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Hypothetical Pattern Idealization
and Explanatory Models

Yasha Rohwer and Collin Rice*y

Highly idealized models, such as the Hawk-Dove game, are pervasive in biological theo-
rizing. We argue that the process and motivation that leads to the introduction of various
idealizations into these models is not adequately captured by Michael Weisberg’s taxon-
omy of three kinds of idealization. Consequently, a fourth kind of idealization is required,
which we call hypothetical pattern idealization. This kind of idealization is used to con-
struct models that aim to be explanatory but do not aim to be explanations.

1. Introduction. Drawing on previous work by Leszek Nowak ð1972Þ,
Nancy Cartwright ð1983, 1989Þ, Ernan McMullin ð1985Þ, WilliamWimsatt
ð2007Þ, and Michael Strevens ð2009Þ, Michael Weisberg ð2007Þ has re-
cently characterized three kinds of idealization: multiple models, Galilean,
and minimalist. In this article, we argue that the process and motivation that
leads to the introduction of various idealizations into many biological mod-
els is not sufficiently captured by Weisberg’s categories. Although we will
focus on Weisberg’s account because of its clarity and influence, the pre-
vious accounts of idealization he discusses also appear to overlook the dis-
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tinctive features of the cases we present.1 Therefore, we argue that there is
at least a fourth kind of idealization that we call hypothetical pattern ideal-
ization. This fourth kind of idealization is needed to adequately characterize
these highly idealized models that are especially important to evolutionary
biology.2 These models do not aim for veridical representation of any target
systemðsÞ but instead investigate a highly idealized hypothetical situation to
justify background beliefs, resolve seeming inconsistencies between theories
and our observations, or explore how-possibly questions.3 In addition, our
analysis of this fourth kind of idealization raises important questions about
the status of these highly idealized models as scientific explanations. We go
on to clarify the representational goals of hypothetical pattern idealization
by drawing a distinction between a model being a stand-alone explanation
versus merely being explanatory. An explanatory model is one that produces
scientific understanding relevant to answering a why question, but the model
need not provide an accurate enough representation to provide an explana-
tion ðor even a partial explanationÞ. This distinction helps explicate the nature
of and motivation behind hypothetical pattern idealization since models with
these idealizations aim to be explanatory but do not aim to be explanations.
We also investigate the scope of hypothetical pattern idealization and argue
that it is likely central to a kind of modeling that is widely used in biology and
economics. As a result, incorporating this fourth kind of idealization is es-
sential to providing an adequate account of the use of idealization in science.

2. Weisberg’s Three Kinds of Idealization. In “Three Kinds of Idealiza-
tion” ð2007Þ, Michael Weisberg presents a unified framework for thinking
about idealization.4 Weisberg begins by noting that idealization is an activ-
ity wherein theories or models are distorted. He then identifies three kinds
of idealization: multiple models, Galilean, and minimalist. Although there is
some overlap among the categories, Weisberg distinguishes these kinds of
idealization via their representational ideals ði.e., their ultimate representa-
tional goalsÞ and the justifications used to motivate them.

1. While some of these authors—e.g., Cartwright ð1983Þ and Batterman ð2002Þ—hint at
some of the features we identify, previous accounts have not treated these unique cases
as a distinctive kind of idealization, nor have they given a detailed analysis of its justifica-
tion and representational goals.

2. We will discuss the potential scope of this kind of idealization in more detail in sec. 5.

3. Of course, game-theoretic models are used in various disciplines and in various ways.
However, we will focus on one way of using a game-theoretic model that is important
within biology.

4. It is important to note that Weisberg never claims that his classification is exhaustive.
Therefore, our arguments are not so much a criticism of Weisberg as they are a call to ex-
pand on his original analysis.
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Multiple-models idealization is “the practice of building multiple related
but incompatible models, each of which makes distinct claims about the
nature and causal structure giving rise to a phenomenon” ðWeisberg 2007,
645Þ. This kind of idealization is distinguished by “not expecting a single
best model to be generated” ð646Þ. This building of multiple models with
incompatible assumptions is justified because modelers often have multi-
ple representational goals when modeling natural systems. Multiple models
are needed because no single model can provide every representational goal
at its highest possible resolution. The reason for this is that many represen-
tational goals trade off ðLevins 1966Þ. For example, increasing precision de-
creases generality. As a result, modelers will sometimes require multiple in-
compatible models to maximize the representational goals they are interested
in achieving. Weisberg’s description of multiple-models idealization draws
heavily on Richard Levins’s ð1966Þ work on the trade-offs faced by biolog-
ical modelers.

An example Weisberg mentions is the National Weather Service’s use
of multiple incompatible models to predict the weather. Each of the models
used makes different idealizing assumptions about the target system ði.e.,
each model is inaccurateÞ. The National Weather Service’s goal is to make
the most accurate predictions, and they have determined that using three in-
consistent and idealized models is the best way to maximize predictive ac-
curacy. In this case, it appears that in order to achieve maximal predictive
accuracy the modeler must sacrifice representational accuracy and use mul-
tiple incompatible models.

Galilean idealization is “the practice of introducing distortions into the-
ories with the goal of simplifying theories in order to make them compu-
tationally tractable” ðWeisberg 2007, 640Þ. The justification for this activ-
ity is pragmatic; the activity is performed because of present computational
limitations. The ultimate representational goal of Galilean idealization is a
completely accurate representation of all the properties of the target phe-
nomenon ð655Þ. Galilean idealization is important for the study of complex
systems, but ultimately, with advances in computational power and mathe-
matical techniques, Galilean idealizations should be systematically removed
ð641Þ.5 Weisberg’s account of Galilean idealization comes from McMullin,
who described a process in which we aim to “grasp the real world fromwhich
the idealization takes its origin” by making the problem more tractable. How-
ever, ultimately, “models can be made more specific by eliminating simplify-
ing assumptions and ‘deidealization’ as it were” ðMcMullin 1985, 248, 261Þ.
While McMullin’s account does not appear to require that the model actually
be deidealized, it does suggest that it should be possible to deidealize the

5. While the representational ideal of Galilean idealization is to provide a completely ac-
curate representation, in practice perhaps no model can ever be completely deidealized.
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model in some principled ði.e., theory drivenÞ way, in order to show that the
idealized model is approximately true ð264Þ. Furthermore, although actual
deidealization may not be required by all accounts of Galilean idealization,
once scientific progress overcomes the tractability limitations that motivated
the introduction of the Galilean idealization, the justification for the ideali-
zation vanishes. Hence, Weisberg’s description of Galilean idealization as
the “introduction of distortion to make the problem more tractable, then sys-
tematic removal of the distorting factors” plausibly includes deidealization
as a distinguishing feature of this kind of idealization ð2007, 641Þ. Indeed,
Weisberg is not alone in characterizing Galilean idealization in this way
ðSuárez 1999; Wayne 2011Þ.

One of Weisberg’s examples of Galilean idealization comes from Gali-
leo himself, whowas investigating gravitational acceleration in amedium de-
void of resistance. However, since he lacked such a medium, Galileo instead
investigated a system with the least resistance available and assumed that
it functioned in ðapproximatelyÞ the sameway ðMcMullin 1985, 267Þ. Yet, as
science has progressed, we can now create a vacuum in space—thereby do-
ing away with the idealization.6

Minimalist idealization is “the practice of constructing and studying the-
oretical models that include only the core causal factors which gave rise to
the phenomenon,” where the core causal factors are “those factors that make
a difference to the occurrence and essential character of the phenomenon in
question” ðWeisberg 2007, 642Þ.7 A model is minimalist whenever it “accu-
rately captures the core causal factors” ð643; emphasis addedÞ. The justifi-
cation for this activity is that it aids in scientific explanation. According to
Weisberg, “The key to explanation is a special set of explanatorily privileged
causal factors. Minimalist idealization is what isolates these causes and thus
plays a crucial role for explanation” ð645Þ. The ideal representation for this
kind of idealization is one that accurately represents only causes that make
a difference. Since the practice is key to scientific explanation, we should not
expect these idealizations to be removed as science progresses. Among oth-
ers, Weisberg cites Michael Strevens’s ð2009Þ account of idealization, Nancy

6. Of course, we cannot create a perfect vacuum, but we can investigate the kind of
baseline case that Galileo hoped to approximate. As another example, in his investiga-
tion of pendulums Galileo assumed that the pendulum is not subject to air resistance,
that the wire is massless and inelastic, and that there are no other influences or imper-
fections. However, Wayne ð2011Þ has argued that this example is not a case of Galilean
idealization.

7. In this article, we follow Weisberg ð2007Þ and Strevens ð2009Þ in calling the explana-
torily relevant causal factors “difference-makers.”Of course, according to other accounts,
all causes make a difference. The key point, for our purposes, is that minimalist idealiza-
tions aim for accurate representation of causes in the target system in order to provide
an explanation or a partial explanation.
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Cartwright’s ð1989Þdescriptionof abstraction, andRobertBatterman’s ð2002Þ
account of asymptotic explanation as examples of minimalist idealization.
However, since we have some doubts about whether Batterman’s and Cart-
wright’s accounts are best characterized as instances of minimalist idealiza-
tion ðsee n. 8Þ, we will focus on Strevens’s account.8

Strevens explains his account of idealized models in this way: “The con-
tent of an idealized model, then, can be divided into two parts. The first part
contains the difference-makers for the explanatory target. . . . The second
part is all idealization; its overt claims are false but its role is to point to parts
of the actual world that do notmake a difference to the explanatory target. The
overlap between an idealized model and reality . . . is a standalone set of
difference-makers for the target” ð2009, 318Þ. In other words, the goal of a
minimalist model is to accurately represent difference-makers and use ideal-
izations to indicate those causal factors that are irrelevant.

An example of minimalist idealization cited by Weisberg and Strevens is
Boyle’s gas law. One idealizing assumption in the model is that gas mole-
cules do not collide with each other. Although this assumption is false, in
low-pressure gases these collisions make no difference to the behavior of the
system since taking them into account would not change the model’s pre-
dictions. Therefore, these collisions can be safely ignored when the goal is to
represent only causes that make a difference.

3. Idealized Models in Evolutionary Biology. Weisberg’s framework is a
much-needed tool to synthesize previous work on idealizations and to char-
acterize the distinct kinds of idealization in science. Unfortunately, we think
it fails to adequately capture a kind of idealization that is widely used in
evolutionary biology. In this section, we will present the Hawk-Dove game
and argue that the justification and representational ideals for the idealiza-
tions in this instance of biological modeling are not adequately captured by
Weisberg’s taxonomy.While we present only one biological model, our anal-

8. One important difference is that Batterman explicitly denies that idealizations are used
to isolate causal factors. Rather, for Batterman idealizations play an essential role in show-
ing why various heterogeneous ðcausalÞ details of particular systems are irrelevant to the
overall behavior of those systems ðBatterman 2002, 73Þ. Moreover, Batterman focuses on
various other roles that idealizations play—e.g., in understanding intertheoretic relation-
ships. Finally, contrary toWeisberg, Batterman uses the term ‘minimal model’ to refer to a
model within the same universality class as the actual system. In addition, while Cartwright
does discuss the isolation of causal powers, she also discusses the role of idealizations in
making a model mathematically tractable and describes idealized models as nonveridical
fictions ðCartwright 1983, 1989Þ. Given the diverse and complicated threads in these
authors’ work, contra Weisberg’s presentation, it is unclear precisely which category ðor
set of categoriesÞ—if any—best characterizeðsÞ these authors’ views. However, we do
think the distinctions drawn by Weisberg’s taxonomy are useful for sorting out some
importantly different aspects of idealization mentioned by these previous accounts.
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ysis applies equally well to the use of several models that employ similar ide-
alizations ðe.g., the Divide the Cake game or the Prisoner’s DilemmaÞ. In-
deed, this kind of idealization is extremely important to a particular use of
game-theoretic models that is central to various kinds of theorizing in evolu-
tionary biology.

3.1. The Hawk-Dove Game. In the natural world, when conspecifics
compete for a resource they often exercise restraint in combat instead of
fighting to the death. This observed pattern was puzzling for adaptationists
since individual-level selection would presumably favor fierce physical com-
bat, given that the winner would gain obvious benefits ðe.g., mates, desirable
territoryÞ that would translate into transmitting its genes to future genera-
tions at higher frequencies than the loser ðMaynard Smith and Price 1973Þ.
However, the pattern we observe across numerous species is that animals
often exercise restraint in combat—what Maynard Smith and Price refer to as
“limited war” strategies. At the time the Hawk-Dove model was introduced,
this observation was commonly explained by appealing to “group selection”
ð15Þ. Group selection was believed to be required to explain the observed
pattern because fierce physical combat would be detrimental to the survival
of the species. The Hawk-Dove game is intended to demonstrate how indi-
vidual selection acting alone is consistent with the observation of this be-
havior in a wide range of populations ðMaynard Smith and Price 1973; May-
nard Smith 1982Þ.9

In the basic Hawk-Dove game there are two strategies: be a Hawk or be a
Dove. Hawks escalate until injured or until the opponent retreats. Doves dis-
play and then retreat if their opponent escalates.10 There are three kinds of
interactions: ð1ÞHawk vs. Hawk, where each player has a 50% chance of ob-
taining the resource and a 50% chance of being injured; ð2Þ Hawk vs. Dove,
where the Hawk obtains the resource and the Dove retreats; and ð3Þ Dove
vs. Dove, where the resource is shared equally. These interactions lead to the
payoff matrix in table 1, where H is Hawk, D is Dove, V is the fitness ob-
tained by winning the resource, C is the cost of being injured, and V >V/2 >
0 > ½ðV 2 CÞ. The preceding inequality is crucial to the dynamics of the
game. The value of the resource must be positive, and the cost of injury
must be greater than the benefit of the resource.

9. In support of our interpretation, in another paper Maynard Smith and Parker explic-
itly claim they are not interested in building a model that explains any particular behavior
but only in investigating a necessity claim ðMaynard Smith and Parker 1976, 159Þ.
10. There are, of course, more complicated formulations of the Hawk-Dove game. We
use the simplest version to illustrate Maynard Smith and Price’s use of the model and
because it is sufficient to play the explanatory role we want to analyze.
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The model assumes that this game is played over and over again by in-
dividuals in an infinitely large population that reproduces asexually. In a
pure Dove population, any mutant Hawk would do very well since V > V/2.
In a pure Hawk population, any mutant Dove would do very well since 0 >
½ðV 2 CÞ. A particular mixture of Hawks and Doves, however, leads to
stability in the population. Such a stable equilibrium occurs when the aver-
age payoffs for Hawks are equal to the average payoffs for Doves. This
stable state of the population could occur in two ways. First, the popula-
tion could consist of a mixture of individuals who played “pure” strategies.
Alternatively, the population could consist of individuals who all adopt a
“mixed” strategy of playing Hawk with probability x and Dove with prob-
ability 1 2 x. Either way, the model shows how individual selection could
give rise to restraint in combat.

Several key assumptions underlie the Hawk-Dove model and its use,
many of which are idealizations. These idealizations include ð1Þ infinite pop-
ulation size, ð2Þ randompairingof players, ð3Þ asexual reproduction, ð4Þ sym-
metric contests, ð5Þ pair-wise contests, ð6Þ constant payoff structure across
individuals and across iterations of the game, and ð7Þ perfect correlation be-
tween winning the resource and reproductive success ðMaynard Smith 1982Þ.
While no actual population is infinite, this idealization is introduced because,
for Maynard Smith and Price, the primary goal of the model is only to in-
vestigate an instance of individual selection acting alone in a highly idealized
case to see if restraint could evolve. Assuming that players pair off randomly
within the population is another idealization. In real-world systems, indi-
viduals will be more likely to compete against local individuals than others
in the population, but the model idealizes these details away. Asexual re-
production is also an idealization when considering the many populations
that reproduce sexually. In addition, the model assumes that the game is sym-
metric: individuals have the same available strategies, and the payoff matrix
is the same for both individuals in the game. This, of course, idealizes away
many features of real-world populations, such as differences between ani-
mals’ abilities to fight, their ability to play alternative strategies, or cases in
which animals occupy different roles ðe.g., when one is the current owner of
the resourceÞ. Next, the model makes the idealizing assumption that when

TABLE 1. HAWK-DOVE GAME PAYOFF MATRIX

H D

H ½ðV 2 CÞ, ½ðV 2 CÞ V, 0
D 0, V V/2, V/2

Note.—H 5 Hawk; D 5 Dove; V 5 the fitness obtained by winning the resource; C5 the cost of be-
ing injured.
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this game is iterated the payoffs do not change. Yet, the fitness payoffs to
individuals will be different at different times, given that the individuals as
well as the resources they are competing for may change. Finally, winning
the resource is assumed to be perfectly correlated with the fitnesses of dif-
ferent strategies. Yet, most resources over which animals actually compete
ðe.g., food, mates, or territoryÞ will not lead directly to increased fitness.

Despite all of these idealizations, the Hawk-Dove game still produces
some understanding of how individual selection could possibly lead to re-
straint in situations of animal conflict. This is presumably because although
the model fails to accurately represent the selection dynamics of any real-
world population, it does tell us something about how individual selection
could lead to the trait in a wide range of possible systems, by investigating
a hypothetical scenario. Therefore, the model is explanatorily valuable, even
though it uses several idealizations that make it an inaccurate representa-
tion of how individual selection actually occurred in any given real-world
population.

3.2. Why These Idealizations Do Not Fit Weisberg’s Taxonomy. The
idealizations used in the Hawk-Dove game are common assumptions in
many biological models. While we have distinguished seven idealizations in
the above model, we can give a unified analysis that shows why the moti-
vation behind and representational goals of this kind of idealized modeling
are not adequately captured by Weisberg’s categories. As a result, we will
argue that a fourth kind of idealization is needed to adequately characterize
these instances in evolutionary biology.11

To begin, these idealizations are not multiple-models idealizations since
the goals of the modeler will not be better achieved through the use of multi-
ple conflicting models; rather, a particular kind of highly idealized model is
sufficient. This is because the goal of themodeler is to address a how-possibly
question concerning a pattern that is highly general: Could individual-level
selection lead to restraint in a wide variety of populations? No additional
models with incompatible idealizations are required to achieve the goals of
the modeler. Indeed, as Maynard Smith and Price explain in their con-
clusion, “The analysis is . . . sufficient to show that individual selection can
explain why potentially dangerous offensive weapons are rarely used in in-
traspecific contests” ðMaynard Smith and Price 1973, 17; italics addedÞ. Al-
though it may be possible to achieve these goals with multiple conflicting
models, this would be an unnecessarily complicated process for achieving
the modeler’s goals. That multiple incompatible models are not required is
precisely why these are not instances of multiple-models idealizations. In-

11. However, as is the case with Weisberg’s own categories, there will be some com-
monalities between this fourth kind of idealization and those distinguished by Weisberg.

HYPOTHETICAL PATTERN IDEALIZATION 341

This content downloaded from 136.142.187.199 on Sun, 14 Jul 2013 14:39:52 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


stead, the goals of the modeler can be better achieved by the use of a sin-
gle highly idealized model.

All seven idealizations may seem to be instances of Galilean idealization
since each makes the model more computationally tractable. However, un-
like Galilean idealizations, these idealizations should not be eliminated from
the model ðnor will they become unjustifiedÞ with computational progress.
This is because the motivation behind them is not merely computational trac-
tability. The goal of the model builder is to investigate the consistency of an-
imal conflict with individual selection in a wide range of systems that are
heterogeneous in the particular details eliminated by these idealizations. For
example, assuming that obtaining the resource correlates perfectly with fit-
ness allows the model to investigate this consistency claim across a wide
range of possible resources. In other words, rather than focusing solely on
computational tractability, these idealizations play an important role in pro-
viding the computational flexibility to investigate a range of possible sys-
tems in which restraint in combat might arise.12 In this way, the idealizations
play an important role in allowing the model to capture the generality of the
pattern of interest. Eliminating these idealizations would, essentially, elimi-
nate the model’s ability to achieve the goals of the modeler: showing how
individual selection could lead to the phenomena in a wide variety of possi-
ble situations. Consequently, the observed biological pattern is no longer
puzzling within an individual selectionist framework. Without these ideal-
izations, themodel would be unable to address the highly general observation
that is so puzzling for the adaptationist. In addition, whereas Galilean ideal-
izations ultimately aim for a completely accurate description of some target
systemðsÞ through a process of deidealization, the Hawk-Dove model does
not aim to accurately represent the features of any target systemðsÞ. Indeed,
no process of deidealization would improve ðor is required forÞ the model’s
ability to accomplish the goals of the model builder. Therefore, these ideal-
izations are not Galilean.

Given these considerations, it might seem that these idealizations are min-
imalist since they appear to allow us to ignore various causal factors in real-
world populations. Indeed, Weisberg’s minimalist idealization involves in-
cluding “only those ½causal� factors that make a difference to the occurrence
and essential character of the phenomenon” ð2007, 462Þ. Furthermore, a pos-
sible interpretation of the goal of these game-theoretic models in biology is to
accurately represent the causal contribution of natural selection while ignor-
ing other evolutionary factors. However, the modeler who uses the Hawk-
Dove game does not aim to accurately represent the core causal factors of any
real-world systemðsÞ but instead investigates a hypothetical case in order to

12. Thanks to an anonymous reviewer for suggesting this as a way to clarify how these
idealizations can contribute to capturing the generality of the pattern of interest.
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demonstrate how individual selection could have produced this pattern across
a range of causally heterogeneous systems. As Maynard Smith and Price re-
peatedly emphasize, “real animal conflicts are vastly more complex than our
simulated conflicts” ð1973, 17Þ. There is no target systemðsÞwhose difference-
makers the model aims to accurately represent, nor does the model aim to es-
tablish any claims about what actually caused the phenomenon to occur.

In response, one suggestion might be that the model aims to accurately
represent a particular kind of causal process ðStrevens 2009Þ. That is, the
Hawk-Dove game might be thought to be using minimalist idealizations
since it accurately represents the causal contribution of natural selection at
the level of types, which might be the only difference-maker at this level of
abstraction. However, given the extreme heterogeneity and complexity of
the populations in which restraint in combat has evolved, it is unlikely that
there is a set of core causal factors that is common to each of them, even if
we move to more abstract levels of description. More importantly, however,
in order for the model to cite type-level causes to try and explain a coarse-
grained event, it must accurately represent causal types within real-world
systems such that what is true of the types will be true of the tokens within
particular populations. However, the Hawk-Dove model is so idealized that
it fails to accurately represent the individual-level selection processes of any
real-world population, even at the level of types—that is, the type of se-
lection process described within the model is never instantiated by any real-
world system. Indeed, as Sugden ð2009Þ notes, “The Hawk-Dove model does
make use of some accepted principles of biology. . . . But the workings
of those principles are explored in a counterfactual world created by ½May-
nard Smith and Parker�. Many of the features that have been built into that
world—for example, asexual reproduction and the entirely genetic determi-
nation of behavior—seem to be modeling conventions rather than accepted
principles. . . . This makes it hard to make sense of the idea that the model
isolates an other-things-being-equal tendency that is at work in real-world
cases” ð21Þ.

Minimalist models aim to give a veridical representation of core causal
factors within real-world systems. The Hawk-Dove model, in contrast, does
not aim to provide an accurate representation of any actual causal factors
that could be used to provide an explanation ðor a partial explanationÞ. In-
stead, the central aim of Maynard Smith and Price’s original use of the
Hawk-Dove model is to show that individual selection is compatible with
the observed biological pattern. Indeed, Maynard Smith and Price state this
aim explicitly when they claim: “A main reason for using computer sim-
ulation was to test whether it is possible even in theory for individual
selection to account for ‘limited war’ behaviour” ð1973, 15; italics addedÞ.
Yet, the model is able to provide this insight without accurately representing
any causes within real-world systems—and this remains true even if we
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consider causal processes at the level of types. Therefore, the motivation
behind and representational goals of the Hawk-Dove game are importantly
different from those of minimalist idealization.

Given that the idealizations of the Hawk-Dove game do not nicely fit into
any of Weisberg’s categories, a fourth kind of idealization is needed—a kind
of idealization that is extremely important to biological modeling. We call
this kind of idealization hypothetical pattern idealization.13 These idealiza-
tions are used to construct models of hypothetical scenarios that need not
be instantiated by any real-world system—indeed sometimes they will pre-
sent impossible scenarios. In addition, we call this kind of idealization hy-
pothetical pattern idealization because it is most likely to be fruitful when the
phenomenon of interest is a general pattern that ranges over extremely het-
erogeneous and complex systems ðalthough this kind of idealization may
be used in other modeling contexts as wellÞ. Consequently, the motivation be-
hind hypothetical pattern idealization is to construct models of hypothetical
scenarios that, even though they may not accurately describe any core cau-
sal factors of a real-world systemðsÞ, are able to aid in the investigation of
general patterns across extremely heterogeneous and complex systems. This
situation is common in modeling biological systems since a model is often
intended to investigate patterns that range across systems composed of in-
dividuals as diverse as humans and viruses ðe.g., models of biological altru-
ismÞ. Models that use hypothetical pattern idealizations aim to showhow such
a pattern could arise in a ðor perhaps a wide range ofÞ hypothetical sce-
narioðsÞ but do not aim to represent how it did arise in any actual case.

4. Idealization and Explanation. The nature of and motivation for hypo-
thetical pattern idealization can be clarified by looking at the relationship
between idealization and explanation. Since Hempel ð1965Þ, it has been
widely accepted that a satisfactory explanation must be true.14 When con-
sidering models, this truth requirement amounts to the requirement that the
model provide a veridical representation of the explanatorily relevant fea-
tures of the target systemðsÞ. A version of this requirement is present in con-
temporary causal theories of explanation ðWoodward 2003; Strevens 2009Þ.
For these theories, a satisfactory explanation must accurately represent the
relevant causes of the event to be explained.

Many philosophers claim that highly idealized biological models are ex-
planations ðe.g., Potochnik 2007; Rice 2012Þ. In fact, when discussing the
Hawk-Dove model, Elliott Sober claims that “the model is a plausible ex-
planation of why the population exhibits the configuration it does” ð2000,

13. Thanks to Christopher Pincock for suggesting this name.

14. One notable exception is Cartwright, who has consistently argued that the promi-
nence of idealization in science shows that some of our best explanations are false.
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142Þ. However, models such as the Hawk-Dove game are so highly idealized
that they drastically misrepresent all real-world systems. Indeed, the model
describes a selection process that does not ðand could notÞ occur in any real-
world system. Claiming that all such highly idealized models are explana-
tions appears to conflict with the requirement that model explanations pro-
vide an accurate representation of the explanatorily relevant features of their
target systemðsÞ. One way to resolve this tension is to identify a unique ex-
planatory role for many highly idealized models—one that avoids equating
all such models with explanations. This explanatory role helps explicate the
motivation behind the use of hypothetical pattern idealizations.

4.1. The Difference between X as an Explanation and X as Explanatory..
Explanations are usually thought of in terms of two components: the ex-
planandum ða proposition that represents the phenomenon to be explainedÞ
and the explanans ða set of propositions that does the explainingÞ. When phi-
losophers analyze the nature of explanation, they attempt to understand what
properties and relationships these components must have.

One widely accepted feature of scientific explanations is that they produce
scientific understanding in agents who grasp them ðFriedman 1974; Kitcher
1981; Achinstein 1983; Lewis 1986; Salmon 1998; Grimm 2006; Lipton
2009; Strevens 2009Þ. In fact, Michael Friedman once argued that our theory
of explanation “should somehow connect explanation and understanding—
it should tell us what kind of understanding scientific explanations provide
and how they provide it” ð1974, 14Þ. Understanding is a cognitive achieve-
ment ðLipton 2009Þ. A representation, such as the propositions of an expla-
nation, is what allows an agent to attain this achievement. This relationship
is not between propositions; rather, it is a relationship between something
representational and an agent who gains understanding by grasping it.

However, being an explanation is not the only way to produce under-
standing. For instance, many philosophers claim that if something produces
understanding, then it is explanatory ðe.g., Sober 1983; Lipton 2009Þ. In ad-
dition, rather than requiring an explanatory representation to actually produce
understanding for an agent, on our account being explanatory is an objective
property of a representation that is merely capable of producing understand-
ing.15 Whether a representation actually produces understanding in any par-
ticular case will, of course, depend on various features of the context ðe.g., the
agents involved and their current beliefsÞ. The idea here, however, is that a
representation can be capable of producing understanding in various con-
texts, even if an agent fails to gain any understanding from the represen-
tation in a particular case.

15. The objective nature of being explanatory distinguishes our account from those in-
volved in pragmatic theories of explanation ðe.g., Van Fraassen 1980Þ.
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Friedman ð1974Þ discusses this kind of understanding and its relation-
ship to explanation in the following way: “If one concentrates only on the
local aspects of explanation—the phenomenon being explained, the phenom-
enon doing the explaining, and the relation ðdeductive or otherwiseÞ be-
tween them—one ends up trying to find some special epistemological sta-
tus . . . for the phenomenon doing the explaining. . . . However, attention to
the global aspects of explanation—the relation of the phenomena in question
to the total set of accepted phenomena—allows one to dispense with any spe-
cial epistemological status for the phenomenon doing the explaining” ð18Þ.
Although we disagree with several parts of Friedman’s account, we think
his view captures some important features of scientific understanding. First,
understanding need not be about a particular target system. Second, under-
standing is sometimes produced by incorporating new ðpresumably justifiedÞ
beliefs into our entire body of scientific knowledge ðsee also Rohwer, forth-
comingÞ. Viewing understanding in this way allows us to dispense with the
requirement that the representation that produces understanding must verid-
ically represent a particular target systemðsÞ.

In the epistemology literature, it is commonly assumed that understanding
is factive ðor quasi factiveÞ and requires some form of justification ðKvanvig
2003; Depaul and Grimm 2007; Mizrahi 2012Þ.16 If this is so, then an ex-
planatory representation will be one that is capable of justifying true beliefs
in an agent who understands. However, a representation will not count as ex-
planatory merely by being capable of justifying some random true beliefs.
In order to count as explanatory, the content of these true beliefs must be
relevant to providing an explanation. At the very least, the true beliefs will
need to be about the phenomenon of interest and be relevant to answering
a why question that we are interested in. Furthermore, in the epistemology
literature, understanding requires not only justified true beliefs but also the
grasping of certain relations between those justified true beliefs. Indeed, in
the case of explanatory representations, there also appears to be a minimum
requirement that agents who understand must grasp the connection between
their justified true beliefs and the particular why question under consider-
ation.

So in order to be explanatory, a representation must ð1Þ be capable of
justifying true beliefs about the phenomenon of interest for the agent and
ð2Þ enable the agent to grasp how those beliefs are relevant to answering a
why question he or she is interested in. These criteria, however, fall short of
requiring that the explanatory representation be a sufficiently veridical rep-
resentation of any ðor any part of aÞ real-world systemðsÞ that could provide
an explanation or partial explanation. Therefore, there is an asymmetric re-

16. To be quasi factive requires that all the central propositions in one’s understanding
be true but allows for some of the peripheral propositions to be false ðMizrahi 2012Þ.
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lationship between that which is an explanation and that which is explana-
tory. If something is an explanation, then it is explanatory. However, some-
thing that is explanatory is not necessarily an explanation. A representation
can be capable of justifying true beliefs that are relevant to a why question
without accurately representing ðthe explanatorily relevant features of Þ any
real-world system. A standard view about models claims that “if we want
to use models to learn about the world, the model needs to map onto the real
world” ðMorgan 1999, 366Þ. In contrast, we argue that many highly ideal-
ized models are capable of producing scientific understanding without hav-
ing to meet any additional veridical representation requirements—indeed,
these models need not have a “target system” at all.17

At this point, one might object that surely some connection to the real
world is required for a model to provide understanding of real-world sys-
tems ðe.g., see Pincock 2012Þ. To see why some connection is required,
consider that one could construct a model in which restraint in combat per-
sists, but if that model were completely disconnected from the real world,
then no one would view the model as alleviating the inconsistency Maynard
Smith and Price initially sought to investigate.18 However, although some
minimal relationship of “relevance” or “connectedness” to the real world is
certainly necessary to use models to support various explanatory claims, we
maintain that no veridical representation of the features of a target systemðsÞ
is required for a model to produce understanding. In other words, an explan-
atory model will need to present a scenario that is relevant or related to the
real world in some way, but this minimal connection does not require the
veridical representation of any explanatorily relevant features ðe.g., causal
factorsÞ of a target systemðsÞ. For instance, the Hawk-Dove game is similar
to real-world systems in that it includes a population of organisms that re-
produce and interact in ways that affect their fitness. The model is able to be
explanatory by presenting a relevant hypothetical scenario, but it does not
aim to accurately represent the explanatorily relevant ðe.g., causalÞ features
of any real-world systemðsÞ. The important point is that the truth or accu-
racy of a model with respect to a target systemðsÞ is often irrelevant to its
ability to play this explanatory role within scientific inquiry. In addition, pre-
cisely what the necessary connection is between the real world and an ex-
planatory model will depend on the particular goals ðor purposesÞ of the
model builder. For example, in certain modeling contexts, the model may
need to represent a credible parallel world ði.e., a situation that is a possi-

17. By “target system” we mean a physical system in the world that a model might aim
to represent. While some models may have other kinds of targets—e.g., a theory or
other models—a treatment of these is beyond the scope of this article.

18. Thanks to an anonymous reviewer for pointing out this sort of case and emphasiz-
ing the need for some connection between an explanatory model and the real world.
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ble candidate for truth; Sugden 2000, 2009; Grüne-Yanoff 2009Þ. Alterna-
tively, some explanatory models may be fictions that are only relevantly
similar to real-world systems ðCartwright 1983; Godfrey-Smith 2006, 2009;
Suárez 2009Þ. Another possibility is that an explanatory model might be re-
lated to the real world via some mathematical transformation, for example,
being in the same universality class as the actual system ðBatterman 2002Þ.
Finally, a model can be explanatory by providing a veridical representation
that is an explanation or partial explanation ðsee belowÞ. What these exam-
ples illustrate is that the relevant connection between an explanatory model
and the real world will depend on the modeling context ðBokulich 2012Þ—
that is, no particular relation is likely towork for every case. Sowhile various
minimal connections are likely to be sufficient for a model to be explana-
tory, none of them is necessary across all modeling contexts. Instead, ex-
planatory models are unified by their ability to provide understanding that
is relevant to answering a why question of interest to the modeler—not by
any requirements concerning their truth or accuracy with respect to a target
systemðsÞ or any particular connection to the real world. In the end, being
relevantly related to the real world does not require veridically representing
a set of features of some real-world target systemðsÞ.

This analysis allows us to identify a key distinguishing feature of hypo-
thetical pattern idealization. Whereas models that use Galilean and minimal-
ist idealizations ultimately aim at a partially veridical representation of their
target systemðsÞ that is an explanation ðor a partial explanationÞ, models that
use hypothetical pattern idealization do not. Models that use hypothetical pat-
tern idealizations aim at producing understanding via a single representa-
tion that may never be instantiated. In other words, the primary motivation
behind the introduction of hypothetical pattern idealizations is to build mod-
els that are explanatory but that may fail to be explanations.19

4.2. Some Ways of Being Explanatory. The Hawk-Dove model, al-
though filled with falsehoods, allows us to understand that individual-level
selection is not incompatible with restraint in combat in a wide range of pop-
ulations. If we take seriously that a necessary condition for a model to be
an explanation is that it veridically represent the explanatorily relevant fea-
tures of its target systemðsÞ, then this highly idealized model cannot be an
explanation. After all, the dynamics described by the model do not—indeed
could not—occur in any real-world system. However, the Hawk-Dove model

19. Of course, it could turn out that, despite the presence of hypothetical pattern ideal-
izations, the model still accurately represents the features required to give an explanation.
In such a case, the motivation behind and representational goals of the idealizations
make them instances of hypothetical pattern idealization, but themodelmay still be able to
provide an explanation.
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is capable of justifying true beliefs about the pattern of interest for agents
who grasp the workings of the model, for example, the belief that individual-
level selection is not incompatible with restraint in combat in a wide range of
populations. And this true belief is certainly relevant to answering the ques-
tion, “why do animals exercise such restraint in so many natural popu-
lations?” since citing individual selection will likely be part of that expla-
nation. Even if individual selection is not part of the explanation, the model
is still able to answer certain key how-possibly questions ðResnik 1991; For-
ber 2010; Reydon 2012Þ. Establishing this consistency claim is relevant to
the why question of interest, regardless of what actually explains the phe-
nomenon in any given real-world population. Indeed, this understanding is
relevant to the why question of interest because it justifies important back-
ground assumptions that aid in formulating the explanation. Therefore, one
way the Hawk-Dove model is explanatory is that it answers an important
how-possibly question that is related to the why question of interest, even
though it fails to be an explanation.

As a result, the Hawk-Dove game illustrates how models that use hypo-
thetical pattern idealization can often be essential stepping-stones en route to
building models that are explanations or partial explanations. Therefore, al-
though distinguished by their motivation and representational goals, mod-
els that use hypothetical pattern idealization and models that use minimalist
idealization are nonetheless sometimes related. Models that involve hypo-
thetical pattern idealizations are sometimes used to justify background be-
liefs or answer how-possibly questions that later may be important for the
construction of minimalist ðor GalileanÞ models that aim to be veridical rep-
resentations.20

Another way the Hawk-Dove game is explanatory is that it isolates a sin-
gle factor and investigates a hypothetical case, in order to better understand
its potential contribution to the overall behavior of various possible sys-
tems.21 The model tells us about how, given a particular idealized payoff
structure, natural selection might lead to the evolution of restraint in combat
in a wide range of possible systems. Understanding these potential contri-
butions can be relevant to answering the why question of interest, even if the

20. In addition, models that use hypothetical pattern idealizations can contribute to con-
structing models that aim for accurate representations, by providing a template that can be
made more realistic by introducing various complexities or more realistic assumptions.
For example, later modelers sought to make the Hawk-Dove game more realistic. This
illustrates how when interests change—e.g., if a modeler is interested in providing an
explanation—a modeler may attempt to make the model more realistic. The important
point is that the original model is able to be explanatory without requiring the ðpossible
or actualÞ construction of more realistic versions of the model.

21. Thanks to William Wimsatt for suggesting this kind of case in his comments on an
earlier version of this article.
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model does not accurately represent how the isolated factor functions in any
real-world system. So the Hawk-Dove model also produces understanding
by isolating a factor that is relevant to the pattern of interest and investigat-
ing its influence within a hypothetical scenario. However, understanding the
possible contributions of this single factor in this hypothetical case is insuf-
ficient to provide a satisfactory explanation.

Although models that use hypothetical pattern idealizations are distin-
guished by their aiming at being explanatory without aiming for veridical
representation of a target systemðsÞ, this does not mean that other kinds of
idealized models cannot be explanatory. For example, models that use min-
imalist idealizations might produce understanding by providing a veridical
representation of some of the core causal factors of the system. Veridically
representing the contributions of a single ðor a fewÞ causal factorðsÞ can be
thought of as providing a partial explanation of the phenomenon to be ex-
plained. A model that provides this kind of partial explanation can later be
used in tandem with other models that capture the contributions of other fac-
tors to demonstrate how taken together they might provide an explanation
or be used to formulate a different model that is an explanation. So, in some
instances, a model can be explanatory by providing a veridical representation
of an essential component of the actual explanation.

5. The Scope of Hypothetical Pattern Idealization. In this section, we
investigate the scope of hypothetical pattern idealization. In addition to the
biological cases discussed above, we argue that hypothetical pattern ideali-
zations are likely widely used in economic modeling.

Economic and biological modelers often face similar challenges in at-
tempting to investigate patterns that range across systems that are causally
complex and very heterogeneous. Given this modeling context, it is likely
that hypothetical pattern idealizations will also be useful in many instances
of economic modeling. Indeed, in line with our analysis of hypothetical pat-
tern idealization, several authors have recently argued thatmany ðif notmostÞ
economic models do not aim for veridical representations of mechanisms
or causes in any particular target systemðsÞ ðGrüne-Yanoff 2009; Knuuttila
2009; Sugden 2009Þ.

For instance, Knuuttila describes economic modeling in this way: “In-
stead of directly trying to represent some selected aspects of a given target
system—as has conventionally been assumed—modelers proceed in a round-
about way, seeking to build hypothetical systems in the light of the antic-
ipated results or of certain general features of the phenomena they are sup-
posed to exhibit” ð2009, 74Þ. In other words, many economicmodels present
hypothetical scenarios that do not aim to veridically represent some aspects
of a target systemðsÞ. Furthermore, when these models are successful they
can be used as a “starting point” for further theorizing that may aim to in-
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vestigate the “real mechanisms” ð74Þ. Presumably, one reason these eco-
nomic models are sometimes able to aid in the formulation of veridical
models is because they are able to produce understanding that is relevant
to answering why questions. Therefore, it seems likely that at least some
economic modelers appear to be using a process similar to that involved
in hypothetical pattern idealization.

What is more, similar to the Hawk-Dove model, one way economic mod-
els produce understanding is by aiding in the investigation of inconsistency
claims ðor answering a how-possibly questionÞ. For example, Grüne-Yanoff
ð2009Þ analyzes the use of economic models to “learn” about inconsis-
tency and necessity claims.22 He begins his account by describing the repre-
sentational goals of many economic modelers: “Theoretical modelers . . .
think of the model as a concrete situation—yet not a situation in the real
world. They interpret formal structures not as descriptions of the real world
but as describing ‘parallel worlds’ ðSugden 2000, p. 25Þ, which exhibit fa-
miliar features of the real world but may not be identifiable with any of its
particulars. Thus, economic models consist of both a formal structure and an
interpretation of this structure as an imaginary scenario or world . . . from
which modellers hope to learn about their ultimate target” ð84Þ. Although
these economic models do not aim at satisfying various ‘world-linking’ prop-
erties, Grüne-Yanoff argues that one can still use such “imaginary” economic
models to “learn” about necessity or impossibility hypotheses. Furthermore,
he argues that economic models sometimes produce “new beliefs ðabout
something being possibleÞ. This role of eliciting beliefs does not depend
on the imaginer’s believing something to be true or probable. On the con-
trary, ½these� judgments . . . are often elicited solely through consideration
of imaginary worlds” ðGrüne-Yanoff 2009, 94Þ. One of his main examples
is Schelling’s checkerboard model ðSchelling 1978Þ.

In Schelling’s agent-based model, dimes and nickels are used to rep-
resent two types of individuals, A and B. The set of nine adjacent squares
on a chessboard is used to represent an individual’s ‘neighborhood’. The
model assumes that individuals prefer to have neighbors that are at least
30% of the same type—for example, As want at least 30% of their neigh-
bors to be As. Using these preferences, the agents take turns determining
whether they have at least three neighbors of the same type. If so, the agent
remains in the same location; if not, the agent moves to the nearest unoc-
cupied location. The model is run until all agents are satisfied with their
location. Schelling’s results showed that, given a small group of dissatisfied
individuals, segregation is the equilibrium point of the model. Moreover,

22. Of course, the understanding produced by models that use hypothetical pattern ide-
alizations need not be about inconsistency claims. We merely want to point out this par-
allel between Grüne-Yanoff’s examples and our own.
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this result continues to hold across a wide range of changes to the dynamics
of the model, including the use of different utility functions, rules for up-
dating, neighborhood sizes, and spatial configurations. Consequently, Schel-
ling showed how minor preferences for like neighbors make it extremely
hard to avoid segregation.

Grüne-Yanoff argues that Schelling’s checkerboard model allows us to
learn something important about an inconsistency hypothesis since “before
the models’ publication, it seems, many people believed that segregation was
necessarily a consequence of explicitly racist preferences. Schelling’s model
showed that there were plausible settings in which this was not so” ð2009,
96Þ. Indeed, Schelling was interested in investigating how it is possible for
segregation to occur in a wide range of systems without explicit collective
preferences for segregation.23 The answer he discovered through the use of
a highly idealized model is that this is possible when every individual acts on
a small preference for similar neighbors. This use of a highly idealized model
to investigate an apparent inconsistency claim parallels the use of the Hawk-
Dove game to investigate the compatibility of individual selection with the
observation of restraint in combat in a wide range of populations.24 In both
cases, the modeler uses a highly idealized model that does not aim to accu-
rately represent any real-world systemðsÞ, in order to investigate the observed
pattern of interest. By showing that a particular kind of process could give
rise to the phenomenon in a ðor a wide range ofÞ hypothetical caseðsÞ, these
models were able to produce understanding relevant to answering a particu-
lar why question. Namely, in Schelling’s case, the model produces under-
standing if you want to answer the question, “why does segregation exist
in so many real-world populations?” Schelling’s model is able to justify the
true belief that a neighborhood can become segregated even if there are
no explicitly racist preferences. However, Schelling’s model is able to pro-
vide this insight, even though the model describes a segregation process that
never occurs in any real-world system—that is, the model’s ability to be ex-
planatory is independent of the truth or accuracy of the model with respect
to any target systemðsÞ. Therefore, the checkerboard model ðlike the Hawk-
Dove modelÞ is explanatory but does not aim to be an explanation.

Given our analysis of these authors’ accounts of modeling in economics,
it seems likely that many of the idealizations used within economic model-
ing will also be instances of hypothetical pattern idealization. This suggests

23. In fact, Schelling himself says his goal is to investigate “some of the individual incen-
tives and individual perceptions of difference that can lead collectively to segrega-
tion” ð1978, 138Þ.
24. Sugden ð2009Þ discusses several other ways that Maynard Smith’s use of the Hawk-
Dove model parallels the use of many economic models, e.g., Schelling’s checkerboard
model.
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that the scope of hypothetical pattern idealization is much broader than its
use within biological modeling. In fact, Godfrey-Smith has described some-
thing like this process as the general “strategy of model-based science”
wherein scientists use models as a “deliberate detour through merely hypo-
thetical systems” ð2006, 734Þ.25 Therefore, in the end, hypothetical pattern
idealizations may play a central role in a particular form of scientific the-
orizing that aims to construct explanatory models that do not aim to be ex-
planations.

Consequently, not only has our analysis shown that a new category of
idealization is needed, but when we investigate the scope of hypothetical
pattern idealization, we find that it applies more generally. It is also plau-
sible that this new category of idealization will apply to several cases that
may previously have been thought to be instances of Galilean or minimalist
idealization ðor some combination of the twoÞ.26 Indeed, many idealizations
that were originally thought to be eliminable simplifications or isolations
of causal factors appear to be closer to hypothetical pattern idealizations
ðe.g., see Batterman 2002; Wayne 2011; Rice 2012Þ. However, the actual
scope of hypothetical pattern idealization will have to be determined on a
case-by-case basis, by examining particular instances of idealized models
and paying close attention to the goals of the model builders.

6. Conclusion. Building on several previous accounts of idealization, Mi-
chael Weisberg has provided an extremely useful taxonomy for thinking
about the use of idealizations in science. Unfortunately, Weisberg’s taxon-
omy is unable to adequately characterize a kind of idealization that is widely
used in biological modeling. In order to sufficiently characterize this kind
of modeling, a fourth kind of idealization is required. We have named this
kind of idealization hypothetical pattern idealization and have provided an
analysis of its justification and representational goals. This kind of idealiza-
tion is most often used to produce understanding relevant to patterns across
extremely complex and heterogeneous systems. When these models are ca-
pable of justifying true beliefs that are relevant to answering a why ques-
tion, they are explanatory. However, a model may be explanatory but fail to
provide a veridical representation of the features of any real-world system
necessary to be an explanation ðor a partial explanationÞ. Although we have
focused on the use of hypothetical pattern idealizations within evolutionary

25. Although some authors have suggested that all models are fictional scenarios, we do
not intend to endorse this stronger claim. We only want to point out that certain features
emphasized by our account of hypothetical pattern idealization are widespread.

26. Thanks to an anonymous reviewer for suggesting that we be clearer about the differ-
ence between these two claims concerning the intended scope of hypothetical pattern ideal-
ization.
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biology, this kind of idealization is likely pervasive in many sciences; for
example, we have discussed some plausible examples in economics. As a
result, incorporating hypothetical pattern idealizations is essential to provid-
ing an adequate account of the use of idealization in science.
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