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A REMARK ON NON-INTEGRAL p-ADIC SLOPES FOR
MODULAR FORMS

JOHN BERGDALL AND ROBERT POLLACK

ABsTRACT. We give a sufficient condition, namely “Buzzard irregular-
ity”, for there to exist a cuspidal eigenform which does not have integral
p-adic slope.

REsSUME. Une remarque sur les pentes p-adiques mon-entiéres
des formes modulaires. On donne une condition suffisante, & savoir
« irrégularité au sens de Buzzard », pour qu’il existe une forme parabo-
lique propre de pente p-adique non-entiére.

1. STATEMENT OF RESULT

Let p be a prime number. If k and M are integers then we write Si(T'o(M))
for the space of weight k cusp forms of level I'g(M). The p-th Hecke operator
acting on Si(I'o(M)) is written T, if p{ M and U, otherwise.

For T' = T}, or Uy, we define the slopes of T" to be the slopes of p-adic
Newton polygon of the inverse characteristic polynomial det(1 —7°X). This
is the same as the list of the p-adic valuations of the non-zero eigenvalues of
T, counted with algebraic multiplicity.

To state our theorem we need a definition due to Buzzard [4].

Definition 1.1. Let N > 1 be an integer with p{ N.
(a) An odd prime p is I'o(N)-regular if the slopes of T}, acting on Sk(L'o(N))
are all zero for 2 <k < %.
(b) The prime p = 2 is To(N)-regular if the slopes of Ta acting on
S2(To(N)) are all zero and the slopes of T acting on Sq(T'o(N)) are
all either zero or one.

This definition first appeared in [4] where Buzzard gives an elementary
algorithm, depending on p and N, which on input £ will output a list of
integers. He conjectures that if p is T'g(V)-regular then this list is exactly
the list of slopes of T}, acting on Si(I'o(IN)). The authors of the present work
also have made a separate conjecture ([3]) which predicts the Up-slopes of
all p-adic modular forms of tame level I'g(N) still assuming that p is I'g(V)-
regular. The two conjectures are consistent with each other experimentally,
but have not yet been shown to be consistent in general.
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Buzzard’s conjecture clearly implies that every slope is an integer. (This
implication is not at all clear from the conjectures in [3].) It is worth asking
if the integrality of slopes is characteristic of I'g(N)-regularity. We show that
it is. The proof occupies the second section.

Theorem 1.2. If p is not Uo(N)-reqular then there exists an even integer
k such that Uy acting on Si(L'o(Np)) has a slope strictly between zero and
one.

Coleman theory (which is used below) shows that no harm comes from
assuming the witnessing weight in Theorem [I.2]is arbitrarily large. One could
try to determine the minimum weight k which confirms Theorem An
effective bound should follow from [10], but it is likely suboptimal. Numerical
data suggest that the optimal k, for p odd, is either k = jor k=j+ (p—1)
where 2 < 5 < # is a low weight with a non-zero T)-slope.

The theorem is also true for if we replace U, and S(I'o(Np)) by T, and
Sip(To(N)). Indeed, if a, is an eigenvalue for T}, acting on Si(I'g(N)) then
the polynomial X2 — apX + pF~1 divides the characteristic polynomial of U,
acting on Si(I'g(Np)); the eigenvalues A for U, which are not roots of such
polynomials are known to satisfy A2 = p*¥=2. So, if k > 2 (which is sufficient
by the previous paragraph) the slopes of U, between zero and one are the
same as the slopes of T}, between zero and one.

For p odd, the converse to Theorem is also true. Namely, if there exists
an even integer k such that Si(I'o(N)) has a slope strictly between zero and
one then p is not I'g(N)-regular. See [5, Theorem 1.6]. Its proof uses the
p-adic local Langlands correspondence for GL2(Q,) and is thus significantly
deeper than the present work. Combining the two results, the following two
conditions are equivalent for an odd prime p:

(a) The prime p is not I'o(N)-regular.
(b) There exists an even integer k such that T}, acting on Si(I'o(/V)) has
a slope strictly between zero and one.

There is a natural third condition, implied by (b):

(c) There exists an integer k such that T, acting on Si(I'g(N)) has a
non-integral slope.

It is conjectured (see [6]) that all three conditions are equivalent, but this
seems difficult.

Acknowledgements. The first author was partially supported by NSF
grant DMS-1402005 and the second author was partially supported by NSF
grant DMS-1303302.

2. THE PROOF

We fix algebraic closures Q C Qp and write v,(—) for the induced p-adic
valuation on Q normalized so that v,(p) = 1. We also fix an embedding
Q C C. We assume now that N > 1 is an integer co-prime to p.
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If n is a Dirichlet character of modulus p we write Si(I'1(Np),n) for the
subspace of forms in Si(I'1(Np)) with character given by 1 (1 promoted to a
character of modulus Np). An eigenform f in particular means a normalized
eigenform for the standard Hecke operators and the diamond operators. For
such an f, its p-th Hecke eigenvalue is written a,(f).

Corresponding to the choice of embeddings, each eigenform has an as-
sociated two-dimensional p-adic Galois representation p; : Gal(Q/Q) —
GL2(Q,). Write p; for its reduction modulo p and p;,, (resp. py,) for
the restriction of py (resp. py) to the decomposition group Gal(Q,/Qy) C
Gal(Q/Q) induced from the embedding Q C Qp. Note that the construc-
tion of p; requires the choice of a Galois-stable lattice, but that the semi-
simplification of p; is independent of this choice. In particular, whether or
not py,, is irreducible is also independent of the choice of a stable lattice.

Lemma 2.1. Let n be a Dirichlet character of conductor p and f an eigen-
form in Sa(L'1(Np),n). If vp(ap(f)) equals O or 1, then pgy, is reducible.

Proof. If vy(ap(f)) = 0 then it is well known that py, is reducible. For
example, see [I1, Lemma 2.1.5] and the references therein. (This is also
commonly attributed to a letter from Deligne to Serre in the 1970s which
has never been made public.)

Now suppose that v,(ap(f)) = 1. Then, there is an eigenform f’ in
Sa(T1(Np),n~ 1) with v,(ap(f’)) = 0 and py isomorphic to ps up to a twist.
(The form f’ is sometimes called the Atkin-Lehner involute of f; see [2]
Proposition 3.8].) Since the first argument applies to f’, we deduce that
pfp and its twist py, are both reducible. ([

Proposition 2.2. Ifp is odd and not T'o(N)-reqular then there exists an even
Dirichlet character n of modulus p such that U, acting on So(I't(Np),n) has
a slope strictly between zero and one.

Proof. Choose an integer 2 < k < % and an eigenform f € Si(I'g(N)) with
vp(ap(f)) > 0. By [9, Theorem 2.6], p;,, is irreducible.

Suppose first that f has weight 2. Then, the polynomial X2 —a,(f)X +p
divides the characteristic polynomial of U, acting on Si(I'o(Np)) (as in the
remarks after Theorem . The theory of the Newton polygon implies that
the roots of this polynomial have valuation strictly between zero and one, so
we can choose 7 to be the trivial character and we are done in this case.

Now assume that f has weight at least 4 and thus also p > 5. By [I, The-
orem 3.5(a)], which assumes p > 5, there exists an even Dirichlet character
n necessarily of conductor p (because f has weight at most % <p+1)
and an eigenform g € So(I'1(Np),n) such that p, and p; have isomorphic
semi-simplifications. Since p;, is irreducible, p, , is as well. Thus, pg, is
irreducible, and Lemma implies that v,(ap(g)) is strictly between zero
and one. ]
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Proposition [2.2] is an analog of Theorem for weight two forms with
character, and its proof confirms our theorem when there is a weight 2 form
of level I'y(NN') with positive T},-slope. To prove Theorem in general, we
use the theory of p-adic modular forms. We refer to [§] for the facts in the
next two paragraphs.

Ifr:2Z; — Q; is a continuous character (a “p-adic weight”) then we

write S’,J.Q(N ) for the space of overconvergent p-adic cusp forms of weight x
and tame level I'g(N) equipped with its Up-operator. If k is an integer and

#(z) = z¥ then we write this space as SZ(N); it contains Si(I'o(Np)) as
a U,-compatible subspace. Likewise, if #(2) = 2#n(z) where 7 is a non-
trivial finite order character of Z; then Sikn(N) contains S(T'1(Np/n),n)

as a Up-compatible subspace (where p/n is the conductor of 7).

By Coleman theory we mean the following: suppose that k is a p-adic
weight and £ is the p-adic valuation of a non-zero eigenvalue for U, appearing
in S,JL(N ). Then, for any sequence of p-adic weights (kp)n>0 such that ky,
and  agree on the torsion subgroup of Z)', and sy, (1 + 2p) — k(1 + 2p) as

n — 00, we have that h is also a Up-slope in S,zn(N) for n > 0.
We can now give the proof of the theorem.

Proof of Theorem[I.3 Assume first that p is odd. By Proposition there
exists an even Dirichlet character n of modulus p and rational number 0 <
h < 1 which appears as a U,-slope in Sp(I'1(Np),n). Thus, the slope h
appears as a Up,-slope in SZQW(N). Choose 7 > 0 even so that 77|F; is of the
form z + 27. Then, for n > 0 and k, = 2+ j + (p — 1)p", the slope h is a
Up-slope in S};n(N ) by Coleman theory described above. For such k we have
h <1< k—1and so h is Up-slope in Si(I'o(Np)) by [T, Theorem 6.1].

The proof for p = 2 is similar to the argument in Proposition when
kE = 2. If either S2(I'o(NN)) or S4(I'o(IN)) has a non-integral slope we are
done. If not, then either So(I'g(/V)) contains a slope one form, or Sy(I'o(N))
contains a form of slope two or three. In either case, the corresponding 2-adic
refinements will have fractional slope. ([
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