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PARABOLINE VARIATION OVER p-ADIC FAMILIES OF
(ϕ,Γ)-MODULES

JOHN BERGDALL

Abstract. We study the p-adic variation of triangulations over p-adic families of (ϕ,Γ)-
modules. In particular, we study certain canonical sub-filtrations of the pointwise trian-
gulations and show that they extend to affinoid neighborhoods of crystalline points. This
generalizes results of Kedlaya, Pottharst and Xiao and (independently) Liu in the case where
one expects the entire triangulation to extend. We also study the ramification of weight
parameters over natural p-adic families.
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1. Introduction

Let p be a prime number. Results, and questions, in the p-adic Langlands program may
be naturally phrased, or asked, by studying p-adic families of automorphic forms [17, 10].
Regarding p-adic automorphic forms in their own right, the variation of the associated (ϕ,Γ)-
modules is a central tool [2]. One recent result, see [24, 27], is that if a p-adic family of
(ϕ,Γ)-modules is pointwise completely reducible, i.e. a successive extension of rank one
objects, then it is also completely reducible in the family, at least generically. In language
perhaps known to the reader, and used in this paper, pointwise triangulations in p-adic
families extend to triangulations over open dense loci. This follows in the tradition of the
famous reducibility of local Galois representations over Hida families [29].
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2 JOHN BERGDALL

However, there are arithmetically interesting points which fail to lie in global triangulation
loci. The most concrete example is a point on the Coleman–Mazur eigencurve [13] corre-
sponding to the non-unit p-stabilization of a p-ordinary CM form. Such points lie in the
image of one of Coleman’s θ-maps [4] and the associated p-adic L-function exhibits curious
behavior [1].

The aim of this article is to give a detailed account of the variation of (ϕ,Γ)-modules near
classical points in p-adic families of automorphic forms, especially those which are known not
to lie in a global triangulation locus. Note: we will be concerned with (ϕ,ΓK)-modules for
K/Qp a finite extension, but for the purposes of the introduction we will assume K = Qp.
There is no loss of content, only notation.

1.1. Trianguline (ϕ,Γ)-modules. We use R to denote the Robba ring over Qp. It is the
ring consisting of analytic functions f converging on a p-adic half-open annulus r(f) ≤
|T | < 1, for some radius r(f) depending on f . There are continuous commuting actions of
a Frobenius operator ϕ and the group Γ ' Z×p .

A (ϕ,Γ)-module D is a finite free R-module equipped with commuting, R-semilinear
actions of ϕ and Γ, such that ϕ(D) generates D as a R-module (see [5]). The rank one
(ϕ,Γ)-modules are parameterized by continuous characters δ of Q×p . If δ is such a character
we denote the corresponding (ϕ,Γ)-module by R(δ).

A triangulation of a (ϕ,Γ)-module D is a filtration P•

0 = P0 ( P1 ( · · · ( Pd−1 ( Pd = D

by (ϕ,Γ)-submodules, such that each successive quotient Pi/Pi−1 ' R(δi) is a rank one
(ϕ,Γ)-module. The ordered tuple (δ1, . . . , δd) is called the parameter of P•. We say D
is trianguline if it may be equipped with a triangulation. Examples coming from Galois
representations show there may be many ways to triangulate a given D.

By the work of Fontaine, Cherbonnier-Colmez, Kedlaya and Berger, see [5], there is a
fully faithful embedding V 7→ Drig(V ) which associates a (ϕ,Γ)-module to each continuous,
finite-dimensional representation V ofGQp . If V is crystalline thenDrig(V ) is trianguline and,
generically, the triangulations of Drig(V ) are in bijection with the orderings of eigenvalues
for the crystalline Frobenius acting on Dcris(V ).

The global context of trianguline (ϕ,Γ)-modules, and thus this article, is spaces of p-adic
automorphic forms. It is a folklore conjecture, generalizing a conjecture of Fontaine and
Mazur [19], that an irreducible Qp-linear, finite-dimensional representation of the global
Galois group GQ which is

• unramified at all but a finite set of primes and
• trianguline at p

should (essentially) appear in a space of finite slope p-adic automorphic forms. A precise
statement was written down by Hansen recently, see [20, Conjecture 1.2.3]. The only known
result is due to Emerton and settles the question in dimension two, via local-global compati-
bility in the p-adic Langlands program for GL2/Q [17, Theorem 1.2.4(1)]. The converse, that
global representations attached to p-adic automorphic forms are trianguline at p is known
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in many situations by [24, 27], including eigenvarieties attached to definite unitary groups.
This plays a role in recent conjectures of Breuil [10] regarding aspects of the p-adic local
Langlands program for GLn(Qp) with n > 2.

1.2. Critical triangulations. The basic notions of p-adic Hodge theory (for example,
Hodge–Tate–Sen weights and crystalline objects) extend to the category of (ϕ,Γ)-modules.
If D = R(δ) then the Hodge–Tate–Sen weight is

wt(δ) = − ∂

∂γ

∣∣
γ=1

δ(γ).

If D is triangulated with parameter (δ1, . . . , δd) then the Hodge–Tate–Sen weights of D are
{wt(δi)}i=1,...,d. The following definition is key for the statement of our theorem. A more

general definition will be given in the text (see Section 3.2).

Definition 1.1. Let D be a crystalline (ϕ,Γ)-module with distinct Hodge–Tate weights k1 <
· · · < kd. If P ⊂ D is a saturated (ϕ,Γ)-submodule of rank i then P is called non-critical if
the lowest i weights {k1, . . . , ki} are the Hodge–Tate weights of P .

Note that D is always a non-critical (ϕ,Γ)-submodule of itself. We extend the notion of
non-critical to a triangulation P• by declaring a triangulation P• to be non-critical if Pi is
non-critical for each i. This agrees with the original definition of Belläıche and Chenevier
[2]. More generally, we have the following construction. If D is a crystalline (ϕ,Γ)-module
and P• is a triangulation then we define the non-critical indices

Inc = {i : Pi is non-critical} = {0 = i0 < i1 < i2 < · · · < is = d}

and a filtration (called a parabolization, rather than a triangulation, following Chenevier
[11])

P nc
• : 0 = P nc

0 ( P nc
1 ( · · · ( P nc

s = D

by declaring that P nc
j = Pij for j = 0, 1, . . . , s. In short, P nc

• only knows the non-critical
steps in the triangulation P•; it is called the maximal non-critical parabolization of P•.

1.3. Refined families and p-adic variation. Now suppose that X is a reduced rigid
analytic space over Qp. In Section 6.1 we will define and consider so-called refined families
(ϕ,Γ)-modules over X. For now it suffices to know that a refined family DX = {Dx}x is a
family of (ϕ,Γ)-modules over a relative Robba ring RX with the following properties:

• there exists continuous characters δi : Q×p → Γ(X,O)× and

• Zariski dense sets of points Xnc
cl ⊂ Xcl ⊂ X(Qp),

such that

• if x ∈ Xcl then Dx is crystalline with distinct Hodge–Tate weights and
• if x ∈ Xnc

cl thenDx is triangulated by a non-critical triangulation P•,x whose parameter
is (δ1,x, . . . , δd,x).
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Here, δi,x : Q×p → L(x)× is the character with values in the residue field L(x) obtained
by post-composing with the evaluation map at x. It follows from [24, Theorem 6.3.13] or
[27, Theorem 5.45] that in a neighborhood of a point x0 ∈ Xcl, each (ϕ,Γ)-module Dx is
triangulated by a triangulation P•,x, which is essentially canonical as long as x0 is sufficiently
generic (see Proposition 6.5). But note that the parameter of P•,x may (and will in critical
cases) differ from the natural choice (δ1,x, . . . , δd,x).

Our main result shows that despite the possible non-variation of the pointwise parameters,
the maximal non-critical parabolization of P•,x0 varies analytically. Strictly speaking, we only
defined P nc

•,x for certain points x ∈ Xcl but there is a way of extending the definition to every
point (which requires reference to the family).

Theorem A (Theorem 6.8). If DX is a refined family of (ϕ,Γ)-modules and x0 ∈ Xcl is
very ϕ-regular1 then there exists an open affinoid neighborhood x0 ∈ U ⊂ X and a filtration

0 = P nc
0 ( P nc

1 ( · · · ( P nc
s−1 ( P nc

s = D
∣∣
U

where each P nc
i is a refined family of (ϕ,Γ)-modules over U , such that P nc

i,x = P nc
i,U ⊗O(U)L(x)

for all x ∈ U .

The result is optimal in the following sense. If x ∈ Xcl is non-critical then the Hodge–Tate
weights of Pi,x are {wt(δ1,x),wt(δ2,x), . . . ,wt(δi,x)}. Thus for general x ∈ Xcl Sen’s theory of
Hodge–Tate weights in families [32] implies one can only hope that Pi,x extends to an affinoid
neighborhood of x provided the Hodge–Tate weights of Pi,x are {wt(δ1,x), . . . ,wt(δi,x)}, i.e.
Pi,x can only vary well in a family if it is a non-critical step in the triangulation at x.

The history of our result is relatively short. In the case where x0 is non-critical, so an entire
triangulation extends to affinoid neighborhoods, Theorem A has two independent proofs,
given essentially at the same time. One proof was given by Liu [27] using a generalization
of Kisin’s interpolation of crystalline periods [25, 2] over general affinoid bases. The other
proof was given by Kedlaya, Pottharst and Xiao [24] and relied explicitly2 on the finiteness of
Galois cohomology for families of (ϕ,Γ)-modules (also proven in [24]). Neither work makes
any general comment on what to expect at a general classical point, especially in the critically
triangulated case.

Our technique is inspired by the latter proof [24] and separate work of Liu emphasizing the
utility of torsion (ϕ,Γ)-modules [26]. To explain this, let’s recall the Kedlaya–Pottharst–Xiao
proof of Theorem A in the non-critical case.

Under mild regularity assumptions one can check, using the finiteness of Galois cohomology
in families, that Hom(ϕ,Γ)(RX(δ1), DX) is locally free of rank one near x0. Indeed, it may be
checked point-by-point, and essentially just at the point x0 and the points in Xnc

cl . Choose
an everywhere non-vanishing morphism e : RX(δ1) → DX . The non-critical hypothesis on
x0 means that the specialized morphism ex0 : R(δ1,x0) → Dx0 has saturated image and,
thus, coker(ex0) is free. An easy argument shows that one can shrink X so that coker(e) is

1This is a technical condition, and is the same as “sufficiently generic” above. See Definition 6.2.
2The author has been told that Liu’s work established some of these results, implicitly.
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a (ϕ,Γ)-module over X. The rest of the proof of Theorem A is carried about by induction
from this case.

A generalization of this strategy, to critical points, requires us to define an a priori candi-
date for the first step P nc

1 of the sought after parabolization. In the non-critical case P nc
1 is

handed to us on a platter as RX(δ1). However, there seems to be no easy way to guess P nc
1

ahead of time3.
The key feature of our proof is to embrace the non-saturatedness of the morphism ex0 in

the critical case. Thus we proceed by studying more general families of (ϕ,Γ)-modules whose
fibers haveR-torsion in them. We call such modules generalized (ϕ,Γ)-modules following Liu
[26]. In Section 3, we give a generalization of the notion of a triangulation of a generalized
(ϕ,Γ)-modules which is well-adapted to attacking Theorem A. The novelty of our proof is
the introduction of torsion into the fibers at every point in order to canonically describe a
candidate for coker(P nc

1 → D), thus producing P nc
1 as needed for Theorem A.

1.4. Ramification of weights. Let us finish by mentioning an auxiliary result we prove
here on the ramification of weights in refined families. Let DX be a refined family and

x0 ∈ Xcl. Consider the triangulation P•,x0 and denote its parameter by (δ̃1,x0 , . . . , δ̃d,x0). As

shown in the text, the lists of distinct weights
{

wt(δ̃i,x0)
}

and {wt(δi,x0)} are the same. Thus

we may define a permutation πx0 by the formula wt(δ̃i,x0) = wt(δπx0 (i),x0). We remark that
πx0 = id if and only if x0 is non-critical.

We now let Tx0X be the Zariski tangent space to X at x0. If f is the germ of a function at
x0 and v is a tangent vector, we let ∇v(f) denote the directional derivative of f with respect
to v. Our second theorem is that certain differences of weights are constant in every tangent
direction.

Theorem B (Theorem 7.1). If DX is a refined family over X and x0 ∈ Xcl is very ϕ-regular
then

∇v

(
wt(δπx0 (i),u)− wt(δi,u)

)
= 0

for all i = 1, . . . , d and v ∈ Tx0X. In particular, if x0 is critical then the weight map ramifies.

Theorem B was noticed independently by the author and Breuil. We reproduce an argu-
ment similar to [10, Théorème 9.7] in Section 7. Our proof will make use Liu’s results on
crystalline periods [27]. But we note that such a theorem could have been proven using only
the (infinitesimal) study of crystalline periods in the weakly refined families ∧iD (as in [2,
Section 4.3], for example) combined with deformation calculations similar to [4, Proposition
2.4].

3We thank Eugen Hellman for pointing out the following example which concretely illustrates the issue
involved. It is possible to construct two families of rank two of (ϕ,Γ)-modules D and D′, over certain
reasonable loci on a Coleman-Mazur eigencurve such that

• Du ' D′
u, and both are étale, for all u except one point u0 and

• Du0 is étale but D′
u0

is not.

Thus, even knowing that D is an extension of two characters on the complement of a point is not enough to
determine an extension over the puncture.
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1.5. Organization. Section 2 briefly recalls the theory of (ϕ,Γ)-modules and the important
theorems. Section 3 introduces triangulations and parabolizations, including a definition for
torsion (ϕ,Γ)-modules. Section 4 is a digression into the theorems of [24] and applications.
Section 6 contains our result on the variation of parabolizations in p-adic families, and Section
5 plays a supporting role. Finally we study the ramification of the weight parameters in
Section 7. A short appendix is included to deal with a “relative” version of Nakayama’s
lemma.

1.6. Notations and conventions. Throughout the text we will make the following con-
ventions. They will follow [24] closely.

We fix an algebraic closure Qp and a p-adic valuation on Qp so that |p| = p−1.
K will always denote a finite extension Qp. We let F be the maximal subfield of F

unramified over Qp, fK = (F : Qp) the inertial degree of K and eK the ramification index
of K.

We will let K∞ = lim−→n
K(ζpn) be the extension obtained by adjoining to K all the p-power

roots of unity. The maximal absolutely unramified subextension of K∞ is denoted by F ′.
If HK = Gal(Qp/K∞) then we define ΓK = GK/HK . The cyclotomic character ΓQp → Z×p
identifies ΓK with an open subgroup of Z×p .

Write ΣK for the set of all the embeddings K ↪→ Qp. Then L will always denote a finite

extension of Qp contained in Qp such that τ(K) ⊂ L for each τ ∈ ΣK . We allow L to change
at will. Note that L⊗Qp K '

∏
τ L and we denote by eτ the idempotent in L⊗Qp K which

projects onto the τ -component.

1.7. Acknowledgements. The author heartily thanks Rebecca Bellovin, Christophe Breuil,
Kiran Kedlaya, Ruochuan Liu, Rob Pollack and Liang Xiao for helpful discussions and ques-
tions regarding this work. A special thanks goes to Jay Pottharst for being readily available
to discuss his joint work with Kedlaya and Xiao prior to its written debut. We also thank an
anonymous referee for many helpful suggestions and corrections. In particular, we owe the
crucial flexibility in the definition of finite cohomology in Section 4 to the referee’s sugges-
tion. Finally, the bulk of this work was completed as a component of the author’s doctoral
thesis and it is his pleasure to thank Joël Belläıche for five years of insightful discussions
and support. The author was partially supported by NSF award DMS-1402005 during the
writing of this article.

2. Review of (ϕ,ΓK)-modules

We give a short review of (generalized) (ϕ,ΓK)-modules, their relationship with Galois
representations and the p-adic arithmetic theory (cohomology, p-adic Hodge theory, etc.).
All the notations from Section 1.6 are enforced, including the choice of L for a generic
coefficient field containing the image of each embedding of K into Qp.



PARABOLINE VARIATION OVER p-ADIC FAMILIES OF (ϕ,Γ)-MODULES 7

2.1. The Robba ring. We quickly remind the reader of the definition of the Robba ring
R, setting notation for the most part. We note that K is fixed throughout, but that the
definition of R depends on K (we simply suppress it from the notation).

For each pair of rational numbers 0 < s ≤ r ≤ ∞ we define a p-adic annulus

A1
/F ′ [s, r] =

{
T : p−r/(p−1) ≤ |T | ≤ p−s/(p−1)

}
over F ′. When r =∞ this is a p-adic disc. We also let

A1
/F ′(0, r] =

{
T : p−r/(p−1) ≤ |T | < 1

}
.

be the half-open annulus. We denote by R[s,r] the formal substitution of a certain indeter-
minate πK , arising from the field of norms, for the variable T in the ring of functions on
A1
/F ′ [s, r]. This is the ring denoted by R[s,r](πK) in [24].

If A is a Qp-affinoid algebra then we denote R[s,r]
A = R[s,r]⊗̂QpA. Let X = Sp(A) be

the associated affinoid space to A. Then R[s,r]
A is abstractly isomorphic to the ring of rigid

analytic functions on X [s,r] := A1[s, r]/F ′×SpQp SpA. Thus it is a noetherian Banach algebra
when equipped with the usual Gauss norm.

If 0 < s < s′ ≤ r ≤ ∞ then there is an injective restriction morphism R[s,r]
A → R[s′,r]

A which

is flat and has dense image. We then define Rr
A :=

⋂
0<s≤rR

[s,r]
A and the relative Robba ring

over A is
RA =

⋃
0<r

Rr
A.

The ring Rr
A is the global sections on the rigid space Xr := A1

/F ′(0, r]×SpQp X, the relative
half open annulus. We will also use the notations Rr

X and RX with the obvious meaning.
Returning to the closed annuli, for any 0 < s ≤ r there is a continuous action of the

group ΓK � Gal(F ′/F ) on the F ′ coefficients in R[s,r]; we can extend this canonically, up
to the choice of πK , to the ring R[s,r]. When r is sufficiently small there is also an operator
ϕ : R[s,r] → R[s/p,r/p] called Frobenius which acts on the coefficients in F ′ via the usual
Frobenius action and acts on πK by a choice4, again, canonically up to πK . The operator
ϕ turns R[s/p,r/p] into a finite free R[s,r]-module of rank p. Furthermore, ϕ extends to an
operator ϕ : Rr → Rr/p and thus also extends to an operator on R. When X is an affinoid
space we extend the actions of ΓK and ϕ to the relative Robba rings by acting trivially on
the coefficients A.

There are two ways to view Rr/p
X as a module over Rr

X , either by the restriction map or
the operator ϕ. If Q is a module over Rr

X then we denote by ϕ∗Q the extension of scalars

ϕ∗Q := Q⊗RrX ,ϕ R
r/p
X and Q

∣∣
(0,r/p]

the Rr/p
X -module obtained by using the restriction map.

Definition 2.1. A generalized ϕ-module over Xr is a finitely presented Rr
X-module Q to-

gether with an isomorphism ϕ∗Q ' Q
∣∣
(0,r/p]

of Rr/p
X -modules. We say that Q is a ϕ-module

if Q is also projective.

4When K = Qp then the choice of πK can be made so that ϕ(πK) = (1 + πK)p − 1 and γ(πK) =

(1 + πK)χcycl(γ) − 1. Moreover, the operator ϕ is defined as soon as r < 1.
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We now fix r0 > 0. Since X is affinoid, so is X [s,r]. Thus, by Kiehl’s theorem [8, Theorem
9.4.3/3], global sections give an equivalence of categories{

finite R[s,r]
X -modules

}
←→

{
coherent sheaves on X [s,r]

}
.

Since Xr0 is admissibly covered by affinoid opens
{
X [s,r]

}
0<s≤r≤r0

, a coherent sheaf Q on Xr0

is the same as a system Q = (Q[s,r])0<s≤r≤r0 of finite R[s,r]
X modules satisfying the obvious

compatibilities. The global sections of a sheaf Q may be calculated by

Q = Γ(Xr0 ,Q) = lim←−
0<s

Q[s,r0].

If Q is a finitely presented module over Xr0 then there is a coherent sheaf defined by the

compatible family Q[s,r] := Q⊗Rr0X R
[s,r]
X . We pause to include an auxiliary result on finitely

presented modules over Xr. It applies, in particular, to all generalized ϕ-modules.

Lemma 2.2. Suppose that Q is a finitely presented Rr
X-module and f ∈ Rr. Then Q/f is

finite projective over Rr
X/f if and only if Q[s,r]/f is finite projective over R[s,r]/f for each

each 0 < s ≤ r.

Proof. Since Q is assumed to be finitely presented over Rr
X , the same is true for Q/f over

Rr
X/f and thus by [28, Corollary 7.12] it suffices to replace “projective” with “flat” in the

statement of the lemma.
Even without that, one direction is clear: if Q/f is finite projective over Rr

X/f then
Q[s,r]/f = Q/f ⊗RrX/f R

[s,r]/f is finite projective over R[s,r]/f for each 0 < s ≤ r.

We will now prove the reverse direction, so assume that Q[s,r]/f is flat over R[s,r]
X /f for

each 0 < s ≤ r. By [28, Theorem 7.7] it suffices to show that

(1) I ⊗RrX/f Q/f → Q/f

is injective for every finitely generated ideal I ⊂ Rr
X/f . Now we use the language of “co-

admissible” modules originally due to Schneider and Teitelbaum [31], and we will reference
[24, Section 2.1]. By [24, Lemma 2.1.4(7)] theRr

X-moduleRr
X/f is co-admissible, and thus so

is I ⊂ Rr
X/f by [24, Lemma 2.1.4(6)]. Since Q is co-admissible so is Q/f = coker(Q

f−→ Q)
by [24, Lemma 2.1.4(5)]. Thus (1) is a morphism of co-admissible Rr

X-modules and hence is
injective if and only if

(2)
(
I ⊗RrX/f Q/f

)[s,r] → Q[s,r]/f

is injective for each 0 < s ≤ r. But we see(
I ⊗RrX/f Q/f

)[s,r] '
(
I ⊗RrX/f R

[s,r]
X /f

)
⊗R[s,r]

X /f
Q[s,r]/f

and then since Rr
X/f → R

[s,r]
X /f is flat we see that I ⊗RrX/f R

[s,r]
X /f = I · R[s,r]

X /f is an ideal

in R[s,r]
X /f . In particular, this shows that the map (2) may be identified with the natural
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map

I · R[s,r]
X /f ⊗R[s,r]

X /f
Q[s,r]/f → Q[s,r]/f,

which is injective because Q[s,r]/f is flat over R[s,r]
X /f by assumption. This completes the

proof. �

Returning to ϕ-modules, if Q is a generalized ϕ-module then the isomorphism ϕ∗Q '
Q
∣∣
(0,r0/p]

translates into the choice of a compatible system of isomorphisms ϕ∗Q[s,r] ' Q[s/p,r/p].

In fact, all generalized ϕ-modules arise this way.

Proposition 2.3. There is are equivalences of categories{
generalized ϕ-modules

over Xr0

}
←→

 coherent sheaves Q = (Q[s,r]) on Xr0 equipped
with naturally compatible isomorphisms

ϕ∗Q[s,r] ∼= Q[s/p,r/p]

 .

Moreover, the ϕ-modules on the left-hand side correspond to sheaves on the right-hand side
for which each Q[s,r] is projective.

Proof. We just explained how to go from the left-hand side to the right-hand side. Suppose
we start on the right-hand side with a coherent sheaf Q = (Q[s,r]). It is clear that all we need
to do is show that its global sections are finitely presented. Choose a finite presentation for
Q[r0/p,r0]. By assumption this uniformly (in terms of generators and relations) gives a finite

presentation for (ϕ∗)nQ[r0/p,r0] ' Q[r0/pn+1,r0/pn]. Thus Q is uniformly finitely presented in
the sense of [24, Section 2.1]. By [24, Proposition 2.1.13], the global sections of Q are finitely
presented. �

Remark. The global sections of a coherent sheaf on Xr0 need not have any finiteness prop-
erties (see the example in [3, Section 2.1.2, page 380]). The key for the previous proposition
is that the presence of the ϕ-operator imposes a uniformly finitely presented condition over
the closed annuli.

Corollary 2.4. The category of generalized ϕ-modules over Xr0 is abelian.

Proof. The category of coherent sheaves on Xr0 is abelian by [8, Proposition 9.4.3/2]. Thus
we just need to show that if f : Q → P is a morphism of the corresponding sheaves, then
ker(f) and coker(f) satisfy the obvious compatibilities. But ϕ∗ is exact because ϕ presents

R[s/p,r/p]
X as free over R[s,r]

X , so this is immediate. �

There is another way one might think about the ϕ-pullback condition on generalized ϕ-
modules. If Q is a generalized ϕ-module over Xr0 then the choice of isomorphism ϕ∗Q '
Q
∣∣
(0,r0/p]

defines an operator, by Q ↪→ ϕ∗Q ' Q
∣∣
(0,r0/p]

which we also denote by ϕ. If f ∈ Rr0
X

and x ∈ Q then ϕ(fx) = ϕ(f)ϕ(x) and so this version of ϕ is naturally a semi-linear operator
(albeit with a different source than target).

Definition 2.5. A generalized (ϕ,ΓK)-module Q over Xr0 is a generalized ϕ-module over
Xr0 equipped with a continuous Rr0

X -semilinear action of ΓK which commutes with ϕ. If we
drop the word generalized, we insist that Q be a ϕ-module.
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Note that we insist that ΓK preserve the radius r0 of the generalized (ϕ,ΓK)-module. We
are now ready to remove the finite radius assumption.

Definition 2.6. A generalized (ϕ,ΓK)-module Q over X is the base change of a generalized
(ϕ,ΓK)-module Q = Qr0⊗Rr0X RX over Xr0 for some r0 > 0. If we drop the word generalized,

we insist that Q be a (ϕ,ΓK)-module.

If Q is a generalized (ϕ,Γ)-module then there exists an r0 > 0 such that Q arises via base
change from a generalized (ϕ,ΓK)-module Qr0 over Xr0 . Thus for any r0 > r′0, Q also arises
geometrically from Qr′0 := Q

∣∣
(0,r′0]

. In particular, if Q is a generalized (ϕ,ΓK)-module then

we may always take a radius sufficiently small to make sense of the notation Qr0 .
By a morphism f : Q→ Q′ of generalized (ϕ,ΓK)-modules we mean a continuous (ϕ,ΓK)-

equivariant morphism of RX-modules. By definition there must exist an r0 > 0 so that f
arises from base change of a map f r0 : Qr0 → (Q′)r0 for r0 sufficiently small. The space of
all morphisms will be denote by Hom(Q,Q′). This is also a generalized (ϕ,ΓK)-module in
the natural way. Taking Q′ = RX we obtain the dual module Q∨, which we will only use if
Q is a (ϕ,ΓK)-module.

At various points in Sections 5 and 6 we will need to shrink an affinoid space X to an
affinoid subdomain U = SpB ⊂ X. Given such a U and a generalized (ϕ,ΓK)-module Q
over X we denote by Q

∣∣
U

the RU -module defined by

Q
∣∣
U

:= Q⊗̂RXRU = Q⊗̂AB.
Note since Q is finitely presented over RA, the first part of the definition could equivalently
be taken to be Q

∣∣
U

= Q⊗RX RU . We record the following result for later use.

Proposition 2.7. If U ⊂ X is an affinoid subdomain then the association Q 7→ Q
∣∣
U

defines
an exact functor from the category of generalized (ϕ,ΓK)-modules over X to the category of
generalized (ϕ,ΓK)-modules over U .

Proof. The proposition reduces to the same result for generalized (ϕ,ΓK)-modules over Xr0

for each r0 > 0 (and the corresponding open affinoid subdomain U r0 ⊂ Xr0). Once that
reduction has been made, we deduce our result from Proposition 2.3. The main point is that
the exactness follows from the corresponding result for coherent sheaves on rigid spaces (see
[8, Proposition 9.4.1/1] for example). �

2.2. Galois representations. It will be useful to remind ourselves of the following con-
nection between Galois representations and (ϕ,ΓK)-modules. If A is an affinoid Qp-algebra
then by an A-linear representation of GK we mean a finite projective A-module V together
with a continuous A-linear action of the Galois group GK .

Theorem 2.8. Let X = Sp(A). There is a fully faithful, exact embedding

Drig : {A-linear representations V of GK} ↪→ {(ϕ,ΓK)-modules over RX}
such that

(a) Drig commutes with base change A→ A′ and
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(b) when A is finite over Qp, Drig is essentially surjective onto the category of étale
(ϕ,ΓK)-modules.

The theorem as we’ve stated it can be read off from [23, Theorem 3.11, Theorem 0.2]. The
earliest results were proven when A is a field. For that, Fontaine and separately, Cherbonnier
and Colmez, gave proofs with the caveat that the Robba ring is replaced with a different
ring of analytic functions on affinoid subdomains of discs (see [18] and [12]). The key step
in extending the theorem to the Robba ring as we’ve discussed it was Kedlaya’s theorem on
slope filtrations [22]. The family results are more recent and one does not in general have a
description of the essential image.

2.3. Rank one (ϕ,ΓK)-modules. Rank one (ϕ,ΓK)-modules over A are parametrized,
essentially, by continuous characters δ : K× → A×. Let us recall the construction of (ϕ,ΓK)-
modules of character type. Note that by [24, Theorem 6.2.14] every rank one (ϕ,ΓK) arises,
locally on A, from one of character type.

Choose a uniformizer $K of K. We can write δ = δnrδwt where δnr
∣∣
O×K

= 1 and δwt($K) =

1. Then, δwt extends in a unique manner to the abelianization of the Galois group Gab
K , using

the local Artin map, and we denote δ̂wt the corresponding Galois character δ̂wt : GK → A×.
On the other hand, by [24, Lemma 6.2.3] there is a unique rank one free (F ⊗Qp A)-module
Dδnr($K) equipped with an operator ϕ, semilinear with respect to ϕ ⊗ 1, such that ϕfK =
1⊗ δnr($K). We give it the trivial ΓK-action and define the rank one (ϕ,ΓK)-module

RA(δ) := (Dδnr($K) ⊗F⊗QpA
RA)⊗RA Drig(δ̂wt).

This is independent of any choices made and satisfies RA(δδ′) ' RA(δ) ⊗RA RA(δ′). Thus
it makes sense to define D(δ) := D ⊗RA RA(δ) for any generalized (ϕ,ΓK)-module over A.

Assume now that A is an L-algebra for L as in Section 1.6. If δ : K× → A× is a character
then we can define its weights as follows. The group K×, as a group over Qp, has a Lie
algebra of dimension (K : Qp) = #ΣK . The differential action gives rise to a weights
(wtτ (δ))τ∈ΣK ∈ K ⊗Qp A '

∏
τ Aτ such that

0 = lim
a→0
a∈OK

∣∣δ(1 + a)− 1 +
∑

τ∈ΣK
wtτ (δ)τ(a)

∣∣
|a|K

.

It is easy to see that (wtτ (δ))τ only depends only δwt in the decomposition of the previous
paragraph (thus the notation). We’ve normalized the weights so that if z : K× → K× is the
identity character then wtτ (z) = −1 for each τ ∈ ΣK .

2.4. p-adic Hodge theory. The definition of weight given above is a special case of ex-
tending the usual Fontaine functors DSen, DdR, Dcris, etc. from p-adic Hodge theory to the
category of (ϕ,ΓK) modules. In particular, we have the notions of Hodge–Tate–Sen weights,
crystalline (ϕ,ΓK)-modules, etc. We won’t recall the definitions and will refer to [5, 6] as
needed.
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One of Berger’s main results [6, Théorème A] is that the functor Dpst(−) induces an
equivalence

{potentially semistable (ϕ,ΓK)-modules over L} Dpst−→ {filtered (ϕ,N,GK)-modules over L} .
The subcategory of crystalline (ϕ,ΓK)-modules is equivalent to the full subcategory of filtered
ϕ-modules over L. The étale (ϕ,ΓK)-modules (the Galois representations, following Theorem
2.8) correspond to the weakly-admissible modules on the right-hand side.

Suppose that D is crystalline. The L ⊗Qp K-module Dcris(D)K := Dcris(D) ⊗F K is
equipped with an exhaustive and separated decreasing filtration Fil•Dcris(D)K . We denote
by HTτ (D) the multi-set of integers such that the induced filtration on the L-vector space
Dcris(D)K,τ = eτDcris(D)K has jumps given with multiplicity by HTτ (D). It is easy to see
that if δ : K× → L× is a character such that RL(δ) is crystalline then HTτ (RL(δ)) = wtτ (δ).
For example, Dcris(RL) = F ⊗Qp L with the trivial ϕfK -action and for all τ ∈ ΣK we have
HTτ (RL) = 0.

If τ : K ↪→ L is an embedding then we denote the corresponding character K× → L×

by zτ . It happens that Dcris(RL(zτ )) is a filtered ϕ-module with trivial ϕfK -action and the
Hodge–Tate filtration has weights

HTσ(RL(zτ )) =

{
−1 if σ = τ

0 if σ 6= τ
.

In particular Dcris(RL(zτ )) ⊂ Dcris(RL) as filtered ϕ-modules. Thus RL(zτ ) = tτRL for
some tτ , uniquely determined up to unit in RL.

Proposition 2.9. Every (ϕ,ΓK)-submodule of RL is of the form
(∏

τ∈ΣK
trττ
)
RL for some

collection of non-negative integers rτ ≥ 0.

Proof. See [24, Corollary 6.2.9]. �

It’s easy to see tτRL and tσRL are maximally coprime if σ 6= τ . Indeed, D = tτRL+ tσRL

is (ϕ,ΓK)-submodule of RL whose Hodge–Tate weights, computed by passing to Dpst(D),
are zero (for each τ ∈ ΣK). The element t =

∏
τ tτ is, up to a unit, the ubiquitous t which

plays the role of the p-adic 2πi in all of p-adic Hodge theory. The (ϕ,ΓK)-submodule tRL

is crystalline, its τ -Hodge–Tate weight is −1 for each τ and ϕ(t) = pt.

2.5. Galois cohomology. Suppose that A is an affinoid algebra and that Q is a generalized
(ϕ,ΓK)-module over A. Let ∆K ⊂ ΓK be the p-torsion subgroup (which only exists if p = 2)
and choose a topological generator γ0 ∈ ΓK/∆K . One then defines the Herr complex [21] as
the three term complex C•γ0(D)

Q∆K
x 7→((ϕ−1)x,(γ0−1)x)

// (Q∆K )⊕2
(y,z)7→(γ0−1)y−(ϕ−1)z

// Q∆K .

The Galois cohomology groups H•(Q) of Q are defined to be the cohomology groups of
the complex C•γ0(Q). The complexes depend on the choice of γ0 up to canonical quasi-
isomorphism, so the cohomology is well-defined.
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When A is finite over L, the Galois cohomology is finite-dimensional and satisfies an
Euler–Poincaré formula [26]

2∑
i=0

(−1) dimLH
i(Q) = −(K : Qp) rankRL Q,

where the rank of a torsion module must be suitably interpreted (see Section 2.6). The
finiteness is true over general affinoid L-algebras A in the case of (ϕ,ΓK)-modules by [24].
We will review that result in Section 4.

But now let us review the dimensions of the cohomology of rank one (ϕ,ΓK)-modules
over a field. To shorten notation, if δ : K× → L× is a continuous character we denote

H•(δ) := H•(RA(δ)). We let T̂ (L) be the space of continuous characters δ : K× → L×.

Define two special subsets of T̂ (L) by

T̂ (L)+ =

{
δ : K× → L× : δ =

∏
τ∈ΣK

zrττ with rτ ≤ 0 for each τ

}
, and

T̂ (L)− =

{
δ : K× → L× : δ =

∣∣NK/Qp

∣∣ ∏
τ∈ΣK

zrττ with rτ ≥ 1 for each τ

}
.

The elements of T̂ (L) which are not in T̂ (L)+ or T̂ (L)− are called generic characters.

Proposition 2.10. Let δ : K× → L× be a continuous character. Then

dimLH
0(δ) =

{
1 if δ ∈ T̂ (L)+;

0 otherwise.

dimLH
1(δ) =

{
2 if δ ∈ T̂ (L)+ ∪ T̂ (L)−;

1 otherwise.

dimLH
2(δ) =

{
1 if δ ∈ T̂ (L)−;

0 otherwise.

Proof. See [24, Proposition 6.2.8]) (or [30, Section 2.3]). �

Let’s finish this subsection with a definition.

Definition 2.11. Suppose that δ, δ′ ∈ T̂ (L).

(a) We say that δ and δ′ are homothetic if there exists integers (rτ )τ∈ΣK such that δ =
δ′
∏

τ z
rτ
τ .

(b) We say that δ and δ′ are generic up to homothety if δ′δ−1
∏

τ z
rτ
τ is generic for every

tuple (rτ )τ∈ΣK of integers.

To put the previous definition in context, if δ and δ′ are homothetic then following Propo-
sition 2.10 we can find an integer r such that trRL(δ) ↪→ RL(δ′). Thus RL(δ) and RL(δ′) are
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in a sense commensurable. If δ and δ′ are generic up to homothety then H2(η) = H0(η) = (0)
for all characters η homothetic to δ′δ−1.

2.6. Torsion (ϕ,ΓK)-modules. Notice that

RL = R⊗Qp L = R⊗F (F ⊗Qp L) =
∏

η∈Gal(F/Qp)

R⊗F L.

By [5, Proposition 4.12], each term in the product is an adequate Bézout domain. In partic-
ular, finitely generated RL modules are free if and only if they are torsion free (with respect
to the total ring of divisors) and there is a robust theory of elementary divisors over RL. As
a consequence, a generalized (ϕ,ΓK)-module over L is a (ϕ,ΓK)-module if and only if it is
torsion-free as an RL-module.

The element t ∈ RL is an example of a non-zero divisor. If S is a generalized (ϕ,ΓK)-
module we let S[t∞] denote the t-power torsion submodule. Since t ∈ R is an eigenvector
for ϕ and ΓK , S[t∞] is a (ϕ,ΓK)-submodule.

Definition 2.12. Let A be an L-affinoid algebra. A torsion (ϕ,ΓK)-module over A is a
generalized (ϕ,ΓK)-module S over A such that S[t∞] = S. We say that S is pure if either
S = 0 or if S is free over RA/ (

∏
τ t

rτ
τ ) for some collection of integers rτ ≥ 0, not all of

which are zero.

The typical example of a pure torsion (ϕ,ΓK)-module is RL/(
∏

τ t
rτ
τ )RL(δ) for some con-

tinuous character δ : K× → L× and non-negative integers rτ .

Lemma 2.13. A generalized (ϕ,ΓK)-module over L is a (ϕ,ΓK)-module if and only if it is
t-torsion free. Any torsion (ϕ,ΓK)-module over L is a successive extension of pure torsion
(ϕ,ΓK)-modules.

Proof. The lemma is proven in the case K = Qp in [26, Proposition 4.1]. The proof in this
case is the same, the main point being Proposition 2.9. We reproduce it for convenience.

LetD be a generalized (ϕ,ΓK)-module. If it is a bona fide (ϕ,ΓK)-module then it obviously
cannot have t-torsion. Now suppose that D is t-torsion free, and to show that D is a bona
fide (ϕ,ΓK)-module it suffices to show that it is torsion free.

Since D is finitely generated as a RL-module, and RL is a Bézout domain, we have the
theory of elementary divisors. Thus there exists a finite number of elements d1, . . . , dm ∈ D
which generate D over RL such that the ideals fiRL := AnnRL(di) are principal and f1RL ⊃
f2RL ⊃ · · · ⊃ fmRL. The ideals {fiRL} are then uniquely determined by this property. We
claim that each non-zero fi is a unit, which implies that D is torsion free. Without loss of
generality we can assume that fm 6= 0 and show that fm is a unit.

We will first show that each ideal fiRL is a (ϕ,ΓK)-submodule of RL. If γ ∈ ΓK then it
is easy to see that {γ(di)} also generates D as a RL-module. Furthermore, AnnRL(γ(di)) ⊂
AnnRL(γ(di−1)) for 1 < i ≤ m. Thus by the uniqueness in the theory of elementary divisors,
we have γ(AnnRL(di)) = AnnRL γ(di) = AnnRL(di) for each i. This shows that each ideal
fiRL is ΓK-stable.
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On the other hand, one may also check that the elementary divisors for ϕ∗D are the ideals
AnnRL(di⊗1) (the elements di⊗1 written as tensors in ϕ∗D = D⊗RL,ϕRL). Since ϕ∗D ' D
the elementary divisors for both ϕ∗D and D are the same, hence AnnRL(di⊗1) = AnnRL(di).
This required only having an abstract isomorphism between ϕ∗D and D. On the other hand,
the isomorphism ϕ∗D → D is defined explicitly by sending di ⊗ 1 to ϕ(di), which implies
that AnnRL(ϕ(di)) = AnnRL(di ⊗ 1). Finally, we see that ϕ(AnnRL(di)) ⊂ AnnRL(ϕ(di)) =
AnnRL(di). Thus each ideal fiRL is ϕ-stable as well.

We now finish the proof. By Proposition 2.9, if fm is not unit then there exists non-
negative integers rτ ≥ 0, not all zero, such that

(∏
τ∈ΣK

trττ
)
dm = 0. Since

(∏
τ∈ΣK

trττ
)

is a divisor of tr for r large, we conclude that dm ∈ D[t∞]. Since D is t-torsion free, we
conclude that dm = 0, which contradicts the choice of the elements {di}. The calculation
also clearly shows that a torsion (ϕ,ΓK)-module is a successive extension of pure torsion
(ϕ,ΓK)-modules. Indeed, if Q is torsion then 0 = fmQ ⊂ fm−1Q ⊂ · · · ⊂ f1Q ⊂ Q is
a filtration whose successive quotients fiQ/fi+1Q are pure torsion, since they are free over
fiRL/fi+1RL (compare with [26, Proposition 4.1]). �

If S is a torsion module then the Euler–Poincaré formula [26, Theorem 4.7] says

dimLH
0(S) = dimLH

1(S) and dimLH
2(S) = 0.

By Lemma 2.13, the cohomology of torsion (ϕ,ΓK)-modules reduces to the cohomology of
pure torsion (ϕ,ΓK)-modules and that is explained by the following calculation.

Proposition 2.14. Let τ ∈ ΣK. Then for each i = 0, 1 we have

dimLH
i((RL/t

rτ
τ )(δ)) =

{
1 if wtτ (δ) ∈ {0, 1, . . . , rτ − 1}
0 otherwise.

Proof. The case of i = 1 and i = 0 are equivalent by the Euler–Poincaré formula for torsion
modules. The computation of the cohomology for i = 0 is given by [30, Lemma 2.16]. For a
proof in the language of (ϕ,ΓK)-modules, at least when K = Qp, see [14, Proposition 2.18]
(warning: Colmez uses a different convention for weights). �

3. Parabolizations and triangulations

Triangulations of (ϕ,ΓK)-modules arose following Colmez’s work on the p-adic local Lang-
lands for GL2(Qp) (see [14]). In this section we have two goals. First, we will recall parabo-
lizations of (ϕ,ΓK)-modules, a more general notion due to Chenevier [11], and the definition
of critical and non-critical triangulations. Our second goal is to extend the definition of tri-
angulation in a reasonable way to the category of generalized (ϕ,ΓK)-modules. We discuss
the latter notion only in the case where the coefficients are a field.

3.1. Parabolizations of (ϕ,ΓK)-modules. Let A be an affinoid L-algebra.

Definition 3.1. If D is a (ϕ,ΓK)-module over A then a parabolization P• of D (of length
s) is a filtration

0 = P0 ( P1 ( · · · ( Ps−1 ( Ps = D
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such that each

• Pi is a (ϕ,ΓK)-module and
• for each i = 1, . . . , s we have that Pi/Pi−1 is a (ϕ,ΓK)-module over A which is a
RA-module direct summand of Pi.

If P• is a parabolization of the maximal length s = rankRA D then we say that P• is a
triangulation. We say D is trianguline if, after possibly extending the coefficient field L,
there exists a triangulation of D.

If P• is a triangulation of a (ϕ,ΓK)-module D of rank d then each quotient Pi/Pi−1 is of
the form RA(δi) for some continuous character δi : K× → A×, at least locally on X = Sp(A)
[24, Theorem 6.2.14]. We call the d-tuple (δi)

d
i=1 the ordered parameter of the triangulation

P• and we say that D is trianguline with ordered parameter (δi)
d
i=1. If D is trianguline with

an ordered parameter (δi)
d
i=1 then HTτ (D) = {wtτ (δi)}di=1.

For the rest of this section we will take A to be the field L itself. Crystalline (ϕ,ΓK)-
modules over RL provide examples of triangulations. For that we have the notion of a
refinement, following [27, Definition 5.29].

Definition 3.2. If D is a crystalline (ϕ,ΓK)-module of rank d over L then a partial refine-
ment R• of D is the choice of a ϕ-stable L⊗Qp F -linear filtration

0 = R0 ( R1 ( · · · ( Rs = Dcris(D).

whose successive quotients are free L ⊗Qp F -modules. In the case that s = d we call R• a
refinement.

Suppose that R• is a refinement of a crystalline (ϕ,ΓK)-module. Then each of the quotients
Ri/Ri−1 is a rank one L ⊗Qp F -module equipped with a linear operator ϕfK . We denote
by φi ∈ L× the eigenvalue of ϕfK appearing in Ri/Ri−1. Furthermore, Dcris(D)K is an
L ⊗Qp K-vector space equipped with its Hodge filtration Fil•Dcris(D)K . Each of the ϕ-
stable subspaces (Ri)K has an induced Hodge filtration. We define, for each τ ∈ ΣK and
i = 1, . . . , d an integer si,τ so that {s1,τ , . . . , si,τ} are the τ -Hodge–Tate weights appearing in
(Ri)K,τ . In summary, triangulations and refinements have the following invariants

A triangulation P•  the ordered parameter (δ1, . . . , δn).

A refinement R•  
the ordering of ϕfK -eigenvalues (φ1, . . . , φn)

and the τ -Hodge–Tate weights
(s1,τ , . . . , sd,τ )τ

.

Note that if P• is a triangulation of a crystalline (ϕ,ΓK)-module D then each step Pi is a
crystalline (ϕ,ΓK)-module as well.

Proposition 3.3. Let D be a crystalline (ϕ,ΓK)-module over L all of whose ϕfK -eigenvalues
lie in L×.
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(a) Then P 7→ Dcris(P ) induces bijections

{parabolizations of D} ←→ {partial refinements of D} , and

{triangulations of D} ←→ {refinements of D} .
(b) If P• is a triangulation with ordered parameter (δ1, . . . , δn) then the orderings associ-

ated to Dcris(P•) are given by

(s1,τ , . . . , sd,τ ) = (wtτ (δ1), . . . ,wtτ (δn)), and

(φ1, . . . , φn) =

(
δ1($K)

∏
τ∈ΣK

τ($K)wtτ (δ1), . . . , δd($K)
∏
τ∈ΣK

τ($K)wtτ (δd)

)
,

for some (or, any) choice of uniformizer $K ∈ K×.
(c) If R• is a refinement with orderings (φ1, . . . , φn) and (s1,τ , . . . , sd,τ )τ∈ΣK then the

parameter (δ1, . . . , δn) of the corresponding triangulation P• is given by

δi(z) = (
∏
τ∈ΣK

z−si,ττ ) unr$K (φi)(z)

for some (or, any) choice of uniformizer $K ∈ K×.

Proof. The first part follows from Berger’s dictionary [6] between potentially semistable
(ϕ,ΓK)-modules and filtered (ϕ,N,GK)-modules. The second two parts are easy inductions
from the rank one case. In the case that K = Qp a longer discussion can be found in [2,
Proposition 2.4.1]. �

3.2. Critical and non-critical triangulations. For this subsection we work with a fixed
crystalline (ϕ,ΓK)-module D over the field L.

Definition 3.4. Suppose that P ⊂ D is a saturated (ϕ,ΓK)-submodule. If τ ∈ ΣK then we
say that P is τ -non-critical if there exist an integer kτ such that

Dcris(P )K,τ ⊕ Filkτ Dcris(D)K,τ = Dcris(D)K,τ .

We say P is τ -critical otherwise. Finally, P is called non-critical if P is τ -non-critical for
each τ ∈ ΣK and P is critical if there exists a τ ∈ ΣK such that P is τ -critical.

The definition is only given for crystalline (ϕ,ΓK)-modules as it relies on the correspon-
dence Proposition 3.3. A more general definition will be given later which applies to certain
p-adic limits of crystalline (ϕ,ΓK)-modules (see Definition 6.7).

In the case of regular Hodge–Tate weights, we have a convenient way to check whether or
not a saturated (ϕ,ΓK)-submodule is critical.

Lemma 3.5. Let τ ∈ ΣK. Suppose that D is a crystalline (ϕ,ΓK)-module with regular τ -
Hodge–Tate weights k1,τ < · · · < kd,τ . Let P ⊂ D be a saturated (ϕ,ΓK)-submodule of rank
i ≤ d. The following are equivalent:

(a) P is τ -non-critical;
(b) Dcris(P )K,τ ⊕ Filki+1,τ Dcris(D)K,τ = Dcris(D)K,τ ;
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(c) HTτ (P ) = {k1,τ , . . . , ki,τ};
(d) detP ⊂ ∧iD is τ -non-critical.

Proof. First, (b) implies (a) by definition. Second, (b) and (c) are easily equivalent. Now sup-
pose that P is non-critical and choose an integer kτ such that Dcris(P )K,τ⊕Filkτ Dcris(D)K,τ =

Dcris(D)K,τ . Since P is crystalline, d − i = dimLτ Filkτ Dcris(D)K,τ . Since the Hodge–Tate

weights are all distinct we conclude Filkτ Dcris(D)K,τ = Filki+1,τ Dcris(D)K,τ . This shows (a)
implies (b).

It remains to show that (c) and (d) are equivalent. Since D has distinct Hodge–Tate
weights, the unique lowest weight of ∧iD is k1,τ + · · · + ki,τ . The next highest weight is
k1,τ + · · ·+ ki−1,τ + ki+1,τ . Thus (c) is true if and only if

Dcris(detP )K,τ ⊕ Filk1,τ+···+ki−1,τ+ki+1,τ Dcris(∧iD)K,τ = Dcris(∧iD)K,τ ,

which is (d). �

At this point, one could define what it means for a triangulation to be non-critical. More
generally, for each parabolization P• of a crystalline (ϕ,ΓK)-module we define a subparabo-
lization P nc

• ⊂ P• for which every step is non-critical.

Definition 3.6. Let P• be a parabolization of a crystalline (ϕ,ΓK)-module D of rank d. Let

Inc = {i : Pi is non-critical} = {0 = i0 < i1 < · · · < ir = d} .
The maximal non-critical parabolization P nc

• is the filtration

P nc
• : 0 = Pi0 ( Pi1 ( · · · ( Pir = D.

We say that P• is non-critical if P nc
• = P nc, and critical otherwise.

Notice that, as suggested by our notation, Inc 6= ∅ and ir = d, since D itself is always a
non-critical (ϕ,ΓK)-submodule of itself. In the case where D has regular weights, Lemma 3.5
shows that P nc

• is the unique subparabolization of P• consisting of the steps whose Hodge–
Tate weights are as low as possible. Furthermore, it is easy to check that (P nc

• )nc = P nc
• ,

hence the use of the word “maximal”. Let us end this subsection with a brief example.

Example 3.7. Suppose now that K = Qp and that D is a rank two crystalline (ϕ,ΓQp)-
module over L, with Hodge–Tate weights k1 < k2 and distinct crystalline eigenvalues φ, φ′ ∈
L×. Since φ 6= φ′ we assume without loss of generality that Dcris(D)ϕ=φ ∩ Filk2 Dcris(D) =
(0). Thus there is always a non-critical triangulation RL(z−k1 unr(φ)) ⊂ D. The ordered
parameter is (z−k1 unr(φ), z−k2 unr(φ′)).

On the other hand, one can use Propositions 3.3 and 2.10 to show that D is split if and
only if Dcris(D)ϕ=φ′ = Filk2 Dcris(D) (if D is étale, the same statement follows from the weak
admissibility of the filtered ϕ-module Dcris(D)). Thus the triangulation corresponding to the
ordering (φ′, φ) is given by{

RL(z−k1 unr(φ′)) ⊂ D if D is non-split,

RL(z−k2 unr(φ′)) ⊂ D if D is split.
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This triangulation is critical if and only if D is split.

3.3. Generalized triangulations. Recall that a pure torsion (ϕ,ΓK)-module over L is a
generalized (ϕ,ΓK)-module that is either zero or free over RL/

∏
τ t

rτ
τ for some collection

(rτ )τ of non-negative integers, not all zero.

Definition 3.8. We say a pure torsion (ϕ,ΓK)-module Q is of character type if either Q = 0
or there exists a continuous character δ : K× → L× and a collection of non-negative integers
(rτ )τ , not all zero, such that Q ' coker((

∏
τ t

rτ
τ )RL(δ)→ RL(δ)).

IfQ is non-zero and pure torsion of character type then we refer to the ΣK-tuple (rτ )τ∈ΣK as
the torsion exponents of Q and (wtτ (δ))τ∈ΣK as the torsion weights of Q. The zero module
(0) has, by definition, torsion exponents (0, . . . , 0) and torsion weights (wτ )τ∈ΣK for any
collection of integers wτ . By Proposition 2.14, these invariants, taken together, completely
classify Q among pure torsion (ϕ,ΓK)-modules of character type.

Definition 3.9. Let Q be a generalized (ϕ,ΓK)-module over RL. A generalized triangulation
of Q is a filtration Q•

Q• : 0 = Q0 ⊂ Q1 ⊂ Q2 ⊂ · · · ⊂ Qd−1 ⊂ Qd = Q

such that for 1 ≤ i ≤ d, Qi/Qi−1 is either a rank one (ϕ,ΓK)-module or a pure torsion
(ϕ,ΓK)-module of character type and in either case Qi/Qi−1 is a direct summand of Qi

as a RL-module. We say that Q is triangulated if it is equipped with a triangulation and
trianguline if it may be triangulated, after possibly extending scalars.

Note that we allow for consecutive steps Qi ⊂ Qi+1 to be equal, since (0) is a pure
torsion (ϕ,ΓK)-module of character type under our definition. This has two consequences.
First, even if Q is a bona fide (ϕ,ΓK)-module then a generalized triangulation is not a
triangulation in the sense of Section 3.1. We will deal with this ambiguity in the definition
of standard triangulation below. Second, since we can always repeat steps in a generalized
triangulation, the length of a generalized triangulation Q• depends on Q•; it is not intrinsic
to Q, unlike lengths of triangulations of bona fide (ϕ,ΓK)-modules. This remains true even
if a generalized triangulation Q• is strictly increasing: the length still cannot be read off
from Q since RL/tτ tσ ' RL/tτ ⊕RL/tσ if σ 6= τ .

Note that if Q is a generalized (ϕ,ΓK)-module then the torsion submodule Qtor = Q[t∞] ⊂
Q is (ϕ,ΓK)-stable and anRL-module summand. The quotient Q/Qtor is a bona fide (ϕ,ΓK)-
module whose rank depends only on Q. We isolate those generalized triangulations which
appear in practice.

Definition 3.10. If Q is a generalized (ϕ,Γ)-module and Q• is a generalized triangulation of
Q then Q• is called a standard triangulation if there exists a 0 ≤ i ≤ d such that Qi = Qtor.
The integer i is called the torsion length of Q• and the integer d− i is called the free length
of Q.

In the definition, the torsion length i depends on Q• whereas the free length d− i depends
only on Q (since it is equal to rankRL Q/Qtor). And now a standard triangulation is closer
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to a triangulation in the case where Q is a bona fide (ϕ,ΓK)-module. Indeed, in that case
Qtor = (0) and so a standard triangulation is of the form

0 = 0 = · · · = 0 = Qi ( Qi+1 ( · · · ( Qd = Q

where Pj := Qi+j defines a triangulation of Q as in Definition 3.1.
A standard triangulation of a generalized (ϕ,ΓK)-module has a number of invariants which

we now detail. Suppose that Q• is a standard triangulation.

• The induced generalized triangulation on Q/Qtor is an actual triangulation with or-
dered parameter (δi+1, . . . , δd) whose length is the free length of Q.
• The induced generalized triangulation on Qtor also has invariants. For one, it has its

length i. Second, if 1 ≤ j ≤ i then Qj/Qj−1 is pure torsion of character type and
thus has exponents (rj,τ )τ and weights (wj,τ )τ .

Note that it may happen that for some τ , rj,τ = 0. For example, if there is an integer j such
that Qj = Qj−1 then the corresponding torsion exponents are rj,τ = 0 for all τ . However,
ranging over j we can a priori predict the frequency at which this happens.

Definition 3.11. If Q is a generalized (ϕ,ΓK)-module then its τ -torsion length is defined by

`τ (Q) = rankRL/tτ Qtor/tτ .

Fix a τ ∈ ΣK and a standard triangulation Q• of a generalized (ϕ,ΓK)-module with torsion
length i and exponents ((rj,τ )τ )1≤j≤i. Since the successive quotients of a generalized trian-
gulation are direct summands as RL-modules, it is easy to see that `τ (Q) = # {j : rj,τ 6= 0}
and that `τ (Q) ≤ i for all τ . To summarize the previous discussion we separate out the
following definition.

Definition 3.12. If Q• is a standard triangulation of a generalized (ϕ,ΓK)-module Q then,
in the notation above,

• the torsion length is the unique integer i ≥ 1 such that Qtor = Qi,
• the torsion exponents are ((rj,τ )τ )1≤j≤i,
• the torsion weights are ((wj,τ )τ )1≤j≤i and
• the free parameter is the ordered parameter (δj)j>i.

If we specify an element τ ∈ ΣK then we refer to (rj,τ )1≤j≤i and (wj,τ )1≤j≤i as the τ -torsion
exponents and τ -torsion weights.

Finally, we finish this section with a result that explains how standard triangulations of
generalized (ϕ,ΓK)-modules are inherently more flexible than triangulations of bona fide
(ϕ,ΓK)-modules. Recall that we defined the notion of homothety among continuous charac-
ters of K× at the end of Section 2.5.

Proposition 3.13. Suppose that Q is a generalized (ϕ,ΓK)-module, Q• is a standard trian-
gulation of torsion length i with torsion exponents ((rj,τ )τ )1≤j≤i, torsion weights ((wj,τ )τ )1≤j≤i
and free parameter (δj)j>i. Assume furthermore that δi+1 is not homothetic to δj for j > i+1.
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Then, for every ΣK-tuple (ri+1,τ )τ of non-negative integers such that

j ≤ i =⇒ wj,τ − wtτ (δi+1) /∈{−ri+1,τ , . . . , rj,τ − ri+1,τ − 1} = {−ri+1,τ +m : 0 ≤ m < rj,τ} ,

there exists a unique (up to scalar) inclusion
∏

τ t
ri+1,τ
τ RL(δi+1) ↪→ Q. Its cokernel is a

generalized (ϕ,ΓK)-module which is naturally equipped with a standard triangulation having
invariants:

• torsion length i+ 1
• torsion exponents ((rj,τ )τ )j≤i+1,
• torsion weights ((wj,τ )τ )j≤i ∪ (wtτ (δi+1))τ and
• free parameter (δj)j>i+1.

Proof. Let δ = δi+1

∏
τ z

ri+1,τ
τ . For each j ≤ i we choose a character δj whose τ -weight is wj,τ

and so that Qj/Qj−1 ' RL(δj)/
∏

τ t
rj,τ
τ . We quickly calculate

wtτ (δjδ
−1) = wj,τ − wtτ (δi+1) + ri+1,τ .

By our assumptions, wtτ (δjδ
−1)) /∈ {0, 1, . . . , rj,τ − 1} for each τ . Using Proposition 2.14 we

see that
Hom(RL(δ), Qj/Qj−1) = H0((RL/

∏
τ

trj,ττ )(δjδ
−1)) = (0).

By induction on 1 ≤ j ≤ i we see that Hom(RL(δ), Qi) = (0). Since Qi is torsion, the
Euler–Poincaré formula for torsion modules implies H1(Qi(δ

−1)) = (0) as well. We de-
duce from the long exact sequence in cohomology that the natural map Hom(RL(δ), Q) →
Hom(RL(δ), Q/Qi) is an isomorphism.

On the other hand, Q/Qi is triangulated by a parameter (δi+1, . . . ) whose higher terms are
not homothetic to δi+1. From that we deduce that the inclusion Hom(RL(δ),RL(δi+1)) ↪→
Hom(RL(δ), Q/Qi) is an isomorphism also. Putting the two calculations together, we see
that

dimL Hom(RL(δ), Q) = dimL Hom(RL(δ),RL(δi+1)) = 1.

This shows that the morphism in the lemma exists and is unique up to a scalar.
But, the calculation shows more. We’ve shown in fact that any non-zero morphism e :
RL(δ)→ Q factors through Qi+1 and that e remains non-zero when mapped into the quotient
RL(δi+1) of Qi+1. Since both RL(δ) and RL(δi+1) are rank one, e must be injective and it
induces induces an exact sequence

(3) 0→ Qi → Qi+1/RL(δ)→ RL(δi+1)/RL(δ)→ 0.

Since RL(δi+1) is a direct summand of Qi+1 as a RL-module, the sequence (3) is also split
as a sequence of RL-modules. This means that the standard triangulation Q• on Q induces
a standard triangulation Q′• on Q/RL(δ) whose successive quotients are given by

Q′j/Q
′
j−1 =

{
Qj/Qj−1 if j 6= i+ 1

RL(δi+1)/
∏

τ t
ri+1,τ
τ if j = i+ 1.

The invariants are of the new standard triangulation are easily calculated from this. �
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Note that one can always find infinitely many such integers ri+1,τ which satisfy the hy-
potheses of the proposition. Also note that if ri+1,τ = 0 for all τ ∈ ΣK then the standard
triangulation we just produced will have two consecutive steps which are equal.

4. Galois cohomology in families

In this short section we expand on Section 2.5. In particular, we recall the main results of
[24] and develop a simple cohomology and base change framework for generalized (ϕ,ΓK)-
modules. The framework will be applied in Sections 5 and 6. Throughout this section we
will let A be a reduced affinoid L-algebra and X = Sp(A).

Suppose that N• = [· · · → N1 → N0] is a complex of A-modules and M is an A-module
such that TorAj (Np,M) = (0) for each j ≥ 1 and p ≥ 0. Then the Künneth spectral sequence,
see [35, Theorem 5.6.4], is a first quadrant spectral sequence

E2
pq = TorAp (Hq(N•),M)⇒ Hp+q(N• ⊗AM).

Definition 4.1. An A-module Q is called nearly flat if TorAj (Q,L(x)) = (0) for all j ≥ 1
and x ∈ Sp(A).

Recall that if x ∈ X(Qp) and Q is an A-module then Qx denotes the fiber Q⊗A L(x).

Proposition 4.2. If Q is a nearly flat generalized (ϕ,ΓK)-module over A then there is a
first quadrant spectral sequence

TorAp (H2−q(Q), L(x))⇒ H2−(p+q)(Qx)

which degenerates on the E3-page.

Proof. We apply the Künneth spectral sequence to M = L(x) and the three term Herr
complex C•ϕ,γK (Q), after making the obvious shift between homology and cohomology. The
hypothesis in the Künneth spectral sequence is valid since Q is nearly flat and each term of
C•ϕ,γK (Q) is a direct sum of finitely many copies of Q, if p is odd. If p = 2 then each term of

C•ϕ,γK (Q) is actually a direct sum of finitely many copies of Q∆K , itself a direct summand of
Q (we thank the anonymous referee for this precision).
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As an aid to the reader, let us explicitly write out the E2-page of the spectral sequence

(4)
...

...
...

0 0 0 · · ·

H0(Q)⊗A L(x) TorA1 (H0(Q), L(x)) TorA2 (H0(Q), L(x)) · · ·

H1(Q)⊗A L(x) TorA1 (H1(Q), L(x)) TorA2 (H1(Q), L(x))

ll

· · ·

H2(Q)⊗A L(x) TorA1 (H2(Q), L(x)) TorA2 (H2(Q), L(x))

ll

· · ·

The arrows drawn are the differentials. And now it is clear that the spectral sequence
stabilizes on the E3-page since the differentials there and afterwards are all zero. �

Proposition 4.3. Suppose f ∈ RL is not a zero divisor. If Q is a nearly flat generalized
(ϕ,ΓK)-module over A then for each x ∈ X:

(a) There is a four term exact sequence

0→ TorA2 (Q/f, L(x))→ Q[f ]⊗A L(x)→ Qx[f ]→ TorA1 (Q/f, L(x))→ 0.

(b) If i ≥ 1 then TorAi+2(Q/f, L(x)) ' TorAi (Q[f ], L(x)).

Proof. Consider the complex N• ofRA-modules given by N• = [Q
f−→ Q] and its base change

N•,x = [Qx
f−→ Qx] to x ∈ X. Apply the Künneth spectral sequence again with M = L(x).

The homology groups are H0(N•) = Q/fQ and H1(N•) = Q[f ] and vanish in degree i ≥ 2
(the same for N•,x). From the spectral sequence we get for all i ≥ 2 a short exact sequence

0→ coker
(
TorAi+1(Q/f, L(x))→ TorAi−1(Q[f ], L(x))

)
→ Hi(N•,x)

→ ker
(
TorAi (Q/f, L(x))→ TorAi−2(Q[f ], L(x))

)
→ 0.

The middle term vanishes since i ≥ 2 and thus by induction we see part (b) is true and
that TorA2 (Q/f, L(x)) ↪→ Q[f ] ⊗A L(x), making the sequence in (a) exact on the left. The
spectral sequence taken when p+ q = 1 gives a short exact sequence

0→ coker
(
TorA2 (Q/f, L(x))→ Q[f ]⊗A L(x)

)
→ Qx[f ]→ TorA1 (Q/f, L(x))→ 0,

which shows the rest of (a). �

Following these two general base change theorems we can begin to set up a cohomology
and base change framework. Recall from the end of Section 2.1 that if Q is a generalized
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(ϕ,ΓK)-module over X and U = Sp(B) ⊂ X is an admissible open affinoid subdomain then
Q
∣∣
U

:= Q⊗RX RU .

Definition 4.4. If Q is a generalized (ϕ,ΓK)-module over A then we say Q has finite coho-
mology if for every affinoid subdomain U = Sp(B) ⊂ X, H i(Q

∣∣
U

) is a finite B-module for
i = 0, 1, 2.

Remark. If Q is a generalized (ϕ,ΓK)-module over A with finite cohomology, then Q
∣∣
U

is a generalized (ϕ,ΓK)-module over B with finite cohomology for all affinoid subdomains
U = Sp(B) ⊂ X.

Theorem 4.5 (Kedlaya-Pottharst-Xiao). If Q is a generalized (ϕ,ΓK)-module over A then
Q has finite cohomology in the following situations:

(a) Q is a (ϕ,ΓK)-module;

(b) Q is of the form coker(Q1
e
↪→ Q2) where both Q1 and Q2 have finite cohomology and

e is (ϕ,ΓK)-equivariant.

Proof. If Q is a bona fide (ϕ,ΓK)-module over X then it is also a bona fide (ϕ,ΓK)-module
over U and thus each cohomology group H i(Q

∣∣
U

) is a finite B-module by the main theorem
of [24].

Now suppose that Q1 and Q2 have finite cohomology and that e : Q1 → Q2 is an injective
(ϕ,ΓK)-equivariant map. Since U ⊂ X is an affinoid subdomain, Proposition 2.7 implies
that we have a short exact sequence of generalized (ϕ,ΓK)-module over U

(5) 0→ Q1

∣∣
U
→ Q2

∣∣
U
→ Q

∣∣
U
→ 0.

The finiteness of each H i(Q
∣∣
U

) as a B-module now follows from the finiteness each H i(Qj

∣∣
U

)
(i = 0, 1, 2 and j = 1, 2) and the long exact sequence in cohomology associated to the
sequence (5). �

If Q is a generalized (ϕ,ΓK)-module over A then we define functions on X by the formula

diQ(x) := dimL(x) H
i(Qx).

Notice the fiber is taken prior to taking cohomology.
If Q has finite cohomology then Nakayama’s lemma, together with the fact that affinoid

algebras are Jacobson [8, Proposition 6.1.1/3], implies that x 7→ dimL(x)H
i(Q) ⊗A L(x)

is upper semi-continuous on X and, since X is reduced, locally constant if and only if
H i(Q) is flat. For i fixed, we will say that H i(Q) satisfies base change if the natural map
H i(Q)⊗A L(x)→ H i(Qx) is an isomorphism for all x ∈ X.

Proposition 4.6. If Q is a nearly flat generalized (ϕ,ΓK)-module with finite cohomology
and x 7→ diQ(x) is locally constant for i ≥ k then H i(Q) is flat over X for i ≥ k and satisfies
base change for i ≥ k − 1.

Proof. One argues by descending induction on k. Since the cohomology vanishes in degrees
k ≥ 3, the proposition is vacuous for k ≥ 4. When k = 3, H2(Q) is a cokernel, by definition,
and thus always satisfies base change.
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Fix k ≤ 2 and assume the result is true for k + 1. Since the hypotheses for k imply those
of k+ 1, the induction hypothesis implies that Hk(Q) satisfies base change. By assumption,
dkQ(x) is locally constant. Since X is reduced, Nakayama’s lemma implies that Hk(Q) is flat

over X. The fact that Hk−1(Q) satisfies base change now follows from Proposition 4.2. �

Recall that if X is a reduced rigid space and x0 ∈ X(Qp) then a subset Z ⊂ X(Qp) is
said to accumulate at x0 if there exists a neighborhood basis of affinoid neighborhoods U of
x0 such that Z ∩ U is Zariski dense in U for all U .

Corollary 4.7. Let Q be a nearly flat generalized (ϕ,ΓK)-module with finite cohomology. If
x ∈ X and there exists a Zariski dense subset Z ⊂ X(Qp) accumulating at x such that, for

each 0 ≤ i ≤ 2, diQ(x) = diQ(u) for all u ∈ Z then H i(Q
∣∣
U

) is flat and satisfies base change
for 0 ≤ i ≤ 2 for all sufficiently small affinoid subdomains x ∈ U ⊂ X.

Proof. H2(Q) always satisfies base change, whence u 7→ d2
Q(u) is upper semi-continuous

on X. Since Z is Zariski dense, and d2
Q(x) = d2

Q(u) for u ∈ Z, we may shrink X and

assume that d2
Q(−) is constant on X. It follows from Proposition 4.6 that H2(Q) is flat and

H1(Q) satisfies base change. By assumption on Z accumulating at X, the hypotheses of the
proposition remain true after we’ve shrunk X. Thus we may re-do the same proof to show
the result for i = 1 and then i = 0. �

5. Triangulated families

Here we introduce triangulated families: families of generalized (ϕ,ΓK)-modules which
point-by-point have a triangulation. They aren’t the most natural families to consider,
as the data are given pointwise, but they will be a useful intermediary for Theorem 6.8.
Throughout this section we write X = Sp(A) for a reduced rigid analytic affinoid space over
L.

5.1. Triangulated families.

Definition 5.1. A pointwise triangulated family of generalized (ϕ,ΓK)-modules with torsion
centered at x0 ∈ X is

• A generalized (ϕ,ΓK)-module Q over X;
• An ordered tuple ((sj,τ )τ )1≤j≤d of integers (called the torsion weights);
• An ordered tuple (δj)1≤j≤d of continuous characters δj : K× → Γ(X,O)× (called the

parameter);
• A Zariski dense set of points Xnc ⊂ X(Qp) (called the non-critical points);

• A point x0 ∈ X(Qp) (called the center).

such that

(TF1) If y ∈ Xnc ∪ {x0} then wtτ (δ1,y) < · · · < wtτ (δd,y) are distinct integers and {sj,τ}j =

{wtτ (δj,x0)}j (as sets) for all τ ∈ ΣK.

(TF2) If i < j and x ∈ X(Qp) then δ−1
i,x δj,x is generic up to homothety;
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(TF3) For each x ∈ X(Qp), there exists on Qx a standard triangulation of torsion length
i(x0) and free length d − i(x0), with 0 ≤ i(x0) ≤ d, independent of x, whose free
parameter is term-by-term homothetic to (δj,x)i(x0)<j≤d;

(TF4) The standard triangulation Qx0,• has invariants:
- torsion exponents ((sj,τ − wtτ (δ1,x0))τ )1≤j≤i(x0)

- torsion weights ((sj,τ )τ )1≤j≤i(x0)

- free parameter
(
δj,x0

∏
τ z

wtτ (δj,x0 )−sj,τ
τ

)
i(x0)<j≤d

(TF5) If y ∈ Xnc then the triangulation Qy,• has invariants:
- torsion exponents ((wtτ (δj,x0)− wtτ (δ1,x0))τ )1≤j≤i(x0)

- torsion weights ((wtτ (δj,y))τ )1≤j≤i(x0)

- free parameter (δj,y)i(x0)<j≤d
(TF6) For each C > 0 the set of points

Xnc
C = {y ∈ Xnc : wtτ (δj,y)− wtτ (δj−1,y) > C for all 2 ≤ j ≤ d}

accumulates at x0.

Remark. The axiom (TF5) does not have a typo. The torsion exponents are given in terms
of weights of characters at the point x0 and are independent of y ∈ Xnc. This is why x0 is
called the “center” of the torsion.

Remark. We stress that if Q is a pointwise triangulated family of generalized (ϕ,ΓK)-modules
over X then there is no reason to believe that x 7→ Qx,j defines a generalized (ϕ,ΓK)-module
Qj over X; the datum of the standard triangulations is really given only point-by-point.

We will dwell further beyond these remarks. First, i(x0) is the torsion length of the
standard triangulation Qx0,• but beware that Qx0 may actually be torsion free, even if i(x0) >
0. Indeed, our definitions allow for successive quotients in Qx0,• to be zero. In particular,
if i(x0) = 1 and s1,τ = wtτ (δ1,x0) for all τ ∈ ΣK then Qx0 is torsion free. This situation
doesn’t arise in our applications, but we mention it because the remark applies equally well
to y ∈ Xnc. Indeed, if y ∈ Xnc then (TF4) says that the torsion exponents of Qy,1 are given
by wtτ (δ1,x0)− wtτ (δ1,x0) = 0 for all τ ∈ ΣK and thus Q1,y = (0).

More generally, when i(x0) > 0 and y ∈ Xnc there will be i(x0)− 1 distinct torsion steps
in the standard triangulation Qy,•. On the other hand, in practice, Qx0,• will have i(x0)
torsion steps. However, consider the situation where for all τ ∈ ΣK there exists a j such
that j ≤ i(x0) and sj,τ = wtτ (δ1,x0). Then, for each τ ∈ ΣK we have an equality of τ -torsion
lengths `τ (Qy) = `τ (Qx0) at x0 versus y ∈ Xnc. Thus the discrepancy in the number of
torsion steps is really an artifact of how we are doing the bookkeeping. We will see in the
course of proving Theorem 6.8 that it can even happen that the tτ -torsion submodule of Qx0

is isomorphic, as an RL-module, to the tτ -torsion submodule of Qy for one (and thus all)
y ∈ Xnc.

Example 5.2. Theorem 5.3 below will explain how to build new pointwise triangulated
families out of old ones. But let us motivate the definition of pointwise triangulated families,
and the need for Theorem 5.3, with an example previewing the applications in Section 6.
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Consider a bona fide (ϕ,ΓK)-module D of rank d over X and assume that it is actually a
pointwise triangulated family D centered at x0 ∈ X with i(x0) = 0. For example, you could
start with a densely pointwise strictly trianguline (ϕ,ΓK)-module in the sense of [24, Section
6.3] (D is triangulated at every point following [24, Theorem 6.3.13]).

Starting from D (with the given parameter (δ1, . . . , δd)) one can construct locally on X,

near x0, a (ϕ,ΓK)-equivariant morphism RX(δ1)
e
↪→ D using [24, Theorem 6.3.9]. Moreover,

we can assume that the base change ex to any point x is still injective. If we set Q = coker(e)
then Q provides an example of a pointwise triangulated family of generalized (ϕ,ΓK)-modules
which is not necessarily a (ϕ,ΓK)-module. It is even nearly flat.

At the points y ∈ Xnc, the fiber Qy will be a bona fide (ϕ,ΓK)-module of rank d − 1.
At x0 however, this may not be the case. The (ϕ,ΓK)-module Dx0 is triangulated by a
triangulation whose first step is t−sRL(x0)(δ1,x0) for some integer s ≥ 0. When s > 0, which
is the case when the triangulation of Dx0 is critical, we see that the fiber Qx0 has a non-trivial
torsion submodule which is killed by ts. Nevertheless, the generalized (ϕ,ΓK)-module Q is
still a pointwise triangulated family of (ϕ,ΓK)-modules over X with torsion centered at x0,
and i(x0) = 1. One can then hope to iterate this process, in the style of [24], using these
more general families.

Let’s continue now with constructing new pointwise triangulated families out of old ones
in general.

Theorem 5.3. If Q is a nearly flat pointwise triangulated family with torsion centered at
x0 ∈ X(Qp), free length d − i(x0) > 0 and finite cohomology then there exists an affinoid
neighborhood x0 ∈ U ⊂ X and a short exact sequence

0→
∏
τ

t
wtτ (δi(x0)+1,x0

)−wtτ (δ1,x0 )
τ RU(δi(x0)+1)→ Q

∣∣
U
→ Q′ → 0

of generalized (ϕ,ΓK)-modules over U . Moreover, Q′ is a nearly flat pointwise triangulated
family with torsion centered at x0, free length d − i(x0) − 1 and finite cohomology whose
given data is the same as Q. Thus Q′ as in Theorem 5.3 satisfies (TF1) - (TF6) with i(x0)
replaced by i(x0) + 1.

Proof. This is an application of our cohomology and base change framework. To shorten

notation, let kj,τ = wtτ (δj,x0) and δ = δi(x0)+1

∏
τ z

ki(x0)+1,τ−k1,τ
τ . Note that wtτ (δ) = k1,τ for

each τ ∈ ΣK . We’re going to compute the cohomology H•(Q(δ−1)).
We begin by computing the cohomology at x0. First, H2(Qx0(δ

−1
x0

)) = (0) by (TF2) and the
vanishing of cohomology in degree two for torsion (ϕ,ΓK)-modules. By the Euler–Poincaré

formula it remains to compute the cohomology in degree zero. Let δ̃ be the character

δ̃ = δi(x0)+1

∏
τ

z
ki(x0)+1,τ−si(x0)+1,τ
τ ·

By (TF4), δ̃ is the first character in the free parameter of the standard triangulation Qx0,•

and we see easily that δ =
(∏

τ z
si(x0)+1,τ−k1,τ
τ

)
δ̃. For each j ≤ i(x0) + 1 set rj,τ = sj,τ −
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k1,τ . According to (TF4), for j ≤ i(x0), these are the torsion exponents of the standard
triangulation Qx0,•. Moreover, if j ≤ i(x0) then

sj,τ − wtτ (δ̃) = −ri(x0)+1,τ + rj,τ .

Thus Proposition 3.13, whose non-homothetic hypothesis is valid by (TF2), implies that
there exists a unique, up to scalar, (ϕ,ΓK)-equivariant inclusion

RL(x0)(δx0) =
∏
τ

tri+1,τ
τ RL(x0)(δ̃) ↪→ Qx0 ,

so dimL(x0) H
0(Qx0(δ

−1
x0

)) = 1. Moreover, Proposition 3.13 also explicitly describes the in-
duced standard triangulation on the quotient Qx0/RL(x0)(δx0).

We now compute the cohomology at (some) points y ∈ Xnc. As above, H2(Qy(δ
−1
y )) = (0)

by (TF2) and the vanishing of cohomology in degree two for torsion (ϕ,ΓK)-modules. Reset
the definitions from the previous paragraph and make rj,τ := kj,τ − k1,τ for all j ≤ i(x0) + 1.
Once again, if j ≤ i(x0) then (rj,τ )τ gives the torsion exponents of the standard triangulation
Qy,•. For all j ≤ i(x0), we easily compute

wtτ (δj,y)− wtτ (δy) = wtτ (δj,y)− wtτ (δi(x0)+1,y) + ri(x0)+1,τ .

Choose a C so large that if y ∈ Xnc
C then for all τ and 1 ≤ j ≤ i(x0), the negative integer

wtτ (δj,y)−wtτ (δi(x0)+1,y) is not among the finitely many values {−ri+1,τ , . . . , rj,τ − ri+1,τ − 1}.
Then by (TF2), we can apply Proposition 3.13 and conclude that if y ∈ Xnc

C thenH0(Qy(δ
−1
y ))

is one-dimensional over L(y). Again, Proposition 3.13 also explains how a non-zero morphism
RL(y)(δy) ↪→ Qy will induce a standard triangulation on Qy by replacing the subquotient
RL(y)(δi(x0)+1,y) of Qy by

RL(y)(δi(x0)+1,y)/RL(y)(δ) = RL(y)(δi(x0)+1,y)/(
∏
τ

t
ki(x0)+1,τ−k1,τ
τ ).

By (TF6) we can replace Xnc by Xnc
C and assume that H0(Qy(δ

−1
y )) has constant dimension

over all of Xnc.
We now go back to the entire family. By the Euler–Poincaré formula the function y 7→

dimL(y) H
1(Qy(δ

−1
y )) is constant on Xnc and agrees with dimL(x0) H

1(Qx0(δ
−1
x0

)). Since Q is
nearly flat and has finite cohomology, Corollary 4.7 implies we can choose an open neigh-
borhood x0 ∈ U ⊂ X so that each H i(Q(δ−1)

∣∣
U

) is free over U and satisfies base change for
each i. We now replace X by such a U .

Choose a basis vector e ∈ H0(Q(δ−1)). Since H0(Q(δ−1)) satisfies base change, if we
specialize e to either x = x0 or x = y ∈ Xnc, we get an injective morphism ex : RL(x)(δx) ↪→
Qx by the previous two paragraphs. By Lemma 5.4(a) below we conclude that e is also
injective. Let Q′ = coker(e) so that there is a short exact sequence

(6) 0→ RX(δ)
e−→ Q→ Q′ → 0.

Since Q has finite cohomology, by assumption, and RX(δ) has finite cohomology by Theorem
4.5(a), Q′ has finite cohomology by Theorem 4.5(b).
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We also have to show that Q′ is nearly flat (after possibly shrinking X more). Since Q is
nearly flat over X and RX is flat over X, it suffices to show that we can shrink X around
x0 so that ex is injective for all x. Since ex0 is injective it suffices by Lemma 5.4(b) to show
that x 7→ rankRx[1/t] Qx[1/t] is constant on X. But this follows from (TF3), which implies
that Qx[1/t] is finite free over RL(x)[1/t] of rank d− (i(x0) + 1) independent of x.

Finally, we need to check that Q′ is a triangulated family with the same data as Q, except
i(x0) replaced by i(x0) + 1. The three axioms (TF1), (TF2) and (TF6) don’t depend on Q,
so those are still true. The axiom (TF3) is true because of (6) and the fact that Q′ is nearly
flat, so that all the base changes ex are injective. Checking either (TF4) or (TF5) follows
from our use of Proposition 3.13 at the points x = x0 and x = y. �

There were two points unresolved in the previous theorem, both of which we resolve with
the following lemma. For the second part, and more in the following results, we will make
use of the appendix on Nakayama’s lemma.

Lemma 5.4. Let X be a reduced affinoid space, Q a generalized (ϕ,ΓK)-module over X and
f : RX → Q a (ϕ,ΓK)-equivariant map.

(a) If X ′ ⊂ X(Qp) is Zariski dense in X and the specialization fu : RL(u) → Qu is
injective for all u ∈ X ′ then f is injective.

(b) If x 7→ rankRx[1/t] Qx[1/t] is constant on X, x0 ∈ X and fx0 is injective then there
exists an affinoid neighborhood x0 ∈ U ⊂ X such that fu is injective for all u ∈ U .

Remark. In part (b), Qx[1/t] is automatically free over Rx[1/t] for each x by Lemma 2.13.

Proof. We need to make use of the recollection given in Section 2.1. Choose an r0 so that Q
arises via base change from Xr0 and f arises from a (ϕ,ΓK)-equivariant map f r0 : Rr0

X → Qr0

as well.
We first prove (a). It suffices to show that f r0 is injective. If 0 < s < r0 then let f [s,r0]

denote the induced map

R[s,r0]
X

f [s,r0]−→ Q[s,r0] := Qr0 ⊗Rr0X R
[s,r0]
X .

By [24, Lemma 2.1.4(2)] it suffices to show that f [s,r0] is injective.
We’ve now reduced to working over a closed relative annulus X [s,r0] whose rigid functions

R[s,r0]
X are, in particular, noetherian. Write I for the image of f [s,r0] in Q[s,r0]. If u ∈ X ′ then

R[s,r]
L(u) → I ⊗A L(u) is injective, as it factors fu and we’ve assumed that fu is injective. It is

also surjective since tensor product is right exact. Thus it is an isomorphism.
We deduce from Nakayama’s lemma, applied to the finite module I over the noetherian

ring R[s,r0]
X that dimL(v) Iv ≥ 1 for all v ∈ X [s,r0] (note: v is in the relative annulus, not just

X, and Iv := I ⊗R[s,r0]
X

L(v)). But dimL(v) Iv ≤ 1 for all v ∈ X [s,r0] since Iv is a quotient of

something free of rank one over X [s,r0]. Since X is reduced, so is X [s,r0] and we just showed
that v 7→ dimL(v) Iv is constant on the relative annulus X [s,r0]. Thus I must be flat over
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X [s,r0] by Nakayama’s lemma again. In particular, R[s,r0]
X → I is an isomorphism, as was to

be shown.
Let’s now prove part (b). We note that the proof of part (a) didn’t use that f was (ϕ,ΓK)-

equivariant. Consider Cr0 = coker(Rr0
X

fr0−→ Qr0). By Corollary 2.4, Cr0 is a generalized
(ϕ,ΓK)-module. If u ∈ X then Cr0

u [1/t] is free over Rr0
L(u)[1/t] by Lemma 2.13, so it makes

sense to consider the function rank(u) := rankRr0
L(u)

[1/t](C
r0
u [1/t]). Moreover, if we choose any

0 < s < r0 then we also have5

(7) rank(u) = rankR[s,r0]

L(u)
[1/t]

C [s,r0]
u [1/t].

Consider such a choice of s made now.
Since rankRr0

L(u)
[1/t] Q

r0
u [1/t] =: q is constant on X, we know that rank(u) is either q or q−1.

Since f r0x0 is injective, so is f r0x0 [1/t] and thus rank(x0) = q − 1 is the minimal possible value.

Since R[s,r0]
X is affinoid, the expression (7) and Proposition A.4(a) together imply that we

may replace X by an affinoid subdomain containing x0 so that rank(u) = q−1 for all u ∈ X.
But that clearly is equivalent to ker f r0u [1/t] = (0) for all u ∈ X. Since f r0u : Rr0

L(u) → Qr0
u

has source RL(u), Proposition 2.9 and the fact that f r0u [1/t] is injective for all u ∈ X implies
that ker f r0u = (0) for all u ∈ X (and thus fu is injective also). �

5.2. Killing torsion. Notice that Theorem 5.3 possibly introduces torsion (ϕ,ΓK)-modules
into the picture. Thus its utility rests on being able to kill torsion in certain pointwise
triangulated families. This is achieved in Corollary 5.8. First we need preparation. The
following is an application of Nakayama’s lemma in the appendix.

Lemma 5.5. Let τ ∈ ΣK. Suppose that Q is a generalized (ϕ,ΓK)-module such that for
each x ∈ X, Qx/tτ is finite free over RL(x)/tτ . Suppose that x0 ∈ X(Qp) and Z ⊂ X(Qp) is
a set of points accumulating at x0 and rankRx0/tτ Qx0/tτ = rankRz/tτ Qz/tτ for each z ∈ Z.
Then there exists an affinoid subdomain x0 ∈ U ⊂ X such that u 7→ rankRL(u)/tτ Qu/tτ is
constant on U .

Proof. First, if necessary, replace X by an affinoid subdomain x0 ∈ U ⊂ X so that Z is
Zariski dense in U . Then, we find an r0 so that Q arises from a (ϕ,ΓK)-module Qr0 over
Xr0 . Since Qu/tτ is finite free over RL(u)/tτ for each u ∈ X, the same is true for Qr0

u /tτ

over Rr0
L(u)/tτ . (Since the Frobenius Rr0

L(u) → R
r0/p
L(u) is faithfully flat and Qr0 is a generalized

(ϕ,ΓK)-module, it is enough to check Qr
u/tτ is finite free over Rr

L(u)/tτ for some 0 < r ≤ r0

(possibly depending on u); this follows from knowing Qu/tτ is finite free over RL(u)/tτ and
Qr
u/t is finitely presented over Rr

L(u)/t for each r; compare with [24, Lemma 2.1.16].)
Fix any 0 < s < r0. Then

(8) rankRr0
L(u)

/tτ
Qr0
u /tτ = rankR[s,r0]

L(u)
/tτ
Q[s,r0]
u /tτ

5It is important here that Cr0 is finitely presented, so that C
[s,r0]
u = Cr0u ⊗Rr0

L(u)
R[s,r0]
L(u) uses the usual

tensor product.
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for each u ∈ X. The ring R[s,r0]/t is reduced since t is well-known to be a uniformizer at
the at the points of the form ζ − 1 ∈ A1[s, r0] where ζ is a p-power root of unity. Thus

so is the factor ring R[s,r0]/tτ . In particular, R[s,r0]
X /tτ = R[s,r0]/tτ ⊗̂QpA is the completed

tensor product of reduced affinoid Qp-algebras. It follows from Proposition A.4(b) that the
right hand side of (8) has a minimum achieved on the Zariski dense subset Z ⊂ X. Since
that minimum is achieved also at x0, by assumption, Proposition A.4(a) allows us to find an
affinoid subdomain x0 ∈ U ⊂ X on which u 7→ rankRr0

L(u)
/tτ
Qr0
u /tτ is constant. �

Lemma 5.6. Let τ ∈ ΣK. Suppose that Q is a nearly flat generalized (ϕ,ΓK)-module,
x0 ∈ X(Qp) and Z ⊂ X(Qp) is a set of points accumulating at x0 such that:

(a) there exists non-negative integers s, r such that for all u ∈ X(Qp), Qu is triangulated
by a standard triangulation with non-zero τ -torsion exponents (mi,τ (u))1≤i≤s and free
parameter of length r,

(b) z 7→ minsi=1 mi,τ (z) is a constant m on Z, and
(c) m ≤ minsi=1 mi,τ (x0) as well.

Then there exists an open affinoid x0 ∈ U ⊂ X such that (Q/tmτ )
∣∣
U

is flat over RU/t
m
τ .

Proof. Let’s begin by elucidating the first assumption. Since tτ and tσ are maximally coprime
if τ 6= σ, the first assumption implies that

Qu '

(
s⊕
i=1

RL(u)/t
mi,τ (u)
τ

)
⊕R⊕rL(u) ⊕ Su

as an RL(u)-module, where Su[tτ ] = Su/tτ = (0) and each mi,τ (u) is non-zero.

Claim. For each 1 ≤ j ≤ m we may replace X by an affinoid neighborhood x0 ∈ U ⊂ X
such that Qu/t

j
τ is free of rank r + s over RL(u)/t

j
τ .

The proof will be given by induction in the next paragraph. Assuming the claim for the
moment, let us finish the lemma. Fix 1 ≤ j ≤ m. By the claim we may assume that Qu/t

j
τ

is free over RL(u)/t
j
τ with rank independent of u. We want to show that this implies Q/tjτ is

flat over RX/t
j
τ . This will follow from Lemma 2.2 and [24, Lemma 2.1.8(2)]. Indeed, we may

first spread out Q to a finitely presented module Qr0 on a half-open annulus Xr0 . Having

done that, Lemma 2.2 shows that it suffices to check that Q[s,r0]/tjτ is finite flat over R[s,r0]
X /tjτ

for each 0 < s < r0. To check that, we observe that R[s,r0]
X /tjτ is the completed tensor product

of an affinoid algebra R[s,r0]/tjτ with a reduced affinoid algebra A (where X = Sp(A)). In
particular, [24, Lemma 2.1.8(2)] (which only requires one of the tensor-ands to be reduced)

and the constancy u 7→ rankR[s,r0]

L(u)
/tjτ
Q

[s,r0]
u /tjτ (our assumption in the claim) implies that

Q[s,r0]/tjτ is finite flat over R[s,r0]
X /tjτ .

Proof of claim. We now prove the claim by induction on 1 ≤ j ≤ m starting with j = 1.
Since mi,τ (u) ≥ 1 for all i and u, we see visibly that Qu/tτ is free over RL(u)/tτ of rank r+ s
for each u ∈ X. Let 1 ≤ j < m and assume Qu/t

j
τ is free over RL(u)/t

j
τ for all u ∈ X. If we
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show that we may shrink X so that j < mi,τ (u) for each i and u ∈ X then the same freeness
will be true for j + 1 and we’ll be done.

First, Q/tjτ is flat over RX/t
j
τ by induction and the proof in the paragraph following the

claim. Since RX/t
j
τ is flat over X, see [24, Corollary 2.1.5], we get that Q/tjτ is flat over X.

Second, Q is nearly flat over X and thus Proposition 4.3 implies that the tjτ -torsion satisfies
base change: for each u ∈ X(Qp),

Q[tjτ ]u = Qu[t
j
τ ] '

s⊕
i=1

tmax(0,mi,τ (u)−j)
τ RL(u)/t

mi,τ (u).

If we define Q′ := Q/Q[tjτ ] then Q′ is a generalized (ϕ,ΓK)-module over X and we see

(9) Q′u '

(
s⊕
i=1

RL(u)/t
max(0,mi(u)−j)
τ

)
⊕R⊕rL(u) ⊕ Su

as a RL(u)-module. Note immediately that Q′u/tτ is free over RL(u)/tτ for any u. Now
specialize to u = x0 or u ∈ Z. From the assumptions (b) and (c) we have that Q′u/tτ has
rank r + s at u = x0 and at u ∈ Z. By Lemma 5.5, we may replace X by an affinoid
subdomain so that Q′u/tτ has precisely rank r+ s everywhere on X. The formula (9) for the
fiber Q′u easily implies that mi(u)− j > 0, which is what we wanted to show. �

With the inductive step complete, the proof is finished. �

Recall we defined the τ -torsion length `τ (Q) of generalized (ϕ,ΓK)-modules in Section 3.3.
If we know that Q has a standard triangulation Q• then its τ -torsion length is the number
terms in the associated graded with non-zero τ -torsion exponent.

Proposition 5.7. Suppose that Q is a nearly flat pointwise triangulated family with tor-
sion centered at x0 ∈ X(Qp) and non-critical points Xnc. If τ ∈ ΣK such that `τ (Qx0) =
`τ (Qy) at one (and hence all) y ∈ Xnc then there exists an affinoid neighborhood x0 ∈
U ⊂ X such that Q[t

wtτ (δ2,x0 )−wtτ (δ1,x0 )
τ ]x ' Qx[t

wtτ (δ2,x0 )−wtτ (δ1,x0 )
τ ] for all x ∈ U(Qp) and

Q
∣∣
U

[t
wtτ (δ2,x0 )−wtτ (δ1,x0 )
τ ] is a nearly flat generalized (ϕ,ΓK)-module over U .

Proof. We’re going to apply Lemma 5.6. Note that Qx/tτ is free over RL(x)/tτ for all x ∈
X(Qp). Moreover, the rank at x = x0 agrees with the rank over the Zariski dense set Xnc.
By (TF3), the free parameters of the family Q have constant length d − i(x0) on all of X.
Since rankRL(x)/tτ Qx/tτ = `τ (Qx) + d − i(x0), Lemma 5.5 implies that we may shrink X
and assume that the τ -torsion lengths are also constant on the entire family. In particular,
the first hypothesis of Lemma 5.6 is verified. By (TF5), the minimal torsion exponent at
y ∈ Xnc is given by wtτ (δ2,x0) − wtτ (δ1,x0), independent of y. Thus the second hypothesis
of Lemma 5.6 is verified. On the other hand, by (TF1), wtτ (δ2,x0) − wtτ (δ1,x0) is also the
smallest possible value for elements in the set {sj,τ − wtτ (δ1,x0) : 2 ≤ j ≤ d}, which are the
possible non-zero τ -torsion exponents of the standard triangulation on Qx0 . Thus the third

hypothesis of Lemma 5.6 is satisfied. We conclude by Lemma 5.6 that Q
∣∣
U
/t

wtτ (δ2,x0 )−wtτ (δ1,x0 )
τ
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is flat over RU/t
wtτ (δ2,x0 )−wtτ (δ1,x0 )
τ for some affinoid neighborhood U of x0. Replacing X by

U we’re done by Proposition 4.3. �

Corollary 5.8. Suppose Q is a nearly flat pointwise triangulated family with torsion centered
at x0 ∈ X(Qp), non-critical points Xnc and for each τ ∈ ΣK, we have `τ (Qx0) = `τ (Qy) for
one (and hence all) points y ∈ Xnc. Then

(a) For each τ there exists a unique 1 ≤ jτ ≤ i(x0) such that sjτ ,τ = k1,τ .
(b) There exists an affinoid neighborhood x0 ∈ U ⊂ X such that the quotient Q′ :=

Q
∣∣
U
/Q
∣∣
U

[
∏

τ t
wtτ (δ2,x0 )−wtτ (δ1,x0 )
τ ] is a nearly flat pointwise and triangulated family of

(ϕ,ΓK)-modules over U with torsion centered at x0 and modified data
• torsion weights (sj,τ )j 6=jτ ,
• parameter (δ2, . . . , δd),
• Xnc replaced by U ∩Xnc.

In particular, the free length of Q′ is the same as the free length of Q.

Proof. The fact that the jτ exists is clear since the τ -torsion lengths are constant on Xnc

and concur with the lengths at x0. Choose, by Proposition 5.7, an affinoid neighborhood

x0 ∈ U ⊂ X over which each torsion Q
∣∣
U

[t
wtτ (δ2,x0 )−wtτ (δ1,x0 )
τ ] satisfies base change and is a

nearly flat generalized (ϕ,ΓK)-module over U . Since the tτ are maximally coprime within R,

the torsion Q
∣∣
U

[
∏

τ t
wtτ (δ2,x0 )−wtτ (δ1,x0 )
τ ] is also a nearly flat generalized (ϕ,ΓK)-module and

satisfies base change over U . Let Q′ be as in the statement of part (b). Then we see that
Q′ is nearly flat over U , proving the first half of (b). If x ∈ U then the fiber of Q′ at x is
computed as

Q′x = coker(Qx[
∏
τ

t
wtτ (δ2,x0 )−wtτ (δ1,x0 )
τ ] ↪→ Qx).

The image, by definition, lands in the torsion part of Qx and hence can only effect the
torsion exponents of the standard triangulation on Q′x. Thus the rest of part (b) follows
easily follows from the observation that

coker
(
ts−k2,τRL/t

s−k1,τRL → RL/t
s−k1,τ

)
has torsion exponent s− k2,τ for any s ≥ k2,τ > k1,τ . �

6. p-adic variation in refined families

We are now ready to state and prove the main theorem of this article. The notion of
refined families given below is inspired by [2, Chapter 4] (see also [27, Section 5]). They arise
naturally as arithmetic families of (ϕ,ΓK)-modules over rigid spaces, for example eigenvari-
eties.

6.1. Refined families. Let X = Sp(A) be a reduced L-affinoid space.

Definition 6.1. A refined family of (ϕ,ΓK)-modules of rank d is

- a (ϕ,ΓK)-module D of rank d over X,
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- an ordered tuple (δ1, . . . , δd) : K× → A× of continuous characters, and
- a Zariski dense subset Xcl ⊂ X(Qp)

such that the following axioms hold:

(RF1) For each x ∈ X(Qp) and τ ∈ ΣK,

HTτ (Dx) = {wtτ (δ1,x), . . . ,wtτ (δd,x)} .
We now label the Hodge–Tate–Sen weights by κi,τ (x) := wtτ (δi,x).

(RF2) For each x ∈ Xcl and i = 1, . . . , d, the character δi,x is crystalline.
(RF3) If x ∈ Xcl then Dx is crystalline, the Hodge–Tate weights satisfy

κ1,τ (x) < · · · < κd,τ (x),

for each τ ∈ ΣK, and the ϕfK eigenvalues {φ1(x), . . . , φd(x)} all live in L(x)×, are
distinct, and given by

φi(x) = δi,x($K)
∏
τ∈ΣK

τ($K)κi,τ (x)

for some (any) uniformizer $K ∈ K×.
(RF4) By (RF3) and Proposition 3.3, every point x ∈ Xcl has a unique triangulation Px,•

corresponding to the ordering (φ1(x), . . . , φn(x)) of (distinct) crystalline eigenvalues.
Let

Xnc
cl := {x ∈ Xcl : Px,• is a non-critical triangulation} .

Then, for all C > 0 the set

Xnc
cl,C :=

{
x ∈ Xnc

cl : C <
∑
τ∈ΣK

κi+1,τ (x)− κi,τ (x) for i = 1, . . . , n− 1

}
is Zariski dense in X and accumulates at every point in Xcl.

We will often abuse language and call D the refined family, with the ordered parameter
(δi)i=1,...,d and the subset Xcl understood. The subscript “cl” is meant to mean classical,
but note that there are slight restrictions. Indeed, a refined family for us has a distinctness
hypothesis on not only the Hodge–Tate weights over Xcl but also the crystalline eigenvalues.
In applications we will work with a slightly stronger condition.

Definition 6.2. Suppose that D is a refined family of (ϕ,ΓK)-modules over X. We say that
x ∈ Xcl is very ϕ-regular if

(a) φi(x) 6= pfKφj(x) for each 1 ≤ i < j ≤ d, and
(b) φ1(x) · · ·φi(x) is a simple eigenvalue of ϕfK acting on Dcris(∧iDx) for each 1 ≤ i ≤ d.

The set of all very ϕ-regular points is denoted by X
ϕreg

cl .

Just as axiom (RF4) says that classical points are well-approximated by points whose
Hodge–Tate weights are extremely regular (i.e. far apart), the following proposition shows
that we can, moreover, make such approximations by very ϕ-regular points as well. We let
X

nc,ϕreg

cl,C = Xnc
cl,C ∩X

ϕreg

cl .
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Proposition 6.3. If C > 0 then X
nc,ϕreg

cl,C accumulates each every point in Xcl.

Proof. Let x ∈ Xcl. Since each character δi : K× → A× is continuous we may choose a
neighborhood U of x so that the slopes vp(δi,u($K)) =: νi are constant on U for some (and
hence any) uniformizer $K . Let

C ′ = max {C, 1 + eK(νi − νj) : 1 ≤ i, j ≤ d} .
Since C ≤ C ′, X

nc,ϕreg

cl,C ⊃ X
nc,ϕreg

cl,C′ . Thus it suffices to show, by (RF4), that Xnc
cl,C′ ∩ U ⊂

X
nc,ϕreg

cl,C′ . Let u ∈ Xnc
cl,C′ ∩ U and we will show u is very ϕ-regular.

• Suppose i < j and φi(u) = pfKφj(u). Since φi(u) = δi,u($K)
∏

τ τ($K)κi,τ (u) we can
take p-adic valuations and get, since u ∈ U , that∑

τ

κj,τ (u)− κi,τ (u) = eK(νi − νj − fK) < C ′.

Thus u /∈ Xnc
cl,C′ , a contradiction.

• If φ1(u) · · ·φi(u) is not a simple eigenvalue on Dcris(∧iDu) then one may construct a
list of pairs of integers i1 < j1, . . . , is < js such that φi1(u) · · ·φis(u) = φj1(u) · · ·φjs(u)
for some s ≥ 1. Once again, taking slopes we get

sC ′ <
s∑
b=1

∑
τ∈ΣK

κjb,τ (u)− κib,τ (u) =
s∑
b=1

(eK(νib − νjb)) ≤ sC ′,

a contradiction.

This concludes the proof. �

In the remainder of this subsection we show that point-by-point, a refined family of (ϕ,ΓK)-
modules may be triangulated (in an essentially unique way depending on the ordered pa-
rameter (δ1, . . . , δn)). In particular, we show that a refined family is naturally a pointwise
triangulated family (with no torsion). We begin by dealing with the axiom (TF2).

Lemma 6.4. If x ∈ Xϕreg

cl then there exists an open affinoid neighborhood x ∈ U ⊂ X such
that δ−1

i,u δj,u is generic up to homothety for all u ∈ U(Qp) and i < j.

Proof. Let (rτ )τ be any tuple of integers and set η = δ−1
i δj

∏
τ z
−rτ
τ . We have to show ηu is

generic for u near x. Choose a uniformizer $K of K×. Then by (RF3),

ηx = unr$K (φj(x)φi(x)−1)
∏
τ∈ΣK

zκi,τ (x)−κj,τ (x)−rτ
τ .

If ηx is not generic then a comparison of weights shows that that

unr$K (φj(x)φi(x)−1) ∈
{

1,
∣∣NK/Qp($K)

∣∣} .
However, since x is very ϕ-regular and i < j this is explicitly ruled out. Thus ηx is generic.

To conclude over an affinoid neighborhood we make use of cohomology and base change
arguments. Consider the functions diη(u) := dimL(u) H

i(ηu). Since H2(η) satisfies base

change, u 7→ d2
η(u) is upper semi-continuous on X. Since d2

η(u) vanishes at u = x, as we



36 JOHN BERGDALL

showed in the previous paragraph, we may shrink X and assume that H2(η) = (0). By
Proposition 4.6, H1(η) satisfies base change and u 7→ d1

η(u) is upper semi-continuous. But

d0
η(u) has a local minimum at u = x and thus so does d1

η(u) = 1+d0
η(u). Thus after shrinking

X further (so that d1
η(u) ≡ 1) we may assume that H1(η) is flat, and H0(η) satisfies base

change. Finally, this implies that H0(η) = (0). �

As noted in (RF4), axiom (RF3) and Proposition 3.3 imply that for each x0 ∈ Xcl

there exists a triangulation Px0,• of Dx0 whose parameter (δ̃1,x0 , . . . , δ̃d,x0) is homothetic to
(δ1,x0 , . . . , δd,x0). Moreover, if x0 ∈ Xϕreg

cl then Lemma 6.4 implies that Px0,• is the unique such

triangulation of Dx0 . Thus we may unambiguously refer to the parameter (δ̃1,x0 , . . . , δ̃d,x0)
for x0 ∈ Xϕreg

cl .

Proposition 6.5. If x0 ∈ Xϕreg

cl then there exists an open affinoid neighborhood x0 ∈ U ⊂ X
such that D

∣∣
U

is a pointwise triangulated family with torsion center x0 (but without actual
torsion) and given data

• torsion weights (wtτ (δ̃1,x0), . . . ,wtτ (δ̃d,x0))τ ,
• parameter (δ1, . . . , δd),
• non-critical points X

nc,ϕreg

cl , and
• center x0.

Proof. We’ve been given the data in the statement of the proposition and so our task is to
verify the axioms (TF1) – (TF6). The axiom (TF1) is clear by (RF3) and the definition

of the parameter (δ̃1,x0 , . . . , δ̃d,x0). Next, we may shrink X so that if i < j then δ−1
i δj is

everywhere generic up to homothety by Lemma 6.4, giving (TF2).
The axioms (TF4) – (TF6) are easily verified by the remarks preceding the theorem,

and (RF4). Thus it remains to check (TF3), i.e. that each point x is triangulated by a
triangulation whose parameter is homothetic to (δ1,x, . . . , δd,x). But if u ∈ Xnc

cl then this is
true at u and, moreover, by definition of non-critical we have that Du has ordered parameter
(δ1,u, . . . , δd,u) on the nose. As we’ve already verified, there is a unique triangulation of Du

whose parameter is homothetic to (δ1,u, . . . , δd,u) up to homothety. Thus the (ϕ,ΓK)-module
D over X is densely pointwise strictly trianguline with ordered parameter (δ1, . . . , δd) in the
sense of [24, Definition 6.3.2]. The existence of the triangulation demanded by (TF3) is
deduced from [24, Theorem 6.3.13]. �

Continue to let D be a refined family of (ϕ,ΓK)-modules and let x ∈ X
ϕreg

cl . Using
Proposition 6.5 we assume, by shrinking X, that for all u ∈ X, the (ϕ,ΓK)-module Du has

a unique triangulation whose parameter (δ̃1,u, . . . , δ̃d,u) is homothetic to (δ1,u, . . . , δd,u).

Definition 6.6. Let u ∈ X(Qp). The canonical (with respect to the refined family D) trian-
gulation is the unique triangulation of Du whose parameter is homothetic to (δ1,u, . . . , δd,u).

Note that u 7→ δ̃i,u does not, in cases of interest, glue to define a continuous character

δ̃i : K× → A×. In fact that will essentially only happen at points u where δ̃i,u = δi,u. The
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best one can hope for is that a certain subparabolization of the canonical triangulation does
analytically vary over X.

Definition 6.7. Let x ∈ X(Qp) and Px,• = (Px,i) be the canonical triangulation. We say

that Px,i is non-critical if δ1,x · · · δi,x = δ̃1,x · · · δ̃i,x. If

Inc
x := {i : Px,i is non-critical} = {0 = i0 < i1 < i2 < · · · < is = d}

is the set of non-critical indices then we define the maximal non-critical parabolization P nc
x,•

of Dx by

P nc
x,j : 0 ( Px,i0 ( Px,i1 ( · · · ( Px,is = Dx.

If x ∈ Xcl then a comparison of Hodge–Tate weights implies that the previous definition
agrees with the one(s) given in Section 3.2.

Suppose that x ∈ Xcl. If x is non-critical then one knows that the τ -Hodge–Tate weights
of Px,i are {κ1,τ (x), . . . , κi,τ (x)} by Lemma 3.5 and the definition of non-critical. Thus,
for general x ∈ Xcl, Sen’s theory of Hodge–Tate weights in families [32] implies that
one can only hope for Px,i to extend to an affinoid neighborhood provided HTτ (Px,i) =
{κ1,τ (x), . . . , κi,τ (x)} for each τ . That is, if we hope to spread Px,i out over a neighborhood
then we need to know a priori that i ∈ Inc

x . Our main theorem is that the converse is true.

Theorem 6.8. If D is a refined family of (ϕ,ΓK)-modules over X and x0 ∈ Xϕreg

cl then there
exists an affinoid neighborhood x0 ∈ U ⊂ X and a parabolization P nc of D

∣∣
U

such that for
each u ∈ U = Sp(B), the parabolization P nc

• ⊗B L(u) of Du is a subparabolization of P nc
u,•,

with equality if u = x0.

See the introduction for a history of this result.

Proof of theorem. First, assume that X is sufficiently small so that the conclusion of Propo-
sition 6.5 holds. In particular, there is a canonical triangulation Px,• at each point x ∈ X.

The proof will happen in three steps. By Proposition 6.5, D is a pointwise triangulated
family with center x0 but without torsion. Fix the unique 1 ≤ n ≤ d such that P nc

x0,1
= Px0,n.

We assume that n < d, or else the theorem is proven already. It suffices to construct P nc
1 over

an affinoid subdomain U as in the statement of the theorem. Indeed, granting its existence,
P nc

1 is a (ϕ,ΓK)-module of rank n (since it has rank n at x0) and thus after replacing X by U
we have P nc

1 ⊗A L(x) = Px,n for all x ∈ X. But then the quotient D/P nc
1 is a refined family

of (ϕ,ΓK)-modules over X whose global parameter is (δn+1, . . . , δd). And so inductively we
can apply the construction of P nc

1 we are about to give, if necessary.
Now we focus on constructing P nc

1 . For each τ , fix the unique integer nτ such that nτ such

that κ1,τ (x0) = wtτ (δ̃nτ ,τ ). Note nτ ≤ n because P nc
x0,1

= Px0,n is non-critical. Let Q0 = D
and X0 = X.

Claim (Step 1). There exists a sequence of affiniod subdomains X = X0 ⊃ X1 ⊃ · · · ⊃ Xn

and nearly flat pointwise triangulated families Qi over Xi with finite cohomology and torsion
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center x0 such that there is an exact sequence

0→
∏
τ

tκi+1,τ (x0)−κ1,τ (x0)
τ RXi+1

(δi+1)→ Qi

∣∣
Xi+1
→ Qi+1 → 0,

of generalized (ϕ,ΓK)-modules over Xi+1 and the invariants of Qi are given by

• torsion weights
(

(wtτ (δ̃j,x0))τ

)
1≤j≤d

• parameter (δ1, . . . , δd) and
• non-critical points Xnc

i = Xi ∩Xnc
cl .

Moreover, Qi,x has free length d− i ≥ d− n > 0.

Proof of Step 1. To prove the claim, one easily argues by induction on i using Theorem
5.3. �

Since nτ ≤ n for each τ we see from the choice of torsion weights and the definition of
nτ that Qx0,n has τ -torsion length `τ (Qx0,n) = n − 1. On the other hand, if u ∈ Xnc

n then
`τ (Qu,n) = n − 1 as well. Thus the τ -torsion lengths at x0 agree with the τ -torsion lengths
on a set of accumulating at x0. We will now kill the torsion. Let Q′0 = Qn and X ′0 = Xn as
in Step 1.

Claim (Step 2). There exists a nested sequence of affinoid subdomains Xn = X ′1 ⊃ · · · ⊃ X ′n
and nearly flat pointwise triangulated families Q′i over X ′i with torsion center x0 such that,
for 2 ≤ i < n, there is a short exact sequence

0→ Q′i
∣∣
X′i+1

[∏
τ

tκi+1,τ (x0)−κi,τ (x0)
τ

]
→ Q′i

∣∣
X′i+1
→ Q′i+1 → 0

of generalized (ϕ,ΓK)-modules over X ′i+1 and:

• The invariants of Q′i are:

– torsion weights
(

(wtτ (δ̃j,x0))τ

)
1≤j≤d : wtτ (δ̃j,x0 )≥κi,τ (x0)

– parameter (δi, . . . , δd) and
– non-critical points (X ′i)

nc = Xnc
n ∩X ′i.

• Q′i has free length d− n, independent of i and
• For each τ and u ∈ (X ′i)

nc,ϕreg

cl , the τ -torsion lengths `τ (x0) and `τ (u) are equal (both)
to n− i.

Proof of Step 2. The claimed properties for Q′1 = Qn follow from the conclusion of Step
1. If 1 < i ≤ n then the existence of Q′i over X ′i, with the given invariants, is proved by
Corollary 5.8. The τ -torsion lengths at u ∈ (X ′i)

nc,ϕreg

cl are easily seen to be n− i, so to finish
this step we just need to compute the τ -torsion length at x0. To do that we look at the
non-zero τ -torsion exponents in the standard triangulation of Q′i. The torsion exponents,
are by definition, given by

(10)
{

wtτ (δ̃j,x0)− wtτ (δi,x0) : 1 ≤ j ≤ n and wtτ (δ̃j,x0) ≥ wtτ (δi,x0)
}
.
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Since Px0,n is a non-critical step in the canonical triangulation at x0, the set of weights{
wtτ (δ̃1,x0), . . . ,wtτ (δ̃n,x0)

}
are the lowest n weights and so we see immediately that there

are `τ (x0) = n− i non-zero elements in the set (10). �

Claim (Step 3). Finally we set Cn = Q′n and U = X ′n = Sp(B) as in Step 2. We claim that
we can shrink U so that P nc

1 := ker(D � Cn) is a (ϕ,ΓK)-module over U and for all u ∈ U ,
P nc

1 ⊗B L(u) = Pu,n.

Proof of Step 3. Consider the pointwise triangulated family Cn = Q′n over U = X ′n. By Step
2, Cn is torsion free at x = x0 or x = u ∈ Unc. Thus after shrinking U , applying Lemma
5.5, we can assume that each fiber Cn,u is finite free over RL(u) of rank d − n, independent
of u. Thus Cn is a (ϕ,ΓK)-module over U (spread Cn out to an open annulus and use [24,
Corollary 2.1.7]). Defining P nc

1 as the kernel of the natural surjection D � Cn (note that all
the constructions in Steps 1 and 2 were quotients), we get a (ϕ,ΓK)-module and thus our
candidate P nc

1 .
It remains to compute P nc

1 ⊗B L(u) as a (ϕ,ΓK)-submodule of Du for each u. But we’ve
assumed throughout that X was sufficiently small so that for all x ∈ X there was a unique
triangulation with parameter (δ1,x, . . . , δd,x) up to homothety. So, in order to check P nc

1 ⊗B
L(u) = Pu,n it is enough to show that Cn,u can be triangulated by a parameter homothetic to
(δn+1,u, . . . , δd,u) for all u ∈ U . But that latter claim follows from applying the information
from Step 2 to Cn = Q′n and using axiom (TF2). �

This completes the proof. �

7. Ramification of weights

Let D be a refined family of (ϕ,ΓK)-modules over a reduced L-affinoid space X = Sp(A)
with parameter (δ1, . . . , δd) and classical points Xcl. For each i = 1, . . . , d and τ ∈ ΣK , we
consider the analytic functions κi,τ (x) := wtτ (δi,x) ∈ Γ(X,O). The goal of this section is to
study the infinitesimal differences κi,τ − κj,τ at classical points.

Suppose that x0 ∈ Xcl, write Px0,• for its triangulation defined by axiom (RF3) and

(δ̃1,x0 , . . . , δ̃d,x0) for the corresponding parameter. For each τ , the list of Hodge–Tate weights{
wtτ (δ̃1,x0), . . . ,wtτ (δ̃d,x0)

}
must be the same as the list of integers {κ1,τ (x0), . . . , κd,τ (x0)}.

In particular, for each τ there is a permutation πx0,τ on d letters such that wtτ (δ̃πx0,τ (i),x0) =
κi,τ (x0). To connect this with the non-critical jumps, the τ -non-critical indices of Px0,• are
exactly the integers i such that πx0,τ restricts to a permutation on the set {1, . . . , i}. In
particular, πx0,τ induces a permutation on the set of weights appearing in each non-critical
step P nc

x0,j
and thus permutes the set of weights appearing in each quotient P nc

x0,j
/P nc

x0,j−1 as
well.

If B is a ring, let B[ε] = B[T ]/(T 2) be the ring of dual numbers. If x0 ∈ X then Orig
X,x0

denotes its local ring (in the rigid topology). Since Orig
X,x0

is Henselian, it contains a section

of its residue field. We write Tx0X = HomL(x0)(Orig
X,x0

, L(x0)[ε]) for the Zariski tangent
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space at x0. If f ∈ A is a function on X and v ∈ Tx0X is a tangent vector we write
∇v(f) ∈ L(x0) for the directional derivative of f with respect to v. Explicitly it is given by
v(f) = f(x0) +∇v(f)ε.

Theorem 7.1. If x0 ∈ Xϕreg

cl and v ∈ Tx0X then ∇v(κπx0,τ (i),τ − κi,τ ) = 0 for each 1 ≤ i ≤ d
and τ ∈ ΣK.

As mentioned in the introduction, the theorem was discovered independently by the author
and Breuil. A proof, similar to the one we are about to give, is given in [10, Lemme 9.6 and
Théorème 9.7]. We’ve taken an extra effort to state a more precise result, dealing with all
the weights and over a finite extension K/Qp.

Proof of Theorem 7.1. Choose a uniformizer $K ∈ K× and write, for i = 1, . . . , d, the
character δi = δwt

i δ
nr
i as in Section 2.3. Furthermore, write ηi = δwt

1 · · · δwt
i and Di :=

(∧iD)(η−1
i ). Then Di is a (ϕ,ΓK)-module over X and it has distinct lowest Hodge–Tate

weight 0 over Xcl. Let Φ = δnr
1 ($K) · · · δnr

i ($K) ∈ Γ(X,OX)×. Then by [27, Theorem 4.13]

the (OX ⊗Qp F )-module Dcris(Di)
ϕfK=Φ is locally free of rank one and satisfies base change.

Now let v ∈ Tx0X. Write D̃i,v := ∇v(Di) for the deformation Di ⊗OX,x0 ,v L(x0)[ε] of Di,x0

in the tangent direction of v. By the result just mentioned, Dcris(D̃i,v)
ϕfK=Φ is free of rank

one over (L(x0)⊗Qp F )[ε]. Let E = ker(D̃i,v → Di,x0 → Di,x0/η
−1
i,x0

detPx0,i). By the lemma
below we have that E is a crystalline (ϕ,ΓK)-module. In particular, it is Hodge–Tate.

But what are the Hodge–Tate weights of E? The τ -Hodge–Tate weights of Di,x0 are given
by

HTτ (Di,x0) =

{∑
j∈J

κj,τ (x0)−
i∑

j=1

κj,τ (x0) : J ⊂ {1, . . . , d} and #J = i

}
.

And, the τ -Hodge–Tate–Sen weights of D̃i,v = ∧i(D̃1,v) (which are elements of L(x)[ε]) then
are given by{(∑

j∈J

κj,τ (x0) +∇v(κj,τ )ε

)
−

(
i∑

j=1

κj,τ (x0) +∇v(κj,τ )ε

)
: J ⊂ {1, . . . , d} and #J = i

}
.

We can reinterpret this by viewing D̃i,v as a (ϕ,ΓK)-module over RL(x0) of twice the rank.

We see that the Sen operator ΘSen acting on DSen(D̃i,v) has a matrix built out of the blocks
of the form

MJ :=

(∑
j∈J κj,τ (x0)−

∑i
j=1 κj,τ (x0)

∑
j∈J ∇v(κj,τ )−

∑i
j=1∇v(κj,τ )

0
∑

j∈J κj,τ (x0)−
∑i

j=1 κj,τ (x0)

)
∈ Mat2×2(L(x0)).

Now note that detPx0,i has Hodge–Tate weight κπx0,τ (1)(x0) + · · · + κπx0,τ (i)(x0) and thus

η−1
i,x0

detPx0,i has Hodge–Tate weight
∑i

j=1 κπx0,τ (j),τ (x0) − κj,τ (x0). By the short exact se-
quence

0→ E → D̃i,v → Di,v/η
−1
i,x0

detPx0,i → 0
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of (ϕ,ΓK)-modules over RL(x0), the only 2 × 2 block of ΘSen

∣∣
DSen(D̃i,v)

which appears in

ΘSen

∣∣
DSen(E)

is the block(∑i
j=1 κπx0,τ (j),τ (x0)− κj,τ (x0)

∑i
j=1∇v(κπx0,τ (j),τ − κj,τ )

0
∑i

j=1 κπx0,τ (j),τ (x0)− κj,τ (x0)

)
.

corresponding to J = {πx0,τ (1), . . . , πx0,τ (i)}. Finally since E is crystalline, it is Hodge–Tate
and thus ΘSen acts semi-simply. In particular, we conclude that

i∑
j=1

∇v(κπx0,τ (j),τ − κj,τ ) = 0.

Since this is for any i, we conclude the theorem by induction on i. �

It remains to give the computation left unresolved in the previous proof.

Lemma 7.2. Suppose that D is a crystalline (ϕ,ΓK)-module over RL, φ ∈ L× and P1 ⊂ D

is a rank one saturated submodule such that Dcris(D)ϕ
fK=φ = Dcris(P1)ϕ

fK=φ is free of rank

one over L⊗Qp F . If D̃ ∈ Ext1(D,D) is an extension such that Dcris(D̃)ϕ
fK=φ̃ is free of rank

one over (L ⊗Qp F )[ε] for some φ̃ ≡ φ mod ε then the image of D̃ under the natural map

Ext1(D,D)→ Ext1(P1, D) is a crystalline (ϕ,ΓK)-module over RL.

Note that the image of D̃ is given by the (ϕ,ΓK)-module E = ker(D̃ → D/P1). Thus the
lemma actually fills the gap left in the previous proof.

Proof. If T is a B-linear operator on a B-module M and b ∈ B then we let M (T=b) denote
the submodule of elements m ∈M such that (T − b)nm = 0 for for some n ≥ 0. The functor
M 7→M (T=b) is exact.

Since ϕfK is linear, φ is a simple eigenvalue for ϕfK and Dcris(−) is left exact, we see that

Dcris(E)(ϕfK=φ) = Dcris(D̃)(ϕfK=φ). In particular, since Dcris(D̃)ϕ
fK=φ̃ = Dcris(D̃)(ϕfK=φ) we

see that dimLDcris(E)(ϕfK=φ) ≥ 2 dimQp F . Now consider the exact sequence

0→ Dcris(D)(ϕfK=φ) → Dcris(E)(ϕfK=φ) → Dcris(P1)(ϕfK=φ).

By counting dimensions we see the final map is surjective as well. Since P1 is rank one,
Dcris(P1)(ϕfK=φ) = Dcris(P1). In particular, Dcris(E) → Dcris(P1) → 0 is exact as well,
meaning that E is crystalline (again by dimension counts). �

Remark. One can interpret Theorem 7.1, and Lemma 7.2, as making a statement about a
certain deformation ring of (ϕ,ΓK)-modules. Indeed, let XDx0

denote the functor of formal
deformations of Dx0 . Let Rx0,• = (φ1, . . . , φd) be the refinement corresponding to the tri-
angulation Px0,• by Proposition 3.3. One may define a relatively representable subfunctor

XDx0
⊃ Xh

Dx0 ,Rx0,•
consisting of deformations D̃ whose successive exterior powers ∧iD̃ contain

a free rank one submodule on which ϕfK acts by φ1 . . . φi. Neither functor X? is in general
representable but both satisfy the natural Mayer–Vietoris condition on L(x0)[ε]-points in
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order to have reasonable Zariski tangent spaces X?(L(x0)[ε]) (see [25, 33]). In that case
XDx0

(L(x0)[ε]) ' Ext1(Dx0 , Dx0). What we just showed is that the obvious differences of

Hodge–Tate weights are constant over the tangent space to Xh
Dx0 ,Rx0,•

.

Remark. One might also ask if Theorem 7.1 provides a tight bound for the rank of the weight
map in a refined family. The answer is no. For example, let K = Qp and consider any refined
family D of rank two with global parameter (δ1, δ2). Then one can takes its symmetric square
Sym2D equipped with the structure of a refined family of rank three, naturally having global
parameter (δ2

1, δ1δ2, δ
2
2). If x0 defines a critically triangulated classical point for D then its

critical-type is the permutation (12), and x0 is also critically triangulated in the family
Sym2D with critical-type (13). Theorem 7.1 only implies that the difference of the first
weight (i.e. 2κ1) and the third weight (i.e. 2κ2) ramifies. However, the middle weight is
κ1 + κ2 and so the difference between the first two weights is 2κ1 − (κ1 + κ2) = κ1 − κ2.
This also ramifies in the family by Theorem 7.1 applied to D itself, but is not detected by
Theorem 7.1 applied to just Sym2D.

A. Nakayama’s lemma

This brief appendix is to create a reference for a relative form of Nakayama’s lemma we
used in the main text. Throughout we let K be a non-Archimedean field of characteristic
zero which is complete with respect to a non-trivial absolute value. If X and Y are K-rigid
spaces we denote by prX : X ×K Y → X the projection map, which we note is obtained by
base-changing the structure morphism Y → Sp(K). We begin with two lemmas on products
of K-affinoid spaces.

Lemma A.1. Suppose that X and Y are K-affinoid spaces.

(a) If U ⊂ X ×K Y is an affinoid open subdomain then the image prX(U) ⊂ X is a finite
union of affinoid subdomains of X.

(b) If U ⊂ X ×K Y is an admissible open then the image prX(U) ⊂ X is a union of
affinoid open subdomains of X.

Proof. We begin with part (a). The structure morphism Y → Sp(K) is flat and thus prX is
flat also. Let U ⊂ X×K Y be an affinoid open subdomain. The inclusion U ⊂ X×K Y is also
flat and thus the composition U → X ×K Y → X is a flat map between K-affinoid spaces.
Part (a) then follows from [9, Corollary 5.11] because K-affinoids are quasi-compact and
quasi-separated rigid spaces. To prove (b) we write U =

⋃
Ui where each Ui is an affinoid

open subdomain. By (a) the image prX(Ui) is covered by affinoid subdomains and thus so
is prX(U) =

⋃
prX(Ui). �

Remark. We are unable to determine whether prX should be open in the sense that prX(U)
is admissible open for each admissible open U ⊂ X ×K Y . This contrasts with the algebraic
analog of Lemma A.1, where part (b) really becomes that f is “open” because “covered by
opens” is synonymous with “open” in the Zariski topology (see [34, Tag 037G]).
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If X = Sp(A) is a K-affinoid space and x ∈ X we write mx for the corresponding maximal
ideal of A. We write κ(x) for the residue field A/mx. If F ∈ A and x ∈ X then we use the
standard notation F (x) to denote the image of F in κ(x). If A and B are two K-affinoid
algebras, F ∈ A⊗̂KB and y ∈ Sp(B) then we use Fy to denote the element Fy ∈ A⊗K κ(y)
which is the image of F under the canonical map A⊗̂KB → (A⊗̂KB)/my(A⊗̂KB) = A⊗K
κ(y).

Lemma A.2. Suppose that A and B are reduced affinoid K-algebras. Then:

(a) The completed tensor product A⊗̂KB is reduced.
(b) If F ∈ A⊗̂KB then F = 0 if and only if Fy = 0 for all y ∈ Sp(B).

Proof. A noetherian ring R is reduced if and only if satisfies the two properties (R0) and (S1)
[34, Tag 031R], and being geometrically reduced is equivalent to being reduced for affinoid
algebras over perfect fields [15, Lemma 3.3.1]. In particular, since K has characteristic zero
we deduce part (a) from [16, Théorème 8.1].6

To prove part (b) we let y ∈ Sp(B) and note that if w ∈ X ×K Y lies above y then we
have a natural map A ⊗K κ(y) → (A⊗̂KB)/mw. Ranging over all y we get a commutative
diagram

(11) A⊗̂KB //

��

∏
y∈Y A⊗K κ(y)

uu∏
w∈X×KY (A⊗̂KB)/mw

By part (a) the vertical arrow of (11) is injective. Thus we deduce the horizontal arrow of
(11) is injective as well, proving part (b). �

Lemma A.3. If X = Sp(A) and Y = Sp(B) are reduced affinoid K-spaces and Z ⊂ X is a
Zariski dense subset of points then pr−1

X (Z) ⊂ X ×K Y is also Zariski dense.

Proof. Suppose that Z ⊂ X is Zariski dense. Let F ∈ A⊗̂KB. We need to show that if
F (z′) = 0 for all z′ ∈ pr−1

X (Z) then F = 0. It suffices by Lemma A.2(b) to show that Fy = 0
for each y ∈ Y .

Let y ∈ Y . The field κ(y) is a finite extension of K. In particular, if we fix a basis of κ(y)
over K then for any K-vector space C we get an identification of C⊗K κ(y) with C⊕n (where
n = dimK κ(y)) which is functorial in C (but depending on the choice of basis). Applying
this to C = A and C = κ(z) with z ∈ Z we get a commuting diagram whose vertical arrows

6The reference [16] is written for Berkovich spaces, but the reducedness of A⊗̂KB can be checked with
either the rigid analytic space or its associated Berkovich space. Indeed, the completions of the analytic
local rings are the completions of the algebraic local rings in either case, and reducedness can be checked
after completion by the excellence of K-affinoid algebras (see [7, Section 2.2] for example).
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are isomorphisms

A⊗K κ(y)

∼=
��

//
∏

z∈Z κ(z)⊗K κ(y)

∼=
��

A⊕n //
∏

z∈Z κ(z)⊕n

Since Z is Zariski dense in X, the bottom arrow is injective. Thus to show Fy = 0 it suffices
to check that its image in κ(z)⊗K κ(y) is zero for each z ∈ Z. But that follows easily from
the assumption that F (z′) = 0 for all z′ ∈ pr−1

X (Z). Since y was arbitrary, we are done. �

If B is a ring and f ∈ B is non-nilpotent then we write B[1/f ] for the localization of B
at f . If M is a B-module we write M [1/f ] = B[1/f ] ⊗B M for the localization of M . If A
is a K-affinoid algebra, M is a module over A and x ∈ X corresponds to the maximal ideal
mx then we write Mx for M ⊗AA/mx. Note that these two operations commute in the sense
that Mx[1/f ] 'M [1/f ]x.

Now suppose that A and B are affinoid K-algebras and R = A⊗̂KB. If M is a module
over R then Mx[1/f ] is a module over κ(x) ⊗K B[1/f ] for each x ∈ X and f ∈ B. Indeed,
one just has to check that

Rx[1/f ] '
(
(B⊗̂KA)⊗A A/mx

)
⊗B B[1/f ](12)

' (B ⊗K κ(x))⊗B B[1/f ]

' κ(x)⊗K B[1/f ]

We now arrive at the subject of this appendix.

Proposition A.4 (Nakayama’s lemma). Suppose that X = Sp(A) and Y = Sp(B) are
reduced affinoid K-spaces and that M is a finite module over A⊗̂KB. Let f ∈ B be non-zero
and assume that for each x ∈ X the κ(x)⊗K B[1/f ]-module Mx[1/f ] is (finite) free. Then:

(a) For each m ≥ 0 the subset

Xm =
{
x ∈ X : rankκ(x)⊗KB[1/f ] Mx[1/f ] ≤ m

}
⊂ X

is a union of affinoid subdomains of X.
(b) If Z ⊂ X is Zariski dense then Xm 6= ∅ =⇒ Z ∩ Xm 6= ∅. In particular, the

minimum rank of Mx[1/f ] is achieved on Z.

Proof. Let R = A⊗̂KB and consider the (non-empty, because f is not nilpotent) affine
scheme Spec(R[1/f ]) ⊂ Spec(R). If q ∈ Spec(R) write κ(q) for its residue field (generalizing
our previous notation). Since M is finite over R, M [1/f ] is finite over R[1/f ] and so by the
usual Nakayama’s lemma (see [28, Theorem 4.10]) the set

Vm =
{
q ∈ Spec(R[1/f ]) : dimκ(q) M [1/f ]⊗R[1/f ] κ(q) ≤ m

}
is Zariski open in Spec(R[1/f ]) for each m ≥ 0. In particular, Um := Vm ∩ Sp(R) is Zariski
open in Sp(R) = X ×K Y . Since Zariski opens are admissible opens, Um is admissible open
in Sp(R). By Lemma A.1(b), prX(Um) is a union of affinoid subdomains and thus it suffices
to show that prX(Um) = Xm.
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Write Sp(R)f for Sp(R) ∩ Spec(R[1/f ]). Since f ∈ B, the projection map Sp(R)f → X
is still surjective. Thus if x ∈ X we may choose u ∈ Sp(R)f lying above x. Then (12)
shows that Rx[1/f ] ⊗κ(x)⊗KB[1/f ] κ(u) = κ(u). We’re assuming Mx[1/f ] ' (Rx[1/f ])⊕nx for
an integer nx depending on x. Reducing the residue field at u, we see that

Mx[1/f ]⊗κ(x)⊗KB[1/f ] κ(u) ' κ(u)⊕nx .

On the other hand, since

Mx[1/f ]⊗κ(x)⊗KB[1/f ] κ(u) 'M [1/f ]⊗R[1/f ] κ(u)

this shows that

dimκ(u)M [1/f ]⊗R[1/f ] κ(u) = rankκ(x)⊗KB[1/f ] Mx[1/f ]

depends only on x. Now it is clear that pr(Um) ⊂ Xm. The reverse inclusion follows from
the surjectivity of Sp(R)f → X. This shows prX(Um) = Xm and we have finished the proof
of (a).

The proof of (b) is nearly complete as well. The only point is that if Z is Zariski dense
then Lemma A.3 guarantees that the pre-image pr−1

X (Z) ⊂ Sp(R) is Zariski dense as well. In
particular, since Um is Zariski open in Sp(R), Um is non-empty if and only if pr−1

X (Z) ∩ Um
is non-empty. Part (b) follows immediately now. �
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[2] J. Belläıche and G. Chenevier. Families of Galois representations and Selmer groups. Astérisque,
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Représentations p-adiques de groupes p-adiques. I. Représentations galoisiennes et (φ,Γ)-modules.

[7] V. G. Berkovich. Étale cohomology for non-Archimedean analytic spaces. Inst. Hautes Études Sci. Publ.
Math., (78):5–161 (1994), 1993.
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