of w, but is independent of the coefficients of P , such that

(19) ‖TP,Kf‖Lpw(Rn) ≤ Cp‖f‖Lpw(Rn)

for all f ∈ Lpw(Rn).

Proof. The special case of Theorem 3.2 in which P (x, y) is assumed to be
a bilinear form was proved in [1]. In what follows we shall concentrate on
showing how our new van der Corput type lemma allows us to treat the general
case of arbitrary polynomial phases. We therefore will provide details for the
aforementioned key steps only and refer the readers to [1] and [19] for the other
technical components needed for a complete proof.

For any nontrivial polynomial P (x, y), one can write

(20) P (x, y) =
∑
|α|=k

xαQα(y) +R(x, y),
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where k ≥ 1, R(x, y) is a polynomial whose terms do not contain any xγ with
|γ| ≥ k, and for each α satisfying |α| = k,

(21) Qα(y) =
∑
|β|=m

aαβy
β + qα(y)

with deg(qα) < m. By using a rotation (i.e., an orthogonal matrix H and
considering P (xH, yH) instead of P (x, y)), we may assume that for α0 =
(k, 0, . . . , 0) and a certain β0 satisfying |β0| = m,

(22) |aαβ | . |aα0β0
|

for all |α| = k and |β| = m (see [22]). By using a dilation (x, y) → (tx, ty) if
necessary, we may further assume that |aα0β0

| = 1. To see that there is no loss
of generality in doing so, we point out that the kernels tnK(txH, tyH) satisfy
(i), (ii)

′
and (iii) with the same positive constants B and δ.

By using a smooth dyadic decomposition and a rescaling for each piece in the
decomposition, the proof would eventually come to rest on obtaining a decay
estimate O(|λ|−σp), σp > 0, for the Lpw → Lpw norm of the operators

Sλ : f →
∫
Rn
eiλP (x,y)K(x, y)φ(|x− y|)f(y)dy

as λ→∞, where

φ ∈ C∞(R), supp(φ) ⊆ [1/4, 4], and 0 ≤ φ ≤ 1

(here, in order to avoid unnecessary complications of notations, we continue to
use P and K for the new phase and kernel functions even after the rescalings).
Let Lλ(x, y) denote the kernel of S∗λSλ. Then

(23) Lλ(x, y) =

∫
Rn
eiλ[P (z,x)−P (z,y)]K(z, x)K(z, y)φ(|z − x|)φ(|z − y|)dz.

For any x ∈ Rn, we write x = (x1, x̃) where x̃ denotes the point (x2, . . . , xn) in
Rn−1. For x, y, z ∈ Rn, let

Gx,y,z̃(z1) = K(z, x)K(z, y)φ(|z − x|)φ(|z − y|).

By (12) we have

(24) ‖Gx,y,z̃(·)‖L∞(R) ≤ B2.

Also, it follows from (12) and (17) that there exists a C > 0 independent of
x, y and z̃ such that

(25) ‖Gx,y,z̃(·)‖C0,δ(R) ≤ C

(for a proof of (25), see pages 2415–2416 of [1]).
For s ∈ N, a ∈ Rs and r > 0, let Bs(a, r) denote the ball centered at a in Rs

with radius r. Let

ν = min

{
δ,

1

k

}
.
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By (23), we have

|Lλ(x, y)| . χBn(0,8)(x− y)×
∫
Bn−1(x̃,4)∩Bn−1(ỹ,4)∣∣∣∣ ∫

B1(x1,4)∩B1(y1,4)

eiλ[zk1 (Qα0
(x)−Qα0

(y))+Ux,y,z̃(z1)]Gx,y,z̃(z1)dz1

∣∣∣∣dz̃,
where Ux,y,z̃(·) is a polynomial of degree ≤ k− 1. It follows from (24)-(25) and
Theorem 1.2 that

(26) |Lλ(x, y)| . λ−νχBn(0,8)(x− y)|Qα0(x)−Qα0(y)|−ν .

Let µ = min{ν, 1
2m}. By using (26) and ‖Lλ(·, ·)‖∞ . 1 (if necessary), we have

|Lλ(x, y)| . λ−µχBn(0,8)(x− y)|Qα0
(x)−Qα0

(y)|−µ.

Since 0 < µ < 1
m and |aα0β0

| = 1, it follows from the proposition on page 182
of [19] that ∫

Rn
|Lλ(x, y)|dx . λ−µ

( ∑
|β|=m

|aα0β |
)−µ

. λ−µ

for all y ∈ Rn. Similarly, ∫
Rn
|Lλ(x, y)|dy . λ−µ

for all x ∈ Rn. By Schur’s test,

(27) ‖Sλ‖L2(Rn)→L2(Rn) . λ
−µ/2.

By (12) and φ ∈ C∞c (Rn), we have

‖Sλ‖L1(Rn)→L1(Rn) + ‖Sλ‖L∞(Rn)→L∞(Rn) . 1

and

(28) |Sλf | .MHLf,

whereMHL is the Hardy–Littlewood maximal operator on Rn. By interpolation
we get

(29) ‖Sλ‖Lp(Rn)→Lp(Rn) . λ
−µ(1−2|1/p−1/2|)/2.

By a well-known property of Ap weights, there exists a θ > 0 such that
w1+θ ∈ Ap(Rn). Both θ and the Ap constant of w1+θ depend on n, p and the
Ap constant of w only. It follows from (28) that

(30) ‖Sλ‖Lp
w1+θ (Rn)→Lp

w1+θ (Rn) . 1

(see [5]). It then follows from (29)-(30) and Theorem 2 of [21] that

(31) ‖Sλ‖Lpw(Rn)→Lpw(Rn) . |λ|−σp



A VAN DER CORPUT TYPE LEMMA AND ITS APPLICATIONS 497

with σp = µθ(1− 2|1/p− 1/2|)/(2(1 + θ)) > 0. By (22), we also have

(32)
∑
|α|=k

∑
|β|=m

|aαβ | . |aα0β0
| = 1.

By using (31), (32) and a well-established procedure in the literature (see [1,
19]), one can obtain the Lpw boundedness of TP,K . Details of the remaining
steps are omitted. �

In the endpoint case p = 1, for C1 Calderón–Zygmund kernels, TP,K were
known to be bounded from L1,∞ to L1 (by Chanillo and Christ in [4]) and
also from the Hardy type space H1

E (see definition below) to L1 (by Pan in
[15]). We are now able to extend both results to the family of Hölder class
Calderón–Zygmund kernels. We shall begin with the weak type (1, 1) result.

Theorem 3.3. Let B, δ > 0 and TP,K be given as in Theorem 3.2. Suppose

that K(x, y) satisfies (i), (ii)
′

and (iii). Then TP,K is of weak type (1, 1), i.e.,
there exists a positive C such that

(33) |{x ∈ Rn : |TP,Kf(x)| > λ}| ≤ Cλ−1‖f‖L1(Rn)

for all f ∈ L1(Rn) and λ > 0. Moreover, while the constant C in (33) may
depend on n, δ, B and deg(P ), it is otherwise independent of K(·, ·) and the
coefficients of P .

In order to describe the Hardy space result, we begin by recalling the defini-
tion of the space H1

E , which is a variant of the standard Hardy space H1 first
introduced by Phong and Stein in [17] for bilinear phases and subsequently for
polynomial phases in [15].

Definition. A measurable function a(·) on Rn is called an atom if there exists
a cube Q such that supp(a) ⊆ Q, ‖a‖∞ ≤ |Q|−1 and∫

Q

eiP (xQ,y)a(y)dy = 0.

A function f is in H1
E(Rn) if there exist a sequence {λj} in C and a sequence

of atoms {aj} such that

(34) f =
∑
j

λjaj .

The H1
E norm of f is the infimum of

∑
j |λj | over all possible expressions of f

described in (34).

We end the paper with the following theorem which extends Theorem 3 of
[2] from bilinear phases to polynomial phases:

Theorem 3.4. Let B, δ > 0 and TP,K be given as in Theorem 3.2. Suppose

that K(x, y) satisfies (i), (ii)
′

and (iii). Then there exists a positive C such that

(35) ‖TP,Kf‖L1(Rn) ≤ C‖f‖H1
E(Rn)
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for all f ∈ H1
E(Rn). Moreover, the constant C in (35) may depend on n, δ, B

and deg(P ), but is otherwise independent of K(·, ·) and the coefficients of P .

In each of the proofs of Theorems 3.3 and 3.4, there is a “local” part which
follows from the Lp boundedness obtained in Theorem 3.2 which in turn relied
on Theorem 1.2, among other things. The “non-local” part of the weak type
(1,1) proof is more complicated than that of the H1

E → L1 result, requiring
an improved version of Lemma 4 in [2] in which bilinear forms are replaced by
general polynomials. This is where, once again, one uses Theorem 1.2. For the
sake of succinctness, details are omitted.
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