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ORDINARY MODULAR FORMS AND COMPANION POINTS
ON THE EIGENCURVE

JOHN BERGDALL

Abstract. We give a new proof of a result due to Breuil and Emerton which

relates the splitting behavior at p of the p-adic Galois representation attached
to a p-ordinary modular form to the existence of an overconvergent p-adic

companion form for f .

1. Introduction

The goal of this paper is to give a new proof of the theorem due to Breuil and
Emerton [BE, Theorem 1.1.3] that the critical refinement of a p-ordinary modular
form f has a companion form g if and only if the p-adic representation attached to f
is split at p. The original proof of Breuil and Emerton uses rigid analytic geometry
to explicitly construct an overconvergent p-adic companion form in the cohomology
of modular curves. The proof given here, on the other hand, uses completely
different tools. Our technique is to view f in a p-adic family on the eigencurve
and study how Galois theoretic properties, namely the Hodge-Tate weights, vary
infinitesimally. The argument we give may be summarized by saying that p-ordinary
forms which are split at p are distinguished from other points by the presence of
ramification of the eigencurve over the weight space. In the introduction we will
give a precise statement of the theorem, an indication of the proof and a comparison
of this proof to prior ones.

Fix a prime p. Let f be a normalized cuspidal newform of level Γ1(Npr) with
(N, p) = 1 and r ≥ 0 an integer. Let k ≥ 2 be the weight of f and denote by ε its
nebentypus character. In this notation, N is known as the tame level of f . We will
write the q-expansion of f at infinity as

∑
n≥1 an(f)qn. It is well known that there

exists a Galois representation

ρf : GQ,Np → GL2(Qp)

uniquely characterized by the fact ρf is unramified at ` - Np, and for such ` the
characteristic polynomial of the image of a geometric Frobenius element ρf (Frob`)
is X2− a`(f)X + `k−1ε(`). The representation ρf is irreducible, de Rham at p and
crystalline at p if r = 0.

Recall that we say that f is ordinary at p if ap(f) is a p-adic unit. An equiva-
lent criterion is that the representation ρf,p := ρf

∣∣
GQp

is ordinary in the sense of
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2 JOHN BERGDALL

Greenberg, i.e. up to a change of basis we have that

ρf,p =
(
η ∗

η−1χ1−k
p

)
where η is an unramified character and χp is the p-adic cyclotomic character. Since
ordinary representations are by definition reducible, it is natural to ask when such
representations are split. The criterion of Breuil-Emerton gives necessary and suf-
ficient conditions for ρf being split at p in terms of overconvergent p-adic compaion
forms. In order to explain this, we also have to briefly recall (but see the beginning
of §2 for more) the setup of the eigencurve.

Let Γ := Γ1(N) ∩ Γ0(p) and H be the abstract Hecke algebra generated by the
operators (T`)`-Np, Up and (〈a〉)a-Np for the group Γ. The tame level N eigencurve
C is a rigid analytic curve equipped with a locally finite and flat map κ : C →
W := Hom(Z×p ,Gm). A point x ∈ C(Qp) of weight κ(x) corresponds to a finite
slope system of eigenvalues, denoted x : H → Qp, for the Hecke algebra acting on
the space M†κ(x)(Γ) of overconvergent p-adic modular forms of weight κ(x). Given
a point x ∈ C(Qp) such that log κ(x) = k ≥ 2 is an integer, we say that x has
a companion point on C if there exists a point z ∈ C(Qp) such that pk−1z(Up) =
y(Up), `k−1z(T`) = y(T`) for all primes ` - N and z(〈a〉) = y(〈a〉). For example, if
f ∈ Sk(Γ) is in the image of θk−1 : M†2−k(Γ)→ S†k(Γ) then the corresponding point
on C has a companion point.

Now let f again be a p-ordinary classical newform of level Γ1(Npr), weight k ≥ 2
and nebentypus ε. Well known constructions (see §2 for details) produce a point
xf,crit ∈ C(Qp) with the following property: xf,crit arises from a classical eigenform
f̃ ∈ Sk(Γ) whose Galois representation ρ ef differs from ρf by at worst a finite order

character and such that f̃ has slope k− 1 in the sense that vp(ap(f̃)) = k− 1. The
following theorem describes those f for which ρf is split at p.

Theorem 1.1. Let f be as above. The following are equivalent:

(a) ρf is split at p;
(b) xf,crit has a companion point;
(c) the map κ : C → W is ramified at xf,crit.

With the result made precise, let us give a short history of the result and a
recollection of previous techniques. First, Theorem 1.1 is the characteristic zero
analogue of Gross’ famous result [Gro] relating the splitting behavior of ρf mod p
to the existence of companion forms modulo p in the sense of Serre. Essentially,
a classical eigenform g is produced so that θk−1(g) and f have congruent Hecke
eigenvalues modulo p. We note that the mod p result is separate from ours and
cannot be deduced from Theorem 1.1.

Under some technical hypotheses, progress towards characteristic zero compan-
ion forms was made by Ghate [Gha], building on the work of Buzzard-Taylor [BT].
The techniques there are to lift Gross’s theorem to the characteristic zero setting
via Λ-adic families using Mazur’s deformation theory of Galois representations, but
in a way which is quite different to ours. The first complete proof of the theorem
is due to Breuil and Emerton [BE, Theorem 1.1.3] and uses tools close to those of
Gross, but in characteristic zero. Thus, it can be said that in both the mod p or



ORDINARY MODULAR FORMS AND COMPANION POINTS ON THE EIGENCURVE 3

characteristic zero settings one finds that studying p-adic cohomology and rigid an-
alytic geometry play a central role. While our proof takes place on a rigid analytic
curve, the tools we use are quite different. We proceed in three steps:

(1) First, we view f̃ in a rigid analytic family of finite slope eigenforms (the eigen-
curve C) by constructing the point xf,crit.

(2) Second, we relate the splitting behavior of the representation ρf at p to the
(lack of) infinitesimal varation of C relative toW near xf,crit via the deformation
theory of Galois representations.

(3) Finally, we explain how the (lack of) infinitesimal variation of the weight is
related to companion points via the geometry of the eigencurve over the weight
space.

The point (1) is the construction of the eigencurve [CM], [Buz]. If we wish to avoid
modular curves and cohomology then we can substitute ideas of Stevens, exposed
in [Bel2, §3], for a construction using overconvergent modular symbols. The key in
(2) is essentially a result of Kisin [Kis] on the analytic continuation of crystalline
periods and its extension to infinitesimal deformations implicit in loc. cit. and
explicit in Belläıche-Chenevier [BC1, BC2]. The point (3) is probably well known,
though we make small remarks in the case that r > 0.

The aware reader might note that the result in [BE] is slightly more precise than
ours in a subtle way which we now will make clear. To fix some terminology, let us
say that f̃ has a companion form if there exists a g such that θk−1g = f̃ . Working
with the notation as above, one could consider the following three properties:

(a) ρf is split at p;
(b) xf,crit has a companion point;
(c) f̃ has a companion form.

Among these three, we prove that (a) and (b) are equivalent whereas [BE, Theorem
1.1.3] says that (a) and (c) are the same. While (c) evidently implies (b), the
converse is unclear. However, the a priori difference between (b) and (c) is only
an issue at primes ` | N and not important in practice. For example, as far as the
application to the p-adic local Langlands correspondence in [BE, §5] is concerned,
one needs to only know that (b) and (a) are equivalent (see [BE, Proposition 5.4.4]).
One could also directly deduce (c) from (b) if N = 1, or by constructing eigencurves
using the Hecke operators (U`)`|N , or by assuming that H1

g (GQ, ad ρf ) = (0) (which
is conjectured to always be true) and using the techniques of [Bel2] to see that
certain eigenspaces are one-dimensional (see Theorem 4, loc. cit.).

Finally, as we mentioned in the previous paragraph, Theorem 1.1 has already
been applied to local-global compatibility in the p-adic local Langlands correspon-
dence for GL2(Qp). One of the reasons for giving this exposition is that the ar-
guments given here can be generalized to relate the splitting behavior of certain
automorphic Galois representations at p to the ramification of definite unitary eigen-
varieties over weight spaces, and to the theory of “companion forms” [Jon], [Che2,
§4] in this setting. This is the focus of future work. It is possible that this, in turn,
could play a role in verifying recent conjectures [BH] for local-global compatibility
in the (still undefined!) p-adic Langlands program for GLn(Qp).
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2. Proof of Theorem

2.1. The eigencurve and construction of xf,crit. Let N be a positive integer
and p a prime number such that p - N . We will be interested in the tame level N
p-adic eigencurve C(N) = C. Let Γ := Γ1(N) ∩ Γ0(p) and we will recall what C is.
First, we denote by W the p-adic weight spaceW := Homgrp-cont(Z×p ,Gm). This is
a rigid analytic space and the Cp-points are a disjoint union of p−1 open unit discs
in Cp. Fix an affinoid subdomain W = Sp(R) ⊂ W and a real number ν ≥ 0. The
inclusion W ⊂ W gives a tautological character κ]R : Z×p → R×. Coleman [Col2]
has constructed a finite projective module M†R,≤ν(Γ) consisting of overconvergent
p-adic modular forms of weight κ]R over R and slope at most ν for the group Γ. In
the case that R = L is a field then κ] = κ]L : Z×p → L× is a Serre weight and we
will denote the module M†L,≤ν(Γ) by M†

κ],≤ν(Γ). There are also cuspidal version
S† of each of the modules M†.

Let TR,≤ν be the subalgebra of EndR(M†R,≤ν(Γ)) generated by the image of the
Hecke algebra H = Z[(T`)`-Np, Up, 〈a〉] for the group Γ. This is an finite R-algebra
(thus a Qp-affinoid) and we let CW,≤ν = Sp(TR,≤ν) be the associated rigid analytic
space in the sense of Tate. The points are in bijection with the closed points of
Spec(TR,≤ν), though we give an explicit description of some points below. We
remark as well that CW,≤ν is reduced (see [Bel2, Theorem 3.30]). The structure
map R→ TR,≤ν defines a map κ : CW,≤ν → W which we call the weight map. As
pointed out earlier, κ is finite and flat.

The eigencurve C together with the weight map κ : C → W is constructed via a
gluing process which is quite delicate in general. The case N = 1 is is carried out
in [CM] and the case N > 1 in [Buz]. Since our questions here are local in nature
on C (and W) we will content ourselves with the above summary. However, to
make notation easier and supress inconsequential choices, we work with the global
object C. Replacing M† by the cuspidal version S† one could also construct local
spaces C0

W,≤ν whose points correspond to systems of Hecke eigenvalues appearing
on the modules S†R,≤ν(Γ) of cuspidal overconvergent modular forms. Let C0 ⊂ C be
the corresponding global object. To make precise our normalization in all of this,
let us declare that if x ∈ C(L) is a system of eigenvalues appearing in a space of
cuspforms S†k(Γ) then κ(x) = zk ∈ Z ⊂ W(L). With this normalization one can
think of the element in the weight space as corresponding, up to a shift by −1, to
the Hodge-Tate weight of the point (cf. Lemma 2.3). We have the following explicit
description of the local cuspidal pieces of the eigencurve.

Proposition 2.1. Let L be a field and κ] ∈W (L). There is a bijection

x_

��

κ−1(κ]) =
{
x ∈ C0

W,≤ν(L) : κ(x) = κ]
}

OO

��

T 7→ T (x) : H → L
{

systems of eigenvalues of H appearing in S†
κ],≤ν(L)

}
.

We now recall the construction of many points attached to classical modular
forms. We include the proof of the following proposition for the convenience of the
reader since it includes the specification of the form f̃ and thus what will become
the point xf,crit.
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Proposition 2.2. Fix a newform f ∈ Sk(Γ1(Npr), ε). Write the q-expansion
at infinity as f =

∑
n≥1 an(f)qn. Suppose that ap(f) 6= 0 and r = vp(cond ε).

Decompose ε = εpε
p into its p-part εp and its prime-to-p part εp. Then, there

exists two points x1,f and x2,f on C0 such that

T`(x1,f ) = T`(x2,f )εp(`) (if ` - Np)

Furthermore,
(a) If r = 0 then {Up(x1,f ), Up(x2,f )} are the two roots of the Hecke polynomial

X2 − ap(f)X + pk−1ε(p) attached to f .
(b) If r > 0 then Up(x1,f ) = ap(f) and Up(x2,f ) = pk−1εp(p)/ap(f).

In any case, Up(x1,f )Up(x2,f ) = pk−1εp(p).

Proof. The case of r = 0 goes back at least to [Maz2]. Let X2 − apX + pk−1ε(p)
be the characteristic polynomial for the operator Tp. It has two roots α and β in
Q. Then, the two forms

fα(z) := f(z)− βf(pz)

fβ(z) := f(z)− αf(pz)

are eigenforms on the group Γ. One immediately checks that system of eigenvalues
determined by fα and fβ is the same as f away from p. At p, Upfα = αfα and
Upfβ = βfβ . The nebentypus of f , which is trivial at p, remains unchanged. These
are our two points x1,f and x2,f .

Now assume that r > 0. View εp as a character of Z×p and let κ](z) = zkεp(z)
for z ∈ Z×p . Then we have an inclusion Sk(Γ1(Npr), ε) ⊂ S†

κ]
(Γ0(pr) ∩ Γ1(N), εp)

(notice the change in the weight). The theory of the canonical subgroup may be
used to make an identification between spaces of Coleman’s overconvergent forms

S†
κ]

(Γ0(pr) ∩ Γ1(N))fin.slope = S†
κ]

(Γ)fin.slope.

Thus, we see that the form f produces a finite slope system of eigenvalues for the
Hecke algebra acting on the space S†

κ]
(Γ). Call the corresponding point on C0 the

point x1,f .
To produce the other point x2,f we use a technique we learned from [Gha, §6]

(but see also [BE, §4] for the representation-theoretic description). The point is
that for an integer k there is an isomorphism

wpr : Sk(Γ1(Npr), ε)
∼=−→ Sk(Γ1(Npr), εpε−1

p )

given by an Atkin-Lehner operator wpr . It preserves newforms up to constants and
the normalized newform f̃ on the right hand side corresponding to f has the system
of Hecke eigenvalues

a`(f̃) =

{
pk−1εp(p)/ap(f) if ` = p,

a`(f)ε−1
p (`) if ` 6= p.

Here we used our assumption that ε was primitive modulo pr. The system of
eigenvalues corresponding to f̃ then produces a point x1, ef =: x2,f by the previous
paragraph. The identities in the statement of the proposition follow. �

The construction has the following consequences for Galois representations. By
constructions of Eichler-Shimura and Deligne we know that to a newform f ∈
Sk(Γ1(Npr), ε) we can associate a Galois representation ρf : GQ,Np → GL2(Qp)
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such that if ` - Np then ρf is unramified at ` and ρf (Frob`) has characteristic
polynomial X2 − a`(f)X + `k−1ε(`). Below we describe how to interpolate these
representations to get representations ρx attached to each point x ∈ C(Qp) of the
eigencurve. By looking at the first statement made in the above proposition we
immediately deduce that ρx1,f

and ρx2,f
are equal up to a twist by a finite order

character. In the case where f has no level at p, ρx1,f
= ρx2,f

on the nose.
Now suppose that f is ordinary at p and r = vp(cond ε). By definition then,

vp(ap) = 0. Using the final statement of Proposition 2.2 we have points xi,f such
that vp(Up(x1,f ))+vp(Up(x2,f )) = k−1. Without loss of generality vp(Up(x1,f )) = 0
(Proposition 2.2(b) forces this if r > 0). Thus, vp(Up(x2,f )) = k − 1 and we say
x2,f is a point on C0 of critical slope. In the notation of the proof of Proposition
2.2 we have that f̃ = fβ in the case r = 0.

Definition. If f is ordinary at p and r = vp(cond ε) let xf,crit ∈ C0 be the point
x2,f of critical slope constructed above.

We now have all the information we need to understand Theorem 1.1. We remark
immediately that we’ve only constructed/defined the point xf,crit for the f above
satisfying that ap 6= 0, and if r ≥ 1 then we had a condition the conductor of ε.
The ordinariness of the theorem subsumes the condition that ap 6= 0. However, one
could also have an ordinary form f which satisfies that r = 1 but ε = εp. In this
case, ρf,p will never be split and xf,crit will never have a companion point so the
theorem is a tautology (see the discussion in [Gha, §6]).

2.2. Infinitesimal variation of the weight. Up until now our setup is inspired
heavily by the setups in [Gha] and [BE]. We’ve constructed f̃ as they did but our
departure point comes in the proof of Theorem 1.1. It will follow from considering
the infinitesimal deformation theory of the refined family of Galois representations
on C in the sense of [BC2, Ch. 4]. We quickly recall the main points.

For now we let x ∈ C0(Qp) be a very1 classical point in the sense that x is
one of the points {xi,f}i=1,2 constructed in the r = 0 case of Proposition 2.2. We
denote by Z all of the very classical points. Let ρx be the Galois representation
ρf = ρx : GQ,Np → GL2(Qp) attached to f . This is independent of x = xi,f by
the remarks proceeding Proposition 2.2. Since the levels are prime to p, all the
representations {ρx}x∈Z(Qp) are crystalline at p. Each of the representations ρx
is absolutely irreducible. Furthermore, it is well known that D+

cris(ρx)ϕ=Up(x) 6= 0
(see [Sch, Theorem 1.2.4(ii)]).

For any such x we have a Galois pseudocharacter Tx : GQ,Np → Qp given by
Tx(g) = tr(ρx(g)). It follows from [Che1, Prop. 7.1.1] that there is a unique
pseudocharacter T : GQ,Np → O(C) such that for any x as before we have evx ◦T =
Tx. In particular, moving to a point x /∈ Z then a theorem of Taylor [Tay, Theorem
1(2)] gives us a unique semi-simple representation ρx : GQ,Np → GL2(Qp) such
that tr(ρx) = evx ◦T . We refer to the representations {ρx}, or equivalently the
pseudocharacter T , as the family of Galois representations on C. We pause here to
describe the only ingredient left in seeing the eigencurve as a refined family in the
sense of [BC2, Ch. 4]. By the previous constructions and Sen’s theory in families,

1This terminology is due to Belläıche and will appear in the forthcoming book [Bel1]. The
other points constructed in Proposition 2.2 are called Hida classical points in loc. cit. Together

they make up all the classical points.
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there is an analytic function s : C → A1 so that at a point x ∈ C(Qp) the p-adic
Sen weights of the representation ρx are given by 0 and s(x).

Lemma 2.3. Let κ : C → W be the weight map and s : C → A1 be the Sen map.
We have a commuting diagram

C
κ

��~~
~~

~~
~~ s

  
AA

AA
AA

AA

W −1+log
// A1

In particular, if x ∈ C(Qp) then the induced maps dκ, ds : TxC → L(x) on tangent
spaces are either both zero or both isomorphisms.

Proof. By [BC2, Lemma 7.5.12] it is only necessary to check this on Z. There,
though, we know that the weight map is normalized so that x ∈ Z is mapped to
the character z 7→ zk. On the other hand, the Sen weights of ρx are 0 and k−1. �

It is worth making a comment about the points xi,f of Proposition 2.2 where
r ≥ 1 since we excluded these points in Z. So, let f be a cuspidal newform
of level Γ1(Npr) with character ε = εpε

p. In the proof of Proposition 2.2 we
found the system of Hecke eigenvalues attached to f in the Hecke module S†

κ]
(Γ)

where κ] = zkεp. The proof of the lemma in this case is that since εp is a finite
order character, it vanishes under the logarithm. So, we see then that such points
correspond to elements in C0(Qp) whose weights are not of the form zN but whose
Sen weights are integers.

Following the lemma, we can say that (T, κ,Z, (Up, U−1
p )) gives the data of a

family of refined Galois representations on C in the sense of [BC2, Ch. 4]. In
particular, their extension [BC1, Lemma 6], [BC2, Theorem 4.3.2] of Kisin’s result
[Kis, Theorem 6.3] applies to our situation and we have the full analytic continuation
of crystalline periods, which we now recall.

From now on, we let x be a point corresponding to a classical cuspidal newform
of weight k (though not necessarily the r = 0 case). We will eventually apply what
we say to x = xf,crit and we invite the the reader to make that specializiation now.
Since k 6= 1, the Sen weights of ρx are the distinct integers 0 < k − 1. We denote
by Ax := OC,x the local ring of C at x. Its residue field we denote by L(x). Since
ρx is absolutely irreducible and Ax is Henselian, the theorem of Nyssen-Rouquier
[Rou, Corollarie 5.2] implies that there is a unique two dimensional semisimple
representation ρx : GQ,Np → GL2(Ax) such that ρx⊗Ax L(x) = ρx. If I ⊂ Ax is an
ideal of cofinite length then the analytic continuation of crystalline periods implies
that D+

cris(ρx
∣∣
GQp
⊗Ax Ax/I)ϕ=Up is free of rank one over Ax/I.

If ARL(x) is the category of local Artin L(x)-algebras with residue field L(x)
then we let Xρx : ARL(x) → Set be the formal deformation functor in the sense of
[Maz1] for ρx. Since ρx is absolutely irreducible, this functor is pro-representable
by a complete local noetherian ring Rx with residue field L(x). We have as well
the functor Xρx,p where ρx,p := ρx

∣∣
GQp

. Notice that in the situation of Theorem
1.1, ρx,p will be split and thus Xρx,p will not be representable. Nevertheless, we

consider the subfunctor XUp(x)
ρx,p

⊂ Xρx,p first appearing in [Kis, §8], defined as

X
Up(x)
ρx,p

=
{
ρA ∈ Xρx,p(A) : D+

cris(ρ)ϕ=U is free of rank one for some U ≡ Up(x) mod mA

}
.
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By [Kis, Prop. 8.13] the functor XUp(x)
ρx,p

is relatively representable over Xρx,p and
thus the fibered product

X
Up(x)
ρx

:= Xρx ×Xρx,p X
Up(x)
ρx,p

is pro-representable by a complete local noetherian ring R
Up(x)
x with residue field

L(x) and which is a quotient of Rx.
The representation ρx appearing on the local ring of the eigencurve defines a

map Rx → Ax and by the theorem on analytic conintuation of crystalline periods
it must factor through the quotient RUp(x)

x . Since Ax is generated by the Hecke
operators (including Up) and the weight map, Ax is a quotient of RUp(x)

x .
Let Tx denote the Zariski tangent space Xρx(L(x)[ε]) associated to the defor-

mation functor ρx. It has a subspace TUp(x)
x = X

Up(x)
ρx

(L(x)[ε]) corrsponding to

the functor XUp(x)
ρx

. If x̃ ∈ Tx is a point we let ρex : GQ,Np → GL2(L(x)[ε]) be
the corresponding deformation. The following proposition details the infinitesimal
variation of at least one of the weights.

Proposition 2.4. Suppose that the line D+
cris(ρx)ϕ=Up(x) ⊂ D+

cris(ρx) has induced
Hodge-Tate weight b ≥ 0. Then b is a constant Sen weight of ρex for any x̃ ∈ TUp(x)

x .

Remark. Notice that a priori ρex has a Sen weight of the form b+b(x̃)ε. By constant
weight we mean that b(x̃) = 0.

Proof. Suppose that D+
cris(ρx,p)

ϕ=Up(x) has Hodge-Tate weight 0. In this case, it

follows from [BC2, Proposition 2.5.4] that for any A, any deformation in XUp(x)
ρx

(A)
will have a Sen weight zero.

If b 6= 0 then ρx,p must be split because it is potentially semi-stable. Unlike
before, we really must work only at the level of tangent spaces. The proof follows
the key compuation in [Bel2, Theorem 2.6], but we include it for the convenience
of the reader. The Zariski Tx tangent space is well known to be identified with the
cohomology space H1(GQ,Np, ad ρx) and the restriction map defines a morphism
Tx → H1(GQp , ad ρx,p). Since the Sen weights only depend on ρex,p it suffices to
consider its image there.

Let us write ρx,p = χ1⊕χ2 with χ2 crystalline of weight b and D+
cris(χ2)ϕ=Up(x) 6=

0. We have a decomposition

H1(GQp
, ad ρx,p) =

2⊕
i,j=1

H1(GQp
, χiχ

−1
j ) =

2⊕
i,j=1

Ext1
L(x)[GQp ](χi, χj).

On the other hand, if DSen is Sen’s functor then we have

H1(GQp , ad ρx,p)
DSen // H1(Γ∞, adDSen(ρx,p))

⊕2
i,j=1 Ext1

L(x)[GQp ](χi, χj)
⊕DSen //

⊕2
i,j=1 Ext1

L(x)[Γ∞](DSen(χi), DSen(χj))

where Γ∞ is the p-cyclotomic quotient of GQp . Since χ1 and χ2 have distinct
weights, an easy computation shows that if i 6= j then the (i, j) term in the lower
right sum disappears. Furthermore the weight of χi is constant in a deformation
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ρex,p if and only if its image in Ext1
L(x)[Γ∞](DSen(χi), DSen(χi)) is zero. We now

proceed to show this for i = 2.
We consider the left vertical equality above. If x̃ ∈ TUp(x)

x then it follows that
the image of x̃ under the map

H1(GQp
, ad ρx,p)→ Ext1

L(x)[GQp ](χ2, χ2)

lands inside the subspace Ext1
L(x)[GQp ],cris(χ2, χ2) consisting of cystalline L(x)[ε]-

valued characters deforming χ2. In particular, since such a character is Hodge-Tate
it vanishes under the composition of the bottom horizontal map. Thus we have
shown our claim. �

2.3. Ramification above the weight space and companion points. The fi-
nal ingredient in the proof of Theorem 1.1 is the relationship between between
Coleman’s θ-operator and companion points. Recall that while the operator θ :=
qd/dq acting on p-adic modular forms will in general not preserve overconver-
gence it does have the property that θk−1 will take a finite slope overconvergent
form of weight 2 − k to a finite slope overconvergent form of weight k. Relevant
for us is Coleman’s study [Col2, Col3] of the relationship between the cokernel
M†k(Γ1(Npr))/θk−1M†2−k(Γ1(Npr)) and spaces of classical modular forms.

If r ≥ 1 denote by Sprim
k (Γ1(Npr)) the subspace of Sk(Γ1(Npr)) spanned by

forms of level Γ1(Npr
′
) with r′ ≤ r and whose nebentypus at p has conductor ex-

actly pr
′
. If r = 0 we define Sprim

k (Γ1(N)) to be the subspace of Sk(Γ1(Np)) spanned
by the p-old forms. Following Coleman, we denote by S†,0k (Γ1(Npr)) the subspace
of S†k(Γ1(Npr)) consisting of overconvergent forms which have trivial residues on
each supersingular annulus. If V is a vector space together with a linear action of
Up, we let V ν=a denote the Up-slope a subspace.

Proposition 2.5. For any 0 ≤ a ≤ k − 1 there is a short exact sequence of Hecke
modules

0→
(
M†2−k(Γ1(Npr))(detk−1)

)ν=a θk−1

−→ S†,0k (Γ1(Npr))ν=a → Sprim
k (Γ1(Npr))ν=a → 0.

Proof. If a < k − 1 then this follows from [Col2] for r = 0, 1 and [Col3] for r ≥
2. If r = 0 then the boundary case a = k − 1 is [Col2, Corollary 7.2.2] and
Coleman’s argument there may be adapted to handle r ≥ 1. For simplicity we only
sketch an argument when r = 1 and use [Col2, §8] for notation and reference. The
modifications for r ≥ 2 are made by making apparent adjustments and using [Col3].

We now impose the notation of [Col2, §8]. In particular, we have the parabolic
cohomology space Hpar(k − 2, p) which, by [Col2, Proposition 8.2], is realized as
the cokernel

S†,0k (Γ1(Np))/θk−1M†2−k(Γ1(Np)) ∼= Hpar(k − 2, p).

Our goal is to show that Hpar(k − 2, p) is isomorphic to Sprim
k (Γ1(Np)) as Hecke-

modules. We denote by wN , wp and wNp the Atkin-Lehner operators, depending
on fixed roots of unity, on the modular curve X1(Np) (wp already appeared in the
proof of Proposition 2.2).
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The space Hpar(k−2, p) is equipped with a natural pairing ( , )k (denoted ( , )∞k
by Coleman) and the adjoints of the Hecke operators at level Np are

(x
∣∣
〈`〉, y)k = (x, y

∣∣
〈`〉−1)k,(2.1)

(x
∣∣
T`
, y)k = (x, y

∣∣
〈`〉−1T`

)k, and

(x
∣∣
Up
, y)k = (x, y

∣∣
w−1
NpUpwNp

)k

([Col1, page 32] is a convenient reference). The dimensions of Hpar(k − 2, p) and
Sprim
k (Γ1(Np)) are the same by [Col2, Proposition 8.4] and, moreover, the natural

map ι : Sprim
k (Γ1(Np))→ Hpar(k−2, p) is an isomorphism in slope a < k−1 [Col2,

Lemma 8.7]. Finally, there are decompositions

Hpar(k − 2, p) = Hpar(k − 2)⊕Hnew
par (k − 2, p)

Sprim
k (Γ1(Np)) = Sprim

k (Γ1(N))⊕ Snew
k (Γ1(Np))

and [Col2, Theorem 7.2] says that Hpar(k − 2) is isomorphic to Sprim
k (Γ1(N)) as

Hecke-modules. Thus, it suffices to focus on the slope a = k − 1 subspaces of the
new components. Note that the Atkin-Lehner operator wp induces an isomorphism

wp : Snew
k (Γ1(Np))ν=k−1 ∼=−→ Snew

k (Γ1(Np))ν=0.

This will play the role of the isomorphism r from [Col2, p. 223]. If we denote by
U∗p the conjugate w−1

p Upwp then U∗pUp = UpU
∗
p = 〈p〉Npk−1 on the new subspace

Snew
k (Γ1(Np)). In particular, w−1

NpUpwNp = pk−1U−1
p as well. Using that ι is an

isomorphism in slope less than k−1, the formulas (2.1), and the formula for U∗pUp,
one checks the pairing

[x, y] := (x, ι(y
∣∣
wp

)
∣∣
wN

)k

is a Hecke-equivariant, perfect pairing between the spaces Hnew
par (k− 2, p)ν=k−1 and

Sk(Γ1(Np))new,ν=k−1, generalizing [Col2, Lemma 7.3]. �

We return to studying companion points. If x : H → Qp is a finite slope system
of eigenvalues and M is a Hecke module we use M(x) to denote the generalized
eigenspace for x. In this notation, we recall that x defines a point on the eigencurve
if and only if M†

κ]
(Γ)(x) 6= 0 for some κ] ∈ W.

Corollary 2.6. Let f be a p-ordinary newform of level Γ1(Npr), weight k ≥ 2 and
nebentypus ε where vp(cond ε) = r. The critical slope point xf,crit has a companion
point if and only if dimS†κ(xf,crit)

(Γ)(xf,crit) > 1.

Proof. Recall, as was mentioned in the proof of Proposition 2.2, that we have
identifications

S†k(Γ1(Npr), ε)fin.slope = S†εp⊗k(Γ0(pr) ∩ Γ1(N), εp)fin.slope = S†εp⊗k(Γ, εp)fin.slope.

Under these identifications, Proposition 2.5 shows that we have an exact sequence

0→M†εp⊗2−k(Γ)(detk−1)(xf,crit) → S†εp⊗k(Γ)(xf,crit) → Sk(Γ)(xf,crit) → 0.

By the theory of newforms, the quotient is one-dimensional. On the other hand,
xf,crit has a companion point if and only if the subobject in the sequence is non-
zero. �

Following this result, we can now give the proof of Theorem 1.1.
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Proof of Theorem 1.1. Let f be as in the theorem and let x = xf,crit be the asso-
ciated critical slope point on C. Since ρx = ρf up to a twist we can replace ρf by
ρx (recall the remarks proceeding Proposition 2.2).

The first step is to note that by [Bel2, Lemma 2.8(iii)], the length of the scheme-
theoretic fiber of κ at x is the same as the dimension of S†κ(x)(Γ)(x). Since the weight

map is locally flat, we get that κ is ramified at x if and only if dimS†κ(x)(Γ)(x) > 1.
By Corollary 2.6 we see that (b) and (c) are equivalent. We will now show that (b)
implies (a) and that (a) implies (c).

Suppose first that x has a companion point y. The point y corresponds to an
overconvergent p-adic modular form g and let g′ := θk−1(g). It is well known, for
example by [Kis, Theorem 6.6(ii)] or [Gha, Proposition 11] , that this implies that
ρg′ is split. But, the three representations ρg′ , ρg and ρx are all equal up to at
worst a twist. The first two are because θk−1 only twists the representation and
the first and third because they have the same Frobenius eigenvalues away from
Np. Thus ρx is split at p and (b) implies (a).

Now suppose that ρx is split and we will show that κ is ramified at x. For this
is enough to test whether or not the differential dκ : TxC → TwW of the weight
map is zero. To do this, we are going to make auxillary use of the abstract Galois
deformation theory. Consider the Zariski tangent space TUp(x)

x associated to the
deformation problem X

Up(x)
ρx

as in Proposition 2.4. The surjection R
Up(x)
x � Ax

induces an inclusion ι : TxC ↪→ T
Up(x)
x . Let x̃ ∈ TxC. By Lemma 2.3 we have a

way to compute dκ(x̃). What we do is look at ι(x̃) = ρex, which is a deformation
of ρx to L(x)[ε]. We then compute its two Sen weights a(x̃)ε and k − 1 + b(x̃)ε.
The map to the weight space is dκ(x̃) = b(x̃). Since x has slope k − 1 and ρx is
split, the Hodge-Tate weight of the line D+

cris(ρx)ϕ=Up(x) is k− 1. So, we can apply
Proposition 2.4 with b = k − 1. By that lemma, we have that every element of
T
Up(x)
x has constant weight k − 1 and thus b(x̃) = 0. �
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Astérisque (2009), xii+314.
[BE] Breuil, C. and Emerton, M. Représentations p-adiques ordinaires de GL2(Qp) et compat-
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