
Bryn Mawr College Bryn Mawr College 

Scholarship, Research, and Creative Work at Bryn Mawr College Scholarship, Research, and Creative Work at Bryn Mawr College 

Biology Faculty Research and Scholarship Biology 

2016 

Seedling survival responses to conspecific density, soil nutrients, Seedling survival responses to conspecific density, soil nutrients, 

and irradiance vary with age in a tropical forest and irradiance vary with age in a tropical forest 

Sydne Record 
Bryn Mawr College, srecord@brynmawr.edu 

Richard K. Kobe 

Corine F. Vriesendorp 

Andrew O. Finley 

Follow this and additional works at: https://repository.brynmawr.edu/bio_pubs 

 Part of the Biology Commons 

Let us know how access to this document benefits you. 

Citation Citation 
Sydne Record, Richard K Kobe, Corine F Vriesendorp (2016). Seedling survival responses to conspecific 
density, soil nutrients, and irradiance vary with age in a tropical forest Ecology 97(9): 2406-2415. 

This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College. 
https://repository.brynmawr.edu/bio_pubs/22 

For more information, please contact repository@brynmawr.edu. 

https://repository.brynmawr.edu/
https://repository.brynmawr.edu/bio_pubs
https://repository.brynmawr.edu/biology
https://repository.brynmawr.edu/bio_pubs?utm_source=repository.brynmawr.edu%2Fbio_pubs%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=repository.brynmawr.edu%2Fbio_pubs%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/open-access-feedback.html
https://repository.brynmawr.edu/bio_pubs/22
mailto:repository@brynmawr.edu


EDUCATION

Speeding Up Ecological and Evolutionary
Computations in R; Essentials of High
Performance Computing for Biologists
Marco D. Visser1,2*, Sean M. McMahon3, Cory Merow3,4, Philip M. Dixon5, Sydne Record6,7,
Eelke Jongejans1

1 Departments of Experimental Plant Ecology and Animal Ecology & Ecophysiology, Radboud University
Nijmegen, Nijmegen, The Netherlands, 2 Program for Applied Ecology, Centre for Tropical Forest Science,
Smithsonian Tropical Research Institute, Balboa, Ancón, Panamá, Republic of Panamá, 3 Smithsonian
Environmental Research Center, Edgewater, Maryland, United States of America, 4 Department of Ecology
and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, United States of America, 5
Department of Statistics, Iowa State University, Ames, Iowa, United States of America, 6 Harvard University,
Harvard Forest, Petersham, Massachusetts, United States of America, 7 Bryn Mawr College, Bryn Mawr,
Pennsylvania, United States of America

* m.visser@science.ru.nl

Abstract
Computation has become a critical component of research in biology. A risk has emerged

that computational and programming challenges may limit research scope, depth, and qual-

ity. We review various solutions to common computational efficiency problems in ecological

and evolutionary research. Our review pulls together material that is currently scattered

across many sources and emphasizes those techniques that are especially effective for typ-

ical ecological and environmental problems. We demonstrate how straightforward it can be

to write efficient code and implement techniques such as profiling or parallel computing. We

supply a newly developed R package (aprof) that helps to identify computational bottle-

necks in R code and determine whether optimization can be effective. Our review is comple-

mented by a practical set of examples and detailed Supporting Information material (S1–S3

Texts) that demonstrate large improvements in computational speed (ranging from 10.5

times to 14,000 times faster). By improving computational efficiency, biologists can feasibly

solve more complex tasks, ask more ambitious questions, and include more sophisticated

analyses in their research.

This is part of the PLOS Computational Biology Education collection.

Introduction
Emerging fields such as ecoinformatics and computational ecology [1,2] bear witness to the
fact that biology is becoming more quantitative and interdisciplinary. Such research often re-
quires intensive computing, which may be limited by inefficient code that confines the size of a
simulation model or restricts the scope of data analysis. It is therefore increasingly necessary

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004140 March 26, 2015 1 / 11

OPEN ACCESS

Citation: Visser MD, McMahon SM, Merow C, Dixon
PM, Record S, Jongejans E (2015) Speeding Up
Ecological and Evolutionary Computations in R;
Essentials of High Performance Computing for
Biologists. PLoS Comput Biol 11(3): e1004140.
doi:10.1371/journal.pcbi.1004140

Editor: Francis Ouellette, Ontario Institute for Cancer
Research, CANADA

Published: March 26, 2015

Copyright: This is an open access article, free of all
copyright, and may be freely reproduced, distributed,
transmitted, modified, built upon, or otherwise used
by anyone for any lawful purpose. The work is made
available under the Creative Commons CC0 public
domain dedication.

Funding:We thank the Evolutionary Biodemography
Laboratory and the Modelling the Evolution of Ageing
Independent Group of the Max Planck Society for
Demographic Research (http://www.mpg.de) in
Rostock (Germany) and Odense (Denmark)) for
supporting the working group where this paper was
initiated. This study was supported by the
Netherlands Foundation for Scientific Research
(www.nwo.nl, NWO-ALW 801-01-009 to MDV & EJ;
NWO-ALW 840.11.001 to EJ), the Smithsonian
Tropical Research Institute (www.stri.si.edu, MDV)
and the USA National Science Foundation (www.nsf.
gov NSF 640261 to SMM). The funders had no role
in the preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1004140&domain=pdf
https://creativecommons.org/publicdomain/zero/1.0/
http://www.mpg.de
http://www.nwo.nl
http://www.stri.si.edu
http://www.nsf.gov
http://www.nsf.gov


for biologists to become versed in efficient programming [3], as well as in mathematics and sta-
tistics [4].

Computer scientists have developed many optimization methods (e.g., [5]), however, the ef-
ficient translation of mathematical models to computer code has received very little attention
in biology [2]. Here we present an overview of techniques to improve computational efficiency
in a wide variety of settings. Much of the information we present is currently scattered
throughout various textbooks, articles, or online sources, and our goal here is to provide a con-
venient summary for biologists interested in improving the efficiency of their computational
methods. In short, we 1) highlight the processes that slow down computation; 2) introduce
techniques, which, via an R package, help to decide whether and where optimization is needed;
3) give a step-by-step guide to implementing various basic, but powerful techniques for optimi-
zation; and 4) demonstrate the speed gains that can be achieved. We supplement this with
more background information and detailed examples in the Supporting Information (S1–S3
Texts). The widespread adoption in the biological sciences of the R programming language has
motivated a focus on techniques that are directly applicable to R—although many principles
hold for other platforms.

Focus
Many analyses in biology are computationally demanding. Examples include large matrix op-
erations [6], optimizing likelihood functions with complex functional forms [7], many applica-
tions of bootstrapping or other randomization-based inference, network analysis [8], and
Markov Chain Monte Carlo fits of hierarchical Bayesian models (e.g., [9]). Here, we focus on
common issues with large databases and stochastic simulation models, applying general ap-
proaches for optimizing code to two simple examples:

1. Bootstrapping mean values 10,000 times in a moderately large dataset of 750 million rec-
ords. This example is highly suited for parallel computation and employs common data
protocols: indexing and grouping, resampling and calculating means, and formatting
and saving output (Fig. 1A–C).

2. A simple stochastic two-species Lotka-Volterra competition model, which utilizes basic
mathematical operations, randomly sampling statistical distributions, and saving fairly
large simulation results. Additionally, as change depends on the state of the population
in a previous time step (a Markov process), a single run cannot be conducted in parallel
(Fig. 1D–F).

The optimization of these examples can be followed in detail in S1 Text. In all cases, we
obtained speed-ups of 10.5 to 14,000 times with benefits that increase with the amount of com-
putation (Fig. 2). Finally we show the relevance of these techniques when applied to two previ-
ously published problems concerning spatial models [10] and the analysis of fitness landscapes
[11] (documented in S2 and S3 Texts).

When (Not) to Optimize?
One should consider optimization only after the code works correctly and produces trustwor-
thy results [12]. Correct code should be the primary goal in any analysis. Before optimizing, it
is important to recall a fact that is recognized by programmers: “Everyone knows that debug-
ging is twice as hard as writing a program in the first place. So if you're as clever as you can be
when you write it, how will you ever debug it?” [13]. Optimized code may be faster but tends to
lose robustness and generality, be more complex and less accessible, introduce new bugs, and
have limited portability and maintainability. Loosely written code, in a high-level language,

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004140 March 26, 2015 2 / 11

Competing Interests: The authors have declared
that no competing interests exist.



may be slow, but it will be faster to develop and easier to prototype. In concurrence, it is sensi-
ble to prioritize robust, general, and simple code above “fast code”—robust and general pro-
grams work in multiple situations (S1 Text: examples 2.14 and 2.15), are reusable, and hence
save development time, while clear simple code saves time when revisiting old code (or when
sharing among peers). Clearly, slower code will lead to lower total project time if it is more gen-
erally applicable, or when additional development and debugging time exceeds what is saved in
run time. Therefore, before attempting to optimize code, one should first determine if it will
be worthwhile.

Fig 1. Visualization of profiling output using the aprof package for R code, where the amount of time spent in each line of code is indicated by the
blue bars. In A, B and C, a bootstrap algorithm is shown, and in D, E, and F, a stochastic Lotka-Volterra competition model is shown. The consecutive
optimizations described in the text are indicated with the red lines in B, C, E, and F indicating the altered pieces of code. (A) An inefficiently coded bootstrap
algorithm, with most time spent in lines 7–8. This algorithm shuffles the values of a large matrix (750,000 x 1000) stored in object "d", and then calculates
columnwise the difference between the mean column values and the overall mean. (B) A slightly improved code where the overall mean calculation is stored
in object "avg." (C) A further improved version of the code where columnmeans are calculated by a specialized and vectorized function (colMeans). (D) A
slow running stochastic Lotka-Volterra model of species coexistence that runs a simulation over T years where species have normally distributed intrinsic
growth rates (r*Norm(rm,rs)) and competition coefficients (a*Norm(am,as)). (E) the Lotka-Volterra model is more efficient when the pre-allocation-and-fill
method is applied. (F) Switching to a matrix to store results further decreases run time. A detailed description of each optimization step with profiling analysis
is given online (S1 Text, sections 2 and 6).

doi:10.1371/journal.pcbi.1004140.g001

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004140 March 26, 2015 3 / 11



Fig 2. Execution time in minutes, required to complete various computational problems, using the optimization techniques discussed. Panels A
and B show the execution time as a function of problem size for 10,000 bootstrap resamples conducted on datasets varying in size (A) and time required to
run a stochastic population model against the number of time steps (B). "Naive" R code, in which no optimizations are applied, uses most computing
resources (solid lines in A and B). Optimized R code, with use of efficient functions and optimal data structures pre-allocated in memory (dashed lines in A
and B), is faster. In both panels A and B, the largest speed-ups are obtained by using optimal R code (black lines). Subsequent use of parallelism causes
further improvement (dot-dashed green line) in A. In panel B, using R's byte compiler improved execution time further above optimal R code (dotted lines in
green) while the smallest execution times were achieved by refactoring code in C (red dot-dashed lines). Panels C and D give the computing time (in
minutes) needed to conduct the calculations from (C) Merow et al. [10] and (D) the calculations represented by Fig. 3 in Visser et al. [11]. Bars in panel C
represent the original unaltered code from [10] (I), the unaltered code run in parallel (II), the revised R code where we replaced a single data.frame with a
matrix (III) and the revised code run in parallel (IV). Bars in panel (D) represent the original unaltered code [11] (I), original run in parallel (II), optimized R code
(III), optimized R code using R's byte compiler (IV), optimized R code run in parallel (V), optimized R code using byte compiler run parallel (VI), code with key
components refactored in C (VII), and parallel execution of refactored code (VIII). All parallel computations were run on 4 cores, and code is provided in S1
Text, section 3, S2 and S3 Texts.

doi:10.1371/journal.pcbi.1004140.g002

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004140 March 26, 2015 4 / 11



What to Optimize?
Amdahl’s law (Fig. 3) [14] provides insight into the value of making a specific section of code
more efficient: unless this code section uses a very large fraction of the overall execution time,
the reduction in run time for the whole program may be modest. For example, consider code
that requires 120 minutes to run, but one section can be sped up by a factor of 2. If that section
consumes 95% of the original run time, optimization will improve total run time to 64 minutes.
If that section consumes only 50% of the original run time, total run time will only improve to
90 minutes (Fig. 3A). Amdahl’s law also shows that increased effort in optimization has dimin-
ishing returns (Fig. 3B).

Empirical studies in computer science show that small sections of code often consume large
amounts of the total run time [15]. Identifying these code sections allows effective and targeted
optimization. “Code profilers” are software engineering tools that measure the performance of
different parts of a program as it executes [16]. When dealing with large data sets or large ma-
trices, where memory storage is limiting, memory profilers (e.g., Rprofmem) provide statistics
to gauge memory efficiency. We illustrate the value of profiling in S1 Text, sections 1–3, using
R’s profiler (Rprof) and a newly developed R package (aprof: “Amdahl's profiler”). This package
helps to rapidly (and visually) identify code bottlenecks and potential optimization gains (as il-
lustrated in Fig. 1).

How to Optimize?
After bottlenecks have been identified, the precise nature of any optimization depends on the
specific properties of the programming language. However, generally large gains can be
achieved by avoiding common inefficiencies. (See S1 Text, section 1.4 for more background
information.)

1) Nonessential operations
Eliminating unnecessary function calls, printing statements, plotting, or memory references
can increase efficiency. Many functions in high-level languages (see below) like R have default
options enabled that may incur unnecessary cost. When profiling identifies a specific function
as a bottleneck, check its inputs. For example, using unlist() on a list with named vectors can be
sped up considerably with use.names = FALSE, while loading large datasets with read.table() or
read.csv() is expedited by setting the colClasses input.

2) Memoization
Store the results of expensive function calls that are used repeatedly. For instance, transpose a
matrix or calculate a mean once prior to entering a loop rather than repeatedly within a loop.
Replacing the repeatedly recalculated mean(d) in line 10 of Fig. 1A, with an object “avg” to
store the mean of d, results in a drastic improvement in efficiency with a speedup of* 28
times (red lines in Fig. 1B).

3) Vectorized operations
Writing a loop to calculate elements of a vector or rows of a matrix is inefficient. In R, vector-
ized functions are faster because the actual loop has been pre-implemented in a lower-level,
compiled language (in most cases C; [17]). Replacing the operation of calculating the mean dif-
ferences over columns in lines 8–10 of Fig. 1B with its vectorized and highly specialized equiva-
lent “colMeans(d[index,])-avg” (Fig. 1C, line 7), the overall execution speed is improved an

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004140 March 26, 2015 5 / 11



Fig 3. Projected improvements in total program run time using Amdahl's law. (A) Realized total speed
up when a section of code, taking up a fraction α of the total run time, is improved by a factor I (i.e., the
expected program speed-up when the focal section runs I times faster). We see that optimization is only
effective when the focal section of code consumes a large fraction of the total run time (α). (B) Total expected
speed-up gain for different levels of α as a function of I (e.g., the number of parallel computations). Theoretical
limits exist to the maximal improvement in speed, and this is crucially and asymptotically dependent on α—
thus code optimization (and investment in computation hardware) are subject to the law of diminishing
returns. All predictions here are subject to the scaling of the problem (S1 Text, section 2).

doi:10.1371/journal.pcbi.1004140.g003

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004140 March 26, 2015 6 / 11



additional 1.4 times. Note that very large vectors will be inefficient in R. In those cases chunk-
based iteration is an effective compromise (see section on large data below).

4) Growing data
“Growing data” refers to adding values incrementally to data frames, matrices, or vectors.
When a new value is added and the object is lengthened, the new, longer, object must be writ-
ten to free space in the memory. In the next iteration this process repeats itself, becoming ever
more time-consuming. It is much faster to pre-allocate memory that is sufficiently large for the
final object than to fill in new values as they are computed. Replacing line 16 from Fig. 1D with
a pre-allocate-and-fill operation (lines 6, 7 and 17 in Fig. 1E) results in an* 5 times speed-up.

5) Dispatch overhead
Another potential speed-up strategy is to create custom functions to avoid overhead in base- or
package-provided functions. The object-oriented philosophy of R encourages general purpose
functions; these perform a large number of checks prior to doing the desired task. Custom-
written functions perform only the desired task, without these checks, and can lead to signifi-
cant speed-ups. Another strategy would be to use lower-level functions (see S1 Text, section
1.4) instead of their default counterparts (e.g., lm.fit vs lm). Note that custom and lower-level
functions should be used cautiously as they provide speed at the cost of requiring much stricter
compliance to input rules (e.g., S1 Text: examples 2.14–2.15). For example, the Lotka-Volterra
competition model code in Fig. 1F stores results in a data.frame. In R, data.frames are used for
storing multiple types of data (e.g., integers, characters, factors etc.) however this functionality
is not needed when only using numeric data. Switching to an efficient way of storing a single
data type (a matrix) speeds up computation by a factor of*20 (compare Fig. 1E,F, Fig. 2B).

After each optimization step confirm that new code versions produce identical results com-
pared to previous slower versions. Some simple functions for formal results checking in R in-
clude identical() and all.equal().

Parallelization
Parallel computing divides calculations into smaller problems and solves these simultaneously,
using multiple computing elements (hereafter “workers”). In the biological sciences, many
computationally intensive problems are “embarrassingly parallel” [18], where almost all calcu-
lations can be completed in parallel. Common examples are Monte-Carlo simulation and boot-
strapping (S1 Text, section 3). Popular parallel computing systems include computations on
single multi-cored machines or “distributed computing” on clusters of workstations connected
via a network. Our focus here is on modern multi-cored machines, where parallel computing
has become relatively easy to implement, and which most people have access to—though we
highlight where distributed computing will be particularly useful. Users should note before im-
plementing a parallel algorithm that parallel code can be more challenging to debug. Accord-
ingly, a handful of basic rules are worth reviewing (details in S1 Text: section 3):

1. There is a start-up cost to initializing a collection of jobs to run in parallel, so a collection
of small jobs may run faster sequentially (e.g., Fig. 2A), and more parallel processes do
not necessarily lead to faster program execution [5] (i.e., parallel algorithms are also sub-
ject to Amdahl’s law, see Fig. 3B). When finalizing a parallel run, results need to be cop-
ied back to the parent process and collated from each worker; this can be expensive,
especially when results are large.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004140 March 26, 2015 7 / 11



2. In most computing devices, random access memory (RAM) is shared among parallel
processes [17]. Ensure that enough memory is available for each worker, so parallel
workers do not have to wait for memory to become available. Because shared memory
decreases geometrically with each added worker, such systems are unsuited for big data.
Parallel computing on a cluster, where memory is distributed (i.e., increases proportion-
ately with the number of threads), or an algorithm that partitions the data proportionally
to each worker, will be more feasible.

3. Independence of random number sequences must be ensured for valid scientific results
(e.g., [18,19]). Ensure that random numbers sequences are unique, reproducible, and will
not overlap (examples in S1 Text, section 3.4).

4. Avoid load imbalances, where one processor has more work than the others causing
them to wait. Attempt to split jobs equally. This is especially challenging on a cluster
where jobs should match the available resources on each host machine.

Starting with the optimized but serial R-bootstrap code (Fig. 1C) we created a parallel algo-
rithm for use on a single machine (S1 Text, section 3), with which we achieved a speed-up by a
factor of 2.5 with 4 cores (Fig. 2A).

Calling Low-Level Languages
Parallel computing can reduce run time, but it essentially does not make code run any faster. In
other cases parallel computing may not be possible (e.g., Fig. 1D–F). Substantial improvements
in execution time can still be made by rewriting key sections of code in a “lower-level” or com-
piled language. Beginning R-programmers with limited familiarity with compiled languages
are advised to pursue other “R-specific” routes of optimization first. These are more straight-
forward and lead to the greatest relative speed-ups (Fig. 2), while C is more complicated to de-
velop and debug (requiring memory management and missing data (NA) handling).

In general, there are two types of programming languages: interpreted (R, MATLAB) and
compiled (C, Fortran). In interpreted languages, like R, code is indirectly evaluated by an evalu-
ation program (hereafter the R-interpreter; [12]). In compiled languages, like C, code is first
translated to machine language (i.e., machine-specific instructions) by a compiler program and
then directly executed on the central processing unit (CPU). The differences in the type of pro-
gramming language used can have large effects on execution speed [12].

Compiled and interpreted languages exhibit a trade-off in run time versus programmer
time, respectively. Interpreted languages have the benefits of being relatively easy to under-
stand, debug, and alter. However, there is usually much higher CPU overhead as each line
must be translated (i.e., “interpreted”) every time it is executed. Compiled languages tend to be
more challenging to code and debug, but are highly efficient when executed, as “translation
overhead” occurs just once, when the source code is compiled.

In the Lotka-Volterra code in Fig. 1F, we find no clear bottlenecks, with most time con-
sumed by the repeated interpretation of mathematical operators (�, +, etc, S1 Text, section
6.15) and random number generation (“rnorm”). We were able to remove such translation
overhead by rewriting critical parts of the program in in C and calling the compiled code from
R. With this we created a six-times–faster “vectorized” version of the model (Fig. 2B). In S1
Text (section 5) we give practical advice on extending R with C using the most common inter-
faces for extending R (through the .C and .Call interfaces; [19]). In S3 Text, our applied exam-
ple, we use Rccp [20] and RccpArmadillo [21] to speed up a matrix-multiplication by a factor of
400.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004140 March 26, 2015 8 / 11



Many interpreted languages also provide special compilers for finished programs, which are
simple to use. These represent a compromise between a true compiler and an interpreter. In
the R compiler package a byte-code compiler is used, which translates R code into more com-
pact numeric codes. It does not produce machine-language code, but instruction sets designed
for efficient execution by the interpreter. This may be a quick fix to speed up some code, but
most functions are already distributed in byte-compiled form, so further speed gains using
byte-compiling are modest. In our examples, we did find that using this compiler decreases ex-
ecution time (Fig. 2B and S1 Text, section 6.5.1).

Large Data
R loads data into memory by default: datasets comparable in size to the amount of memory
available will slow R to a crawl while datasets exceeding the memory space will fail altogether.
In these cases researchers can either 1) use databases stored outside R, accessing these in R via
languages like SQL (via, for example, RSQLite) or 2) use more memory-efficient algorithms.
The latter usually involves sequential algorithms, which restrict memory usage to one block of
data at a time. Many statistics can be calculated sequentially (e.g., [22]), but problems will take
longer to solve as accessing data from a storage disk is slower than from memory. We provide a
short example on how to do this for the bootstrap example in S1 Text (section 4), using the ff
package [23].

Using More Efficient Algorithms
A final method to speed up computations is to use a more efficient algorithm. These are mathe-
matically equivalent, but computationally smaller, methods (i.e., they use fewer operations).
Although this is highly problem specific, we nevertheless highlight this point, as it is worth
scrutinizing the efficiency of the algorithm in use since substantial speed-up may be gained
when alternatives exist [2]. For example, matching m values in a table of n elements requires
on the order of m × n operations with a loop and on the order of m + n options when a hash
table is constructed first [12]. Subsequent matches will be even faster if the hash table is stored,
as in the fastmatch library [24]. Additional examples include using the turning bands algorithm
[25,26] instead of a Cholesky (variance-covariance) decomposition when simulating a large
spatially correlated random field or using an algorithm like Broyden-Fletcher-Goldfarb-
Shanno in non-linear optimization, which requires fewer evaluations of the objective function
because the Hessian matrix is built up from information about the first derivatives.

Recommendations
Optimizing code can provide efficiency gains of orders of magnitude, as our benchmark results
show (e.g., Fig. 2). However, we do not recommend optimizing immediately. Realize that one
will inevitably sacrifice clarity, generality, and robustness for speed. At the start of a project, the
most productive approach (e.g., [3]) is often to write code in the highest-level language possible
ensuring the program runs correctly. High-level languages enable rapid decision-making and
prototyping, and correct code enables checking of more optimized versions. When a perfor-
mance boost is deemed worthwhile, for example, through profiling, only optimize those parts
identified as bottlenecks to avoid sacrificing development time in favour of optimization
[3,12]. The primary route for optimization should be efficient R code which, as we show in
Fig. 2, yields the largest gains for the least effort.

The fastest running code examples shown here are the instances where we called compiled
code from R (Fig. 2, S1 Text: section 6). This technique is especially powerful when one can use
the vast libraries of algorithms that already exist in C (and Fortran), which are often optimized

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004140 March 26, 2015 9 / 11



and efficiently coded [12]. However, a programming language like C has a steeper learning
curve and when learning C requires too much time, we encourage biologists to collaborate with
computer scientists in their research or to include contracts for computational consultation in
grant budgets [3].

Conclusion
Learning how to program and efficiently use computational resources is not only convenient.
Computing has become fundamental to the practice of science (e.g., [1–3, 27]). In biology, re-
search is striving toward ever more accurate projections to inform public leaders on nature
management or make predictions regarding how ecosystems respond to change (e.g., [28–30]).
More often than not, such accurate predictions will require high levels of detail as natural sys-
tems are variable and include intricate levels of biotic and abiotic interactions (e.g. [31–32]).
With these challenges ahead, the use of computationally intensive analyses in the biological sci-
ences should not be constrained by programming practices.

Supporting Information
S1 Text. Tutorial with background information and detailed examples on, e.g, profiling,
optimal R coding, parallel computation, working with large datasets, and extending R with
C.
(PDF)

S2 Text. Optimization of code from [10].
(PDF)

S3 Text. Optimization of code from [11].
(PDF)

Acknowledgments
We thank Tyler Rinker for valuable comments on the examples in the Supporting Text files.

References
1. Michener WK, Jones MB. Ecoinformatics: supporting ecology as a data-intensive science. Trends Ecol

Evol. 2012; 27: 85–93. doi: 10.1016/j.tree.2011.11.016 PMID: 22240191

2. Petrovskii S, Petrovskaya N. Computational ecology as an emerging science. Interface Focus. 2012;
2: 241–254. doi: 10.1098/rsfs.2011.0083 PMID: 23565336

3. Wilson G, Aruliah DA, Brown CT, Hong NPC, Davis M, Guy, RT, et al. Best practices for scientific com-
puting; 2012. Preprint. Available: arXiv:1210.0530. Accessed 20 November 2012.

4. Ellison AM, Dennis B. Paths to statistical fluency for ecologists. Front Ecol Environ. 2010; 8: 362–370.

5. Hager G, Wellein G. Introduction to High Performance Computing for Scientists and Engineers. 1st ed.
Boca Raton: CRC Press; 2010.

6. Zuidema PA, Jongejans E, Chien PD, During HJ, Schieving F. Integral Projection Models for trees: a
new parameterization method and a validation of model output. J Ecol. 2010; 98: 345–355.

7. Van Putten B, Visser MD, Muller-Landau HC, Jansen PA. Distorted-distance models for directional dis-
persal: a general framework with application to a wind-dispersed tree. Methods Ecol Evol. 2012; 3:
642–652.

8. Nagarajan R, Scutari M, Lèbre S. Bayesian Networks in R with applications in systems biology. New
York: Springer; 2013.

9. Comita LS, Muller-Landau HC, Aguilar S, Hubbell SP. Asymmetric density dependence shapes spe-
cies abundances in a tropical tree community. Science. 2010; 329:330–332. doi: 10.1126/science.
1190772 PMID: 20576853

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004140 March 26, 2015 10 / 11

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004140.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004140.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004140.s003
http://dx.doi.org/10.1016/j.tree.2011.11.016
http://www.ncbi.nlm.nih.gov/pubmed/22240191
http://dx.doi.org/10.1098/rsfs.2011.0083
http://www.ncbi.nlm.nih.gov/pubmed/23565336
http://dx.doi.org/10.1126/science.1190772
http://dx.doi.org/10.1126/science.1190772
http://www.ncbi.nlm.nih.gov/pubmed/20576853


10. Merow C, LaFleur N, Silander JA, Wilson AM, Rubega M. Developing dynamic mechanistic species dis-
tribution models: predicting bird-mediated spread of invasive plants across Northeastern North Amer-
ica. Am Nat. 2011; 178: 30–43. doi: 10.1086/660295 PMID: 21670575

11. Visser MD, Jongejans E, Van Breugel M, Zuidema PA, Chen Y-Y, Kassim AR, et al. Strict mast fruiting
for a tropical dipterocarp tree: a demographic cost-benefit analysis of delayed reproduction and seed
predation. J Ecol. 2011; 99: 1033–1044.

12. Chambers JM. Software for Data Analysis: Programming with R. Springer: New York; 2009.

13. Kernighan BW, Plauger PJ. The Elements of Programming Style. 2nd ed. McGraw Hill: New York;
1978.

14. Amdahl G. Validity of the single processor approach to achieving large-scale computing capabilities.
AFIPS Conference Proceedings. 1967; 30: 483–485.

15. Porter AA, Selby RW. Evaluating techniques for generating metric-based classification trees. J Syst
Softw. 1990; 12: 209–218.

16. Bryant RE, O’Hallaron DR. Computer Systems: A Programmer’s Perspective. Prentice Hall: Upper
Saddle River; 2010.

17. Schmidberger M, Morgan M, Eddelbuettel D, Yu H, Tierney L, Mansmann U. State-of-the-art in Parallel
Computing with R. J Stat Softw. 2009; 31:1–27.

18. Grama A, Karypis G, Kumar V, Gupta A. Introduction to Parallel Computing. Pearson Education; 2003.

19. L’Ecuyer P. Random number generation. In: Gentle JE, Haerdle w, Mori Y, editors. the Handbook of
Computational Statistics. Springer-Verlag; 2012. pp. 35–71.

20. Eddelbuettel D, François R. Rcpp: Seamless R and C++ integration. J Stat Softw. 2011; 40: 1–18.
PMID: 22523482

21. Eddelbuettel D, Sanderson C. RcppArmadillo: Accelerating R with high-performance C++ linear alge-
bra. Comput Stat Data Anal. 2014; 71:1054–1063.

22. Robbins H, Monro S. A stochastic approximation method. Ann Math Stat. 1951; 22: 400–407.

23. Adler D, Gläser C, Nenadic O, Oehlschlägel J, Zucchini W. ff: memory-efficient storage of large data on
disk and fast access functions. 2014. Available: http://cran.r-project.org/package = ff.

24. Urbanek S. fastmatch: Fast match() function. 2012. Available: http://CRAN.R-project.org/package=
fastmatch

25. Mantoglou A, Wilson JL. The turning bands method for simulation of random fields using line generation
by a spectral method. Water Resour Res. 1982; 18: 1379–1394.

26. Finley AO. Comparing spatially-varying coefficients models for analysis of ecological data with non-sta-
tionary and anisotropic residual dependence. Methods Ecol Evol. 2011; 2: 143–154.

27. Merali Z. Computational science: Error, why scientific programming does not compute. Nature. 2010;
467: 775–777. doi: 10.1038/467775a PMID: 20944712

28. Guisan A, Lehmann A, Ferrier S, Austin M, Overton J, et al. Making better biogeographical predictions
of species’ distributions. J Appl Ecol. 2006; 43: 386–392.

29. Brook BW, O’Grady JJ, Chapman AP, Burgman MA, Akçakaya HR, FrankhamR. Predictive accuracy
of population viability analysis in conservation biology. Nature. 2000; 404: 385–387. PMID: 10746724

30. Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, et al. High plant diversity is needed
to maintain ecosystem services. Nature. 2011; 477: 199–202. doi: 10.1038/nature10282 PMID:
21832994

31. Moran E V, Clark JS. Estimating seed and pollen movement in a monoecious plant: a hierarchical
Bayesian approach integrating genetic and ecological data. Mol Ecol. 2011; 20: 1248–1262. doi: 10.
1111/j.1365-294X.2011.05019.x PMID: 21332584

32. Bohrer G, Katul GG, Walko RL, Avissar R. Exploring the effects of microscale structural heterogeneity
of forest canopies using large-eddy simulations. Boundary-Layer Meteorol. 2009; 132: 351–382.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004140 March 26, 2015 11 / 11

http://dx.doi.org/10.1086/660295
http://www.ncbi.nlm.nih.gov/pubmed/21670575
http://www.ncbi.nlm.nih.gov/pubmed/22523482
http://cran.r-project.org/package�=�ff
http://CRAN.R-project.org/package=fastmatch
http://CRAN.R-project.org/package=fastmatch
http://dx.doi.org/10.1038/467775a
http://www.ncbi.nlm.nih.gov/pubmed/20944712
http://www.ncbi.nlm.nih.gov/pubmed/10746724
http://dx.doi.org/10.1038/nature10282
http://www.ncbi.nlm.nih.gov/pubmed/21832994
http://dx.doi.org/10.1111/j.1365-294X.2011.05019.x
http://dx.doi.org/10.1111/j.1365-294X.2011.05019.x
http://www.ncbi.nlm.nih.gov/pubmed/21332584

	Seedling survival responses to conspecific density, soil nutrients, and irradiance vary with age in a tropical forest
	Citation

	Speeding Up Ecological and Evolutionary Computations in R; Essentials of High Performance Computing for Biologists

