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Universality and Modeling Limiting Behaviors 

 

Abstract. Most attempts to justify the use of idealized models to explain 

appeal to the accuracy of the model with respect to difference-making causes. 

In this paper, I argue for an alternative way to justify using idealized models 

to explain that appeals to universality classes. In support of this view, I show 

that scientific modelers seeking to explain stable limiting behaviors often 

explicitly appeal to universality classes in order to justify their use of idealized 

models to explain. 

 

Author Information: 

Collin Rice 

Bryn Mawr College 

101 N. Merion Ave 

Bryn Mawr, PA 1910 

crice3@brynmawr.edu 

 

Acknowledgments: Thanks to Julia Bursten, Robert Batterman, Chris Pincock, Jenn Jhun, 

and the audience of our symposium at PSA 2018 for helpful discussions and feedback. I am 

also grateful to two anonymous reviewers whose comments helped improve the final version.   

  



 2 

Universality and Modeling Limiting Behaviors 

 

1. Introduction 

Most attempts to justify the use of idealized models to explain appeal to the accuracy of the 

model with respect to difference-making (or contextually-salient) causes and the irrelevance 

(or insignificance) of the features distorted by the idealizations (Craver 2006; Kaplan and 

Craver 2011; Potochnik 2017; Strevens 2008; Weisberg 2013). In this paper, I argue for an 

alternative way to justify the use of idealized models to explain that appeals to universality 

classes. According to this ‘universality account’, idealized models can be justifiably used to 

explain when they are within the same universality class as their real-world target system(s) 

(Batterman and Rice 2014; Rice 2018). Instead of defending any particular account of 

explanation, my goal here will be to focus directly on the question of how scientific modelers 

ought to justify the use of highly idealized scientific models for purposes of explanation. I 

will argue that universality classes can link idealized models to real-world systems in ways 

that can justify their use for purposes of explanation—even when the models drastically 

distort (or completely ignore) contextually-salient difference-making causes of the 

explanandum. In support of this view, I then show how the universality account better 

accommodates cases of modeling stable limiting behaviors across causally diverse systems. 

In these cases, scientific modelers often explicitly appeal to universality classes in order to 

justify using their highly idealized models to explain. 
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 The following section motivates the need for the universality account by briefly 

critiquing the standard approach to justifying the use of idealized models to explain. Then, 

Section 3 lays out the details of how to justify the use of idealized models to explain by 

appealing to universality classes. Next, Sections 4 argues for the adoption of the universality 

account by presenting an example (that is representative of a larger class of cases) in which 

scientific modelers explicitly appeal to universality classes to justify their use of idealized 

models to explain stable limiting behaviors. The final section concludes. 

 

2. The Accurate Representation of Difference Makers 

It is widely accepted that there are many idealized models that are used to explain in science 

(Batterman 2002; Bokulich 2011; Cartwright 1983; Morrison 2015; Potochnik 2017; Rice 

2015, 2018; Strevens 2008; Weisberg 2013). This has led philosophers of science to provide 

various accounts of how models that include idealizations can be justifiably used to explain. 

The vast majority of these accounts have appealed to one, or typically both, of the following 

features: (1) the accuracy of the model with respect to the difference-making (or 

contextually-salient) causes of the explanandum and/or (2) the irrelevance (or non-salience) 

of the features distorted by the idealizations.  

For example, according to most mechanistic accounts, an idealized model will only 

explain if it provides an accurate representation of the relevant features of the causal 

mechanism(s) that produced the explanandum (Craver 2006; Kaplan and Craver 2011; 
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Glennan 2017). Kaplan and Craver (2011) refer to this criterion explicitly as the model-to-

mechanism-mapping (3M) requirement.  

In addition, most causal accounts require models that explain to provide an accurate 

representation of (at least some of) the difference-making causal factors that produced the 

explanandum (Elgin and Sober 2002; Potochnik 2017; Strevens 2008; Weisberg 2013; 

Woodward 2003). For instance, on Michael Strevens’s view, “the overlap between the 

idealized model and reality...is a standalone set of difference-makers for the target” (Strevens 

2008, 318). Moreover, the role of the idealized parts of the model is to, “point to parts of the 

actual world that do not make a difference to the explanatory target” (Strevens 2008, 318). In 

addition, Michael Weisberg describes several accounts of what he calls ‘minimalist 

idealization’ in which the model “contains only those factors that make a difference” 

(Weisberg 2013, 100). Indeed, several accounts agree that, “the key to explanation is a 

special set of explanatorily privileged causal factors. Minimalist idealization is what isolates 

these causes and thus plays a crucial role for explanation” (Weisberg 2013, 103). 

In contrast with Strevens and Weisberg, Angela Potochnik’s account allows 

difference-making causal factors that are not central to the research program to be left out or 

idealized (Potochnik 2017). However, Potochnik’s view still requires that “posits central to 

representing a focal causal pattern in some phenomenon must accurately represent the causal 

factors contributing to this pattern…” (Potochnik 2017, 157). Therefore, while the set of 

important causal factors is delimited somewhat differently, there is still a particular set of 
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causal factors that need to be accurately represented in order for an idealized model to 

explain. 

In sum, according to most philosophical accounts, the use of idealized models to 

explain is justified (or warranted) by showing that they only distort causes, mechanisms, or 

features that are irrelevant to the explanandum or research program—i.e. their distortions do 

not get in the way of the accurate representation of the relevant mechanisms, difference-

makers, or significant causes. Indeed, the general goal of these accounts is to show that the, 

“factors distorted by idealized models are details that do not matter to the explanatory 

target—they are explanatory irrelevancies. The distortions of the idealized model are thus 

mitigated” (Strevens 2008, 315). Consequently, these accounts depend heavily on a 

necessary condition for idealized models to explain: the accurate representation relation must 

hold between the idealized model and some set of difference-making causes that produced 

the explanandum. Accordingly, I will refer to these as accurate representation of difference 

makers (henceforth ARDM) accounts. 

While this approach has provided one way to justify the use of idealized models to 

explain, I contend that it cannot be the whole story since there are many scientific models 

that are used to explain whose idealizations drastically distort difference-making features, 

many of which are salient to the research program. Examples include models in physics that 

distort the difference-making components and interactions of fluids, magnets, and quantum 

dots (Batterman and Rice 2014; Bokulich 2012; Morrison 2015), biological models that 

distort the difference-making processes of drift and selection (Ariew et al. 2015; Morrison 
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2015; Rice 2015, 2018), economic models that distort the difference-making features of 

agents and transactions (Frigg 2010), models used to study human behavior that distort 

difference-making genetic and environmental factors (Longino 2013), etc. The more general 

problem is that scientists routinely make use of modeling frameworks that pervasively and 

holistically distort both difference-making and non-difference-making causes of the 

explanandum (Rice 2018). Therefore, in contrast with ARDM views, below I will argue that 

the story scientific modelers can, should, and often do provide in order to justify their use of 

these models for purposes of explanation does not appeal to accurate representation 

relations between the model and some set of relevant causes. 

 In addition, while I am certainly not unique in my attempts to draw on actual 

scientific practice, when it comes to the task of justifying the use of models to explain, most 

philosophers have attempted to do so by appealing to more general philosophical accounts of 

explanation (and idealization). In contrast, I suggest a better methodological starting point for 

justifying the use of idealized models to explain is to look directly at the justifications 

actually provided by scientific modelers who produce those explanations. That is, I will look 

directly at the justifications scientific modelers give for using their models to explain without 

defending any particular account of explanation. Taking this approach, we find that very 

rarely do scientific modelers justify their appeals to idealized models in terms of accurate 

representation of difference-making causes or distortion of irrelevant causes. Instead, 

scientific modelers typically justify the introduction of idealizations into their models as a 

means to applying various modeling techniques they have on hand that they have reason to 
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believe will lead to the development of an explanation for their explanandum of interest 

(Batterman 2002; Cartwright 1983; Morrison 2015; Rice 2018). Moreover, as I will argue 

below, scientific modelers often justify the use of these modeling techniques by appealing to 

universality classes that identify stable patterns of behavior across classes of real, possible, 

and model systems that are heterogeneous with respect to their causes. 

 

3. Using Universality to Justify the Use of Idealized Models to Explain 

Instead of focusing on the accurate representation of difference makers, an alternative way to 

establish a connection between idealized models and their target system(s) is to exploit an 

extremely convenient feature of our universe called universality. As physicist Leo Kadanoff 

(2013) puts it, “Whenever two systems show an unexpected or deeply rooted identity of 

behavior they are said to be in the same universality class” (178). In short, universality is just 

a statement of the fact that different physical systems will nonetheless display similar 

patterns of behavior that are largely independent of their physical features (Batterman 2002). 

The group of systems that will display similar behaviors despite (perhaps drastic) differences 

in their physical features are said to be in the same universality class.  

What is more, these universality classes often include several model systems that 

involve various idealizing assumptions that enable them to employ various mathematical 

modeling frameworks used by scientists to provide explanations. Because these model 

systems are also in the universality class, they will display similar patterns of behavior—

although sometimes only in their large-scale limits—despite the fact that the model may 
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drastically distort the causes and mechanisms responsible for the explanandum in any real-

world system. Despite their having drastically different features, discovering universality 

classes can demonstrate that there is a class of systems, which includes an idealized model 

system and its target system(s), that will exhibit the same stable patterns of behavior. It is 

precisely this stability of these universal behaviors across perturbations of the system’s 

physical features that can enable scientists to justifiably use models that drastically distort 

difference-making causes. I contend that universality is a ubiquitous feature of myriad 

classes of real, possible, and model systems that can be (and is) exploited by scientific 

modelers to discover idealized models that drastically distort the difference-making causes of 

their target system(s) and yet enable them to explain the behaviors of those systems 

(Batterman and Rice 2104; Rice 2018). 

It is important to note, however, that appealing to the existence of a universality class 

in order to justify the use of an idealized model to explain is crucially different from 

providing an explanation of universality. There is a large and important literature that 

analyzes how universality itself can be explained; e.g. by using renormalization techniques 

(Batterman 2002; Morrison 2015). The account I develop here is explicitly not an account of 

how to explain universality. Instead, I aim to use the fact that various universality classes 

exist in the world—whether we have explanations for why those behaviors are universal or 

not—in order to justify the use of various idealized models to provide explanations in science 

(Rice 2018). 
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In addition, most philosophical accounts seem to conflate having an accurate 

representation relation between the model and difference makers with the model’s being an 

explanation; i.e. satisfying this model-world relation is all that is required for the model to 

explain. In contrast, I argue that being in the same universality class is only one way (of a 

plurality of ways) to establish a connection between a model and a real-world system that can 

justify (or license) various explanatory inferences from the behavior of the idealized model(s) 

to the behavior of the real-world system(s). Consequently, being in the same universality 

class is not necessary because there are other ways to justify the use of an idealized model for 

purposes of explanation. It is also not sufficient for explanation since justifying such 

inferences is not equivalent to providing a complete explanation of the explanandum. 

In light of this, then, I should say something about why I take these cases to be 

genuine instances of scientific explanation. Although I will not be arguing for any particular 

account of explanation here, almost all accounts (e.g. both causal and noncausal accounts) 

agree that, “[an] explanation must enable us to see what sort of difference it would have 

made for the explanandum if the factors cited in the explanans had been different in various 

possible ways” (Woodward 2003, 11).1 In line with this approach, I suggest that these 

idealized models explain because they enable scientists to identify a set of features on which 

the explanandum counterfactually depends; i.e. they show how the explanandum would have 

been different if various features of the system had been different in various ways. As we 

will see below, identifying universality classes, finding idealized models within those classes, 
 

1 See Bokulich (2011, 2012) and Rice (2015) for noncausal applications of this counterfactual dependence 
approach. 
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and applying various mathematical modeling techniques, can reveal a plethora of information 

about the counterfactual dependencies (and independencies) that hold between various 

features of the systems within the universality class and the explanandum. This can be 

accomplished, however, without constructing a model that accurately represents the 

difference-making features or how those features (causally or mechanistically) produce the 

explanandum. 

 One mark in favor of this universality account is that it can easily accommodate the 

cases used to motivate ARDM accounts. After all, in many cases, the idealized models that 

are within the same universality class as their target systems will just be those that accurately 

represent the difference-making causes of their target system(s). When this occurs, the 

idealized model will undoubtedly produce many of the same patterns of counterfactual 

dependence for the same reasons those patterns occur in the target system(s). However, in 

many other cases the same patterns of counterfactual dependence will be produced by 

extremely different sets of difference-making components, causes, and mechanisms across a 

range of real, possible, and model systems. In these cases, scientists often construct a 

pervasively distorted minimal model in order to apply the (mathematical) modeling 

techniques they have on hand and extract universal features that are stable across causally 

heterogeneous systems. As Goldenfeld and Kadanoff (1999) put it, “We can exploit this kind 

of ‘universality’ by designing the most convenient ‘minimal model’.” (87). Convenience here 

refers to the model’s being amenable to ‘mathematical treatment’ in ways that require the 

distortion of many of the key features of the target system(s) (Cartwright 1983). Despite 
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these distortions, if the resulting idealized model is in the same universality class as its target 

system(s), it can be justifiably used to investigate how the explanandum counterfactually 

depends on various features of the class of systems that display that behavior.  

 

4. Explicit Appeals to Universality in the Explanations of Limiting Behaviors 

This section argues that the justifications given by actual scientific modelers attempting to 

explain stable limiting behaviors are often in line with those suggested by the universality 

account. Indeed, the justification offered by these modelers explicitly appeals to universality 

classes that contain the model and its target systems. This provides further motivation for 

adopting the universality account.  

 

4.1. Universality in Bacterial Growth and the Eden Model 

Several models from statistical physics that exhibit universal behaviors have recently been 

applied to problems in biology. For example, many kinds of biological growth can be 

modeled by an extremely minimal computational model known as The Eden Growth Model 

(Eden 1961). The simplest version is a lattice model with “occupied” and “unoccupied” sites 

that follows two simple growth rules: 

(1) Start from a single occupied lattice site—called the “seed” site. 

(2) In each growth step, randomly occupy an empty site that is the nearest neighbor to 
an occupied site. 

Running this algorithm N times produces clusters containing N “cells”. By running this 

algorithm many times, scientists can investigate the topological properties of the ‘typical 
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cluster’ by looking at statistical averages across a range of many possible configurations and 

taking the limit as N ® ¥. That is, scientists are often interested in the average properties 

across a wide range of cases in the limit rather than having any one of the simulations 

capture the actual growth process of the physical system(s) (Hermann 1986). Indeed, like 

many cases in statistical physics, typically one can only get the exact scaling behavior of 

interest by taking various limits (Hermann 1986, 163). As a result, when growth modelers 

take these limits, “the situation is analogous to a critical phenomenon at N ® ¥…it is 

something like a critical thermodynamic limit” (Hermann 1986, 157). Moreover, like the 

critical exponents involved in the universality of phase transitions in physics, the universal 

limiting behaviors of these growth models depend on various critical exponents of the 

dynamical equations of the system. 

Although the Eden model has been widely used to explain various kinds of biological 

growth, the model involves a plethora of idealizing assumptions. Here is how Eden discusses 

his original model: 

It has been necessary to make a large number of simplifying and special assumptions so that 
the resemblance between the model and the growth of any complicated metazoan or 
specialized organ or tissue is slight. We shall assume that each cell is identical with every 
other cell, that each cell is connected to at least one other cell, that the location of each cell is 
specified by a node in some regular lattice. For purposes of simplicity the model will be 
restricted to two dimensions. Any migration of cells, differentiations into specialized cell 
types, variations in cell size, and simpler properties of organisms will be neglected. Indeed, 
cells will be assumed immortal and a very special time-to-division distribution function is 
used. (Eden 1961, 224-25, my emphasis) 

In other words, the model distorts most of the features of any real biological growth process 

(e.g. the cells, their interactions, the structural features of the population, etc.), and instead 
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focuses on the influence of the overall topological structure of the system on the features of 

the cluster in the limit. As a result, the model provides little, if any, accurate information 

about the causes that give rise to these growth patterns in actual biological systems. Indeed, 

the model explicitly ignores or directly distorts features that the scientific modelers know 

make a difference to how actual biological growth processes develop.  

What is striking is that across a diverse range of biological and non-biological cases, 

many features of the growing population can be explained by appealing to the universal 

limiting behaviors of Eden growth models. For example, Eden growth models have been 

used to model epidemics (Alexandrowicz 1980), the spread of forest fires, (Zhang et al. 

1992), and urban growth (Benguigui 1995). This wide range of application is possible 

because the Eden model is in the same universality class as many actual growth processes.  

Specifically, the Eden model is one of a handful of growth models that have been 

shown to be in the Kardar-Parisi-Zhang (KPZ) universality class (Kardar, Parisi, and Zhang 

1986). This class of systems is governed by the Kardar-Parisi-Zhang growth equation: 

𝜕ℎ
𝜕𝑡 = 𝜈∇'ℎ +

𝜆
2 (∇ℎ)

' + 𝐹 + 	𝜂(𝑥, 𝑡) 
 
where v is the damping coefficient, λ is the growth parameter, F is constant drift, and η is an 

uncorrelated white noise. As Kardar, Parisi, and Zhang explain, their proposal of this 

modeling equation was “guided by the idea of universality” and sought to “write down the 

simplest nonlinear local differential equation governing the growth of the profile to such 

processes as vapor deposition or the Eden model” (Kardar, Parisi, and Zhang 1986, 889). 
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While modelers are still working out the details of this universality class, the following 

features have been identified as important for membership in the KPZ class (Corwin 2016, 

233):  

Locality: Changes depend only on neighboring sites. 

Smoothing: Large valleys are quickly filled in. 

Nonlinear slope dependence: Vertical effective growth rate depends nonlinearly on 

local slope. 

Space-time independent noise: Growth is driven by noise which quickly decorrelates 

in space and time and does not display heavy tails. 

Identifying this set of features is key to delimiting the universality class and understanding 

how the limiting behaviors of interest counterfactually depend on these minimal features.2 

Moreover, finding this universality class and the features important for membership also 

identifies clear links between the minimal features included in the model system(s) and many 

real-world cases of biological growth. As Ivan Corwin explains, “a variety of physical 

systems and mathematical models, including randomly growing interfaces, certain stochastic 

PDEs, traffic models, paths in random environments, and random matrices all demonstrate 

the same universal statistical behaviors in their long-time/large-scale limit. These systems are 
 

2 The Eden model is an extremely minimal model. However, just because it is a minimal model does not mean 

the explanation provided is a minimal model explanation. For details see Batterman and Rice (2014).   
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said to lie in the Kardar-Parisi-Zhang (KPZ) universality class” (Corwin 2016, 230). What 

this means is that, despite drastic differences in their physical components, causes, 

mechanisms, and interactions (or in the case of the Eden model, the complete neglect of most 

of these features), these various real, possible, and model systems will all display similar 

patterns of limiting behavior. 

In a more specific application, Bonachela et al. (2011), found that in the case of 

bacterial growth, “Similar values for the exponents measured in different bacterial strains 

indicate that, despite the varying microscopic details and interactions specific to each 

strain, ...they show the same universal behavior” (307). A large part of demonstrating that 

their theoretical growth model is in a universality class that includes their target system(s) 

involves matching the systems’ critical exponents. The characteristic critical exponents of the 

KPZ universality class are a dynamic scaling exponent z = 3/2, a growth exponent b = 1/3, 

and a fluctuation (or roughness) exponent a = 1/2 (Bonachela et al. 2011, 307). In 

discovering the match between these critical exponents, these modelers determined that their 

growth model and many actual system(s) of bacterial growth are likely part of the KPZ 

universality class (Bonachela et al. 2011, 307).  

However, while they suggest that some bacterial colonies are likely within the KPZ 

universality class, they found that one of the critical exponents of their bacterial colonies did 

not reliably match the exponents of their idealized model within the KPZ class. As a result, 

they looked for a model in an alternative universality class that could capture all the 

observed critical exponents. This shift to a new universality class was achieved by 
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constructing an idealized growth model in which the thermal noise was replaced by a 

quenched noise. This resulted in the discovery of a universality class they refer to as the 

quenched KPZ universality class (qKPZ) (Bonachela et al. 2011, 311). They then used this 

universality class’s inclusion of their idealized model and the real bacterial colonies in order 

to justify drawing explanatory inferences from their idealized growth model.  

In sum, showing that their idealized growth models are in the same universality 

classes as various real-world bacterial systems is what justifies their use of these highly 

idealized models to explain various limiting patterns of bacterial growth—even if the models 

and the various real-world systems display those limiting patterns because of very different 

causes, mechanisms, and interactions. Moreover, by identifying these universality classes, 

these modelers were able to identify several features that the large-scale limiting behaviors of 

bacterial growth depend on. For example, they found that the universal behaviors of interest 

depend on the kind of noise involved in the system. Changing this feature results in the 

system being in a different universality class that will display different limiting behaviors. 

Furthermore, their investigation of idealized models within various universality classes 

demonstrated that the limiting behaviors they are interested in depend on the system’s critical 

exponents and fractal dimension. This dependence information is crucial to explaining why 

those limiting behaviors occur across the diverse systems included in the universality class. 

Discovering these universality classes also helped these modelers determine features 

of the system(s) that are irrelevant to the universal behaviors of interest. For example, they 

found that “irregular cell shape, long-range cell motility, and extracellular compounds are not 
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necessary for our idealized cell groups to exhibit the same universal behavior as real bacterial 

colonies.” (Bonachela et al. 2011, 313). In other words, investigation of the models within 

this universality class was also able to reveal explanatory information about the irrelevance 

of many features to the occurrence of the explanandum. As a result, by showing that their 

idealized models are in the same universality class as real bacterial colonies, these modelers 

were able to justifiably use their pervasively distorted idealized model to provide explanatory 

information about why we see the same limiting behaviors in various real systems. 

While I have focused on just one case, the use of universality classes to justify the 

use of idealized models to explain has been employed by many scientific modelers. For 

example, Thomas Gisiger claims that: 

Universality has been described as a physicist’s dream come true. Indeed, what it tells us is 
that a system, whether it is a sample in a laboratory or a mathematical model, is very 
insensitive to details of its dynamics or structure near critical points. From a theoretical point 
of view, to study a given physical system, one only has to consider the simplest mathematical 
model possibly conceivable in the same universality class. (Gisiger 2001, 173) 
 

Gisiger then suggests that, “This argument can be extended to evolution and ecology… One 

just has to consider the simplest model conceivable in the same universality class as the 

ecosystems.” (Gisiger 2001, 191). In addition, in defense of agent-based models (ABM) in 

economics Parunak et al. suggest: 

To an unbiased observer, [these models’] success seems almost magical…leading some users 
to hesitate in trusting the results. Universality helps explain this unreasonable success…The 
existence and widespread manifestation of universality can help build confidence in ABMs, as 
well as guide in their refinement as users gain experience in how universality manifests itself 
in specific configurations. (Parunak et al. 2004, 936) 

 

In short, identifying universality classes and understanding the details of various instances of 
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universality can justify the use of highly idealized models that drastically distort the 

difference-making causes of the explanandum.  

5. Conclusion 

In light of these cases, I suggest that philosophers of science investigate the ways 

scientists use universality classes to justify their uses of idealized models to explain and 

move away from relying exclusively on the accurate representation requirements derived 

from general philosophical accounts of explanation. Doing so will better capture the 

justifications that should be, and are, offered by scientific modelers and will help develop 

a more pluralistic account of the model-world relationships that can be used to justify 

appeals to idealized models to explain. 
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